summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/ncsp_batch_normalization.hpp
blob: 97ca3b003f69e8551c512fb22782fe2f6e76bd05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef CPU_NCSP_BATCH_NORMALIZATION_HPP
#define CPU_NCSP_BATCH_NORMALIZATION_HPP

#include <assert.h>

#include "c_types_map.hpp"
#include "memory_tracking.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"

#include "cpu_batch_normalization_pd.hpp"
#include "cpu_primitive.hpp"

namespace mkldnn {
namespace impl {
namespace cpu {

struct ncsp_batch_normalization_fwd_t : public cpu_primitive_t {
    struct pd_t : public cpu_batch_normalization_fwd_pd_t {
        using cpu_batch_normalization_fwd_pd_t::cpu_batch_normalization_fwd_pd_t;

        DECLARE_COMMON_PD_T("ncsp_bnorm:any", ncsp_batch_normalization_fwd_t);

        status_t init() {
            using namespace data_type;
            using namespace prop_kind;
            using namespace format_tag;

            bool ok = true
                && is_fwd()
                && !has_zero_dim_memory()
                && src_md()->data_type == f32
                && IMPLICATION(use_scaleshift(), weights_md()->data_type == f32)
                && memory_desc_matches_one_of_tag(*src_md(), ncdhw, nchw, nc)
                && (attr()->has_default_values() || this->with_relu_post_op());
            if (!ok) return status::unimplemented;

            if (is_training() && fuse_bn_relu()) init_default_ws(8);

            init_scratchpad();

            return status::success;
        }

    private:
        void init_scratchpad() {
            using namespace memory_tracking::names;
            auto scratchpad = scratchpad_registry().registrar();
            if (!stats_is_src()) {
                scratchpad.book(key_bnorm_reduction,
                        sizeof(data_t) * C() * mkldnn_get_max_threads());

                if (!is_training()) {
                    scratchpad.book(key_bnorm_tmp_mean, sizeof(data_t) * C());
                    scratchpad.book(key_bnorm_tmp_var, sizeof(data_t) * C());
                }
            }
        }
    };

    typedef typename prec_traits<data_type::f32>::type data_t;

    ncsp_batch_normalization_fwd_t(const pd_t *apd): cpu_primitive_t(apd) {}
    ~ncsp_batch_normalization_fwd_t() {}

    virtual status_t execute(const exec_ctx_t &ctx) const override {
        execute_forward(ctx);
        return status::success;
    }

private:
    void execute_forward(const exec_ctx_t &ctx) const;
    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
};

struct ncsp_batch_normalization_bwd_t : public cpu_primitive_t {
    struct pd_t : public cpu_batch_normalization_bwd_pd_t {
        using cpu_batch_normalization_bwd_pd_t::cpu_batch_normalization_bwd_pd_t;

        DECLARE_COMMON_PD_T("ncsp_bnorm:any", ncsp_batch_normalization_bwd_t);

        status_t init() {
            using namespace data_type;
            using namespace format_tag;

            bool ok = true
                && is_bwd()
                && !has_zero_dim_memory()
                && utils::everyone_is(f32, src_md()->data_type,
                        diff_src_md()->data_type)
                && IMPLICATION(use_scaleshift(),
                        utils::everyone_is(f32,
                            weights_md()->data_type,
                            diff_weights_md()->data_type))
                && memory_desc_matches_one_of_tag(*src_md(), ncdhw, nchw, nc)
                && memory_desc_matches_one_of_tag(*diff_src_md(), ncdhw, nchw, nc)
                && attr()->has_default_values();
            if (!ok) return status::unimplemented;

            if (fuse_bn_relu()) {
                init_default_ws(8);
                if (!compare_ws(hint_fwd_pd_))
                    return status::unimplemented;
            }

            init_scratchpad();

            return status::success;
        }

    private:
        void init_scratchpad() {
            using namespace memory_tracking::names;
            auto scratchpad = scratchpad_registry().registrar();
            scratchpad.book(key_bnorm_reduction,
                    sizeof(data_t) * 2 * C() * mkldnn_get_max_threads());
            if (!(use_scaleshift() && desc()->prop_kind == prop_kind::backward))
                scratchpad.book(key_bnorm_tmp_diff_ss,
                        sizeof(data_t) * 2 * C());
        }
    };

    typedef typename prec_traits<data_type::f32>::type data_t;

    ncsp_batch_normalization_bwd_t(const pd_t *apd): cpu_primitive_t(apd) {}
    ~ncsp_batch_normalization_bwd_t() {}

    virtual status_t execute(const exec_ctx_t &ctx) const override {
        execute_backward(ctx);
        return status::success;
    }

private:
    void execute_backward(const exec_ctx_t &ctx) const;
    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
};

}
}
}

#endif

// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s