1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef CPU_REF_BATCH_NORMALIZATION_HPP
#define CPU_REF_BATCH_NORMALIZATION_HPP
#include <assert.h>
#include "c_types_map.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"
#include "cpu_batch_normalization_pd.hpp"
#include "cpu_primitive.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
template <impl::data_type_t data_type>
struct ref_batch_normalization_fwd_t: public cpu_primitive_t {
struct pd_t: public cpu_batch_normalization_fwd_pd_t {
pd_t(engine_t *engine, const batch_normalization_desc_t *adesc,
const primitive_attr_t *attr,
const batch_normalization_fwd_pd_t *hint_fwd_pd)
: cpu_batch_normalization_fwd_pd_t(engine, adesc, attr, hint_fwd_pd)
{}
DECLARE_COMMON_PD_T("ref:any", ref_batch_normalization_fwd_t);
status_t init() {
bool ok = true
&& is_fwd()
&& src_md()->data_type == data_type
&& IMPLICATION(use_scaleshift(),
weights_md()->data_type == data_type::f32)
&& (attr()->has_default_values() || with_relu_post_op());
if (!ok) return status::unimplemented;
if (src_md()->data_type == data_type::s8 && !stats_is_src())
return status::unimplemented;
if (is_training() && fuse_bn_relu()) init_default_ws(8);
return status::success;
}
};
ref_batch_normalization_fwd_t(const pd_t *apd): cpu_primitive_t(apd) {}
typedef typename prec_traits<data_type>::type data_t;
virtual status_t execute(const exec_ctx_t &ctx) const override {
execute_forward(ctx);
return status::success;
}
private:
void execute_forward(const exec_ctx_t &ctx) const;
const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
};
template <impl::data_type_t data_type>
struct ref_batch_normalization_bwd_t: public cpu_primitive_t {
struct pd_t: public cpu_batch_normalization_bwd_pd_t {
pd_t(engine_t *engine, const batch_normalization_desc_t *adesc,
const primitive_attr_t *attr,
const batch_normalization_fwd_pd_t *hint_fwd_pd)
: cpu_batch_normalization_bwd_pd_t(engine, adesc, attr, hint_fwd_pd)
{}
DECLARE_COMMON_PD_T("ref:any", ref_batch_normalization_bwd_t);
status_t init() {
bool ok = true
&& is_bwd()
&& utils::everyone_is(data_type, src_md()->data_type,
diff_src_md()->data_type)
&& IMPLICATION(use_scaleshift(), utils::everyone_is(data_type,
weights_md()->data_type,
diff_weights_md()->data_type))
&& attr()->has_default_values();
if (!ok) return status::unimplemented;
if (fuse_bn_relu()) {
init_default_ws(8);
if (!compare_ws(hint_fwd_pd_))
return status::unimplemented;
}
return status::success;
}
};
ref_batch_normalization_bwd_t(const pd_t *apd): cpu_primitive_t(apd) {}
typedef typename prec_traits<data_type>::type data_t;
virtual status_t execute(const exec_ctx_t &ctx) const override {
execute_backward(ctx);
return status::success;
}
private:
void execute_backward(const exec_ctx_t &ctx) const;
const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
};
}
}
}
#endif
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s
|