1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <assert.h>
#include <math.h>
#include "c_types_map.hpp"
#include "type_helpers.hpp"
#include "cpu_batch_normalization_utils.hpp"
#include "jit_generator.hpp"
#include "ncsp_batch_normalization.hpp"
// clang 6 and 7 generate incorrect code with OMP_SIMD in some particular cases
#if (defined __clang_major__) && (__clang_major__ >= 6)
#define SAFE_TO_USE_OMP_SIMD 0
#else
#define SAFE_TO_USE_OMP_SIMD 1
#endif
namespace mkldnn {
namespace impl {
namespace cpu {
using namespace memory_tracking::names;
void ncsp_batch_normalization_fwd_t::execute_forward(
const exec_ctx_t &ctx) const {
const bool calculate_stats = !pd()->stats_is_src();
const bool save_stats = pd()->is_training();
const bool is_training = pd()->is_training();
const bool fuse_bn_relu = pd()->fuse_bn_relu();
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
auto scaleshift = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SCALE_SHIFT);
auto scratchpad = this->scratchpad(ctx);
auto *ws_reduce = scratchpad.get<data_t>(key_bnorm_reduction);
data_t *mean, *variance;
if (!calculate_stats) {
mean = const_cast<data_t *>(
CTX_IN_MEM(const data_t *, MKLDNN_ARG_MEAN));
variance = const_cast<data_t *>(
CTX_IN_MEM(const data_t *, MKLDNN_ARG_VARIANCE));
} else {
if (save_stats) {
mean = CTX_OUT_MEM(data_t *, MKLDNN_ARG_MEAN);
variance = CTX_OUT_MEM(data_t *, MKLDNN_ARG_VARIANCE);
} else {
mean = scratchpad.get<data_t>(key_bnorm_tmp_mean);
variance = scratchpad.get<data_t>(key_bnorm_tmp_var);
}
}
auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
auto ws = CTX_OUT_MEM(uint8_t *, MKLDNN_ARG_WORKSPACE);
const float eps = pd()->desc()->batch_norm_epsilon;
const bool use_scaleshift = pd()->use_scaleshift();
const bool with_relu = pd()->with_relu_post_op();
auto maybe_post_op
= [&](data_t res) { return (with_relu && res < 0) ? 0 : res; };
const bool has_spatial = utils::one_of(pd()->ndims(), 4, 5);
dim_t SP = (has_spatial) ? pd()->H() * pd()->W() * pd()->D() : 1;
dim_t N = pd()->MB();
dim_t C = pd()->C();
int nthr = mkldnn_get_max_threads();
size_t l3_size_ = get_cache_size(3, true) * nthr / 2;
size_t data_size = N * C * SP * sizeof(data_t);
bool do_blocking = (data_size >= l3_size_ / 2 && l3_size_ > 0);
parallel(0, [&](const int ithr, const int nthr) {
int C_ithr = 0, C_nthr = 0;
int N_ithr = 0, N_nthr = 0;
int S_ithr = 0, S_nthr = 0;
dim_t C_blk_gl_s = 0, C_blk_gl_e = 0, C_blk_s = 0, C_blk_e = 0;
dim_t N_s = 0, N_e = 0;
dim_t S_s = 0, S_e = 0;
dim_t C_blks_per_iter = 1;
int64_t iters = 1;
if (do_blocking) {
size_t working_set_size = N * SP * sizeof(data_t);
bnorm_utils::cache_balance(
working_set_size, C, C_blks_per_iter, iters);
} else
C_blks_per_iter = C;
int64_t last_iter_blks = C - (iters - 1) * C_blks_per_iter;
bool spatial_thr_allowed
= bnorm_utils::thread_balance(do_blocking, true, ithr, nthr, N,
C_blks_per_iter, SP, C_ithr, C_nthr, C_blk_s, C_blk_e,
N_ithr, N_nthr, N_s, N_e, S_ithr, S_nthr, S_s, S_e);
balance211(C_blks_per_iter, nthr, ithr, C_blk_gl_s, C_blk_gl_e);
int SP_N_ithr = N_ithr * S_nthr + S_ithr;
int SP_N_nthr = N_nthr * S_nthr;
for (int64_t it = 0; it < iters; ++it) {
if (it == iters - 1 && iters > 1) {
// On the last iteration the access pattern to ws_reduce
// might change (due to re-balance on C). So sync the
// threads if they are not synced by the algorithm.
if (SP_N_nthr == 1 && mkldnn_thr_syncable())
mkldnn_thr_barrier();
S_s = S_e = C_blk_s = C_blk_e = N_s = N_e = 0;
spatial_thr_allowed = bnorm_utils::thread_balance(do_blocking,
spatial_thr_allowed, ithr, nthr, N, last_iter_blks, SP,
C_ithr, C_nthr, C_blk_s, C_blk_e, N_ithr, N_nthr, N_s,
N_e, S_ithr, S_nthr, S_s, S_e);
balance211(last_iter_blks, nthr, ithr, C_blk_gl_s, C_blk_gl_e);
SP_N_ithr = N_ithr * S_nthr + S_ithr;
SP_N_nthr = N_nthr * S_nthr;
}
size_t C_off = it * C_blks_per_iter;
// On the last iteration the access pattern to ws_reduce
// might change (due to re-balance on C). Since sync is not always
// possible (in case of TBB) use different parts of ws for each
// iteration if threads are not synced by the algorithm.
size_t ws_iter_off = (mkldnn_thr_syncable() ? 0 : 1) * C_off;
if (calculate_stats) {
data_t *mean_blk = mean + C_off;
data_t *variance_blk = variance + C_off;
for (dim_t c = C_blk_s; c < C_blk_e; c++) {
size_t off = (c + C_off) * SP;
data_t sum = 0;
for (dim_t n = N_s; n < N_e; ++n)
PRAGMA_OMP_SIMD(reduction(+ : sum))
for (dim_t sp = S_s; sp < S_e; ++sp) {
sum += src[off + n * C * SP + sp];
}
ws_reduce[ws_iter_off + SP_N_ithr * C_blks_per_iter + c]
= sum;
}
if (SP_N_nthr > 1) mkldnn_thr_barrier();
for (dim_t c = C_blk_gl_s; c < C_blk_gl_e; c++) {
mean_blk[c] = 0.;
for (dim_t n = 0; n < SP_N_nthr; n++)
mean_blk[c] += ws_reduce[ws_iter_off
+ n * C_blks_per_iter + c];
mean_blk[c] /= (N * SP);
}
if (SP_N_nthr > 1) mkldnn_thr_barrier();
for (dim_t c = C_blk_s; c < C_blk_e; c++) {
size_t off = c + C_off;
data_t sum = 0.;
for (dim_t n = N_s; n < N_e; ++n)
PRAGMA_OMP_SIMD(reduction(+ : sum))
for (dim_t sp = S_s; sp < S_e; ++sp) {
data_t m = src[off * SP + n * C * SP + sp]
- mean[off];
sum += m * m;
}
ws_reduce[ws_iter_off + SP_N_ithr * C_blks_per_iter + c]
= sum;
}
if (SP_N_nthr > 1) mkldnn_thr_barrier();
for (dim_t c = C_blk_gl_s; c < C_blk_gl_e; c++) {
variance_blk[c] = 0.;
for (dim_t n = 0; n < SP_N_nthr; n++)
variance_blk[c] += ws_reduce[ws_iter_off
+ n * C_blks_per_iter + c];
variance_blk[c] /= (N * SP);
}
if (SP_N_nthr > 1) mkldnn_thr_barrier();
}
for (dim_t c = C_blk_s; c < C_blk_e; c++) {
size_t off = c + C_off;
data_t sqrt_variance
= static_cast<data_t>(sqrtf(variance[off] + eps));
data_t sm = (use_scaleshift ? scaleshift[off] : 1.0f) / sqrt_variance;
data_t sv = use_scaleshift ? scaleshift[C + off] : 0;
for (dim_t n = N_s; n < N_e; ++n)
#if SAFE_TO_USE_OMP_SIMD
PRAGMA_OMP_SIMD()
#endif
for (dim_t sp = S_s; sp < S_e; ++sp) {
size_t d_off = off * SP + n * C * SP + sp;
data_t bn_res
= sm * (src[d_off] - mean[off]) + sv;
if (fuse_bn_relu) {
if (bn_res <= 0) {
bn_res = 0;
if (is_training)
ws[d_off] = 0;
} else {
if (is_training)
ws[d_off] = 1;
}
}
dst[d_off] = maybe_post_op(bn_res);
}
}
}
});
}
void ncsp_batch_normalization_bwd_t::execute_backward(
const exec_ctx_t &ctx) const {
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
auto mean = CTX_IN_MEM(const data_t *, MKLDNN_ARG_MEAN);
auto variance = CTX_IN_MEM(const data_t *, MKLDNN_ARG_VARIANCE);
auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
auto scaleshift = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SCALE_SHIFT);
auto ws = CTX_IN_MEM(const uint8_t *, MKLDNN_ARG_WORKSPACE);
auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
auto diff_scaleshift = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SCALE_SHIFT);
auto scratchpad = this->scratchpad(ctx);
auto *ws_reduce = scratchpad.get<data_t>(key_bnorm_reduction);
if (diff_scaleshift == nullptr)
diff_scaleshift = scratchpad.get<data_t>(key_bnorm_tmp_diff_ss);
const bool has_spatial = utils::one_of(pd()->ndims(), 4, 5);
dim_t SP = (has_spatial) ? pd()->H() * pd()->W() * pd()->D() : 1;
dim_t C = pd()->C(), N = pd()->MB();
const bool use_scaleshift = pd()->use_scaleshift();
const float eps = pd()->desc()->batch_norm_epsilon;
const bool calculate_diff_stats = !pd()->use_global_stats();
const bool fuse_bn_relu = pd()->fuse_bn_relu();
int nthr = mkldnn_get_max_threads();
size_t l3_size_ = get_cache_size(3, true) * nthr / 2;
size_t data_size = N * C * SP * sizeof(data_t);
bool do_blocking = (data_size >= l3_size_ / 2 && l3_size_ > 0);
parallel(0, [&](const int ithr, const int nthr) {
int C_ithr = 0, C_nthr = 0;
int N_ithr = 0, N_nthr = 0;
int S_ithr = 0, S_nthr = 0;
dim_t C_blk_gl_s = 0, C_blk_gl_e = 0, C_blk_s = 0, C_blk_e = 0;
dim_t N_s = 0, N_e = 0;
dim_t S_s = 0, S_e = 0;
dim_t C_blks_per_iter = 1;
int64_t iters = 1;
if (do_blocking) {
size_t working_set_size = 2 * N * SP * sizeof(data_t);
bnorm_utils::cache_balance(
working_set_size, C, C_blks_per_iter, iters);
} else
C_blks_per_iter = C;
int64_t last_iter_blks = C - (iters - 1) * C_blks_per_iter;
bool spatial_thr_allowed
= bnorm_utils::thread_balance(do_blocking, true, ithr, nthr, N,
C_blks_per_iter, SP, C_ithr, C_nthr, C_blk_s, C_blk_e,
N_ithr, N_nthr, N_s, N_e, S_ithr, S_nthr, S_s, S_e);
balance211(C_blks_per_iter, nthr, ithr, C_blk_gl_s, C_blk_gl_e);
int SP_N_ithr = N_ithr * S_nthr + S_ithr;
int SP_N_nthr = N_nthr * S_nthr;
for (int64_t it = 0; it < iters; ++it) {
if (it == iters - 1 && iters > 1) {
// On the last iteration the access pattern to ws_reduce
// might change (due to re-balance on C). So sync the
// threads if they are not synced by the algorithm.
if (SP_N_nthr == 1 && mkldnn_thr_syncable())
mkldnn_thr_barrier();
C_blk_s = C_blk_e = N_s = N_e = 0;
spatial_thr_allowed = bnorm_utils::thread_balance(do_blocking,
spatial_thr_allowed, ithr, nthr, N, last_iter_blks, SP,
C_ithr, C_nthr, C_blk_s, C_blk_e, N_ithr, N_nthr, N_s,
N_e, S_ithr, S_nthr, S_s, S_e);
balance211(last_iter_blks, nthr, ithr, C_blk_gl_s, C_blk_gl_e);
SP_N_ithr = N_ithr * S_nthr + S_ithr;
SP_N_nthr = N_nthr * S_nthr;
}
size_t C_off = it * C_blks_per_iter;
// On the last iteration the access pattern to ws_reduce
// might change (due to re-balance on C). Since sync is not always
// possible (in case of TBB) use different parts of ws for each
// iteration if threads are not synced by the algorithm.
size_t ws_iter_off = (mkldnn_thr_syncable() ? 0 : 1) * 2 * C_off;
data_t *diff_gamma_blk = diff_scaleshift + C_off;
data_t *diff_beta_blk = diff_scaleshift + C + C_off;
for (dim_t c = C_blk_s; c < C_blk_e; c++) {
size_t off = c + C_off;
data_t diff_gamma = 0.0, diff_beta = 0.0;
data_t v_mean = mean[off];
for (dim_t n = N_s; n < N_e; ++n)
PRAGMA_OMP_SIMD(reduction(+ : diff_gamma, diff_beta))
for (dim_t sp = S_s; sp < S_e; ++sp) {
const size_t d_off = off * SP + n * C * SP + sp;
data_t dd;
if (fuse_bn_relu)
dd = (!ws[d_off]) ? 0 : diff_dst[d_off];
else
dd = diff_dst[d_off];
diff_gamma += (src[d_off] - v_mean) * dd;
diff_beta += dd;
}
ws_reduce[ws_iter_off + SP_N_ithr * C_blks_per_iter + c]
= diff_gamma;
ws_reduce[ws_iter_off + SP_N_nthr * C_blks_per_iter
+ SP_N_ithr * C_blks_per_iter + c] = diff_beta;
}
if (SP_N_nthr > 1) mkldnn_thr_barrier();
for (dim_t c = C_blk_gl_s; c < C_blk_gl_e; c++) {
data_t sqrt_variance = static_cast<data_t>(
1.0f / sqrtf(variance[c + C_off] + eps));
diff_gamma_blk[c] = 0.;
diff_beta_blk[c] = 0.;
for (dim_t n = 0; n < SP_N_nthr; n++) {
diff_gamma_blk[c] += ws_reduce[ws_iter_off
+ n * C_blks_per_iter + c];
diff_beta_blk[c] += ws_reduce[ws_iter_off
+ SP_N_nthr * C_blks_per_iter + n * C_blks_per_iter
+ c];
}
diff_gamma_blk[c] *= sqrt_variance;
}
if (SP_N_nthr > 1) mkldnn_thr_barrier();
for (dim_t c = C_blk_s; c < C_blk_e; c++) {
size_t off = c + C_off;
data_t gamma = use_scaleshift ? scaleshift[off] : 1;
data_t sqrt_variance
= static_cast<data_t>(1.0f / sqrtf(variance[off] + eps));
data_t v_mean = mean[off];
for (dim_t n = N_s; n < N_e; ++n)
#if SAFE_TO_USE_OMP_SIMD
PRAGMA_OMP_SIMD()
#endif
for (dim_t sp = S_s; sp < S_e; ++sp) {
const size_t d_off = off * SP + n * C * SP + sp;
data_t v_diff_src;
if (fuse_bn_relu)
v_diff_src = (!ws[d_off]) ? 0 : diff_dst[d_off];
else
v_diff_src = diff_dst[d_off];
if (calculate_diff_stats) {
v_diff_src -= diff_beta_blk[c] / (SP * N)
+ (src[d_off] - v_mean) * diff_gamma_blk[c]
* sqrt_variance / (SP * N);
}
v_diff_src *= gamma * sqrt_variance;
diff_src[d_off] = v_diff_src;
}
}
}
});
}
}
}
}
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s
|