summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/jit_uni_reorder_utils.cpp
blob: 69b7a33604ced9d0551d3d29e8863d4b29cdf74b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <assert.h>

#include "c_types_map.hpp"
#include "memory_desc_wrapper.hpp"
#include "mkldnn_debug.h"
#include "nstl.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"

#include "jit_uni_reorder.hpp"

using namespace mkldnn::impl::types;
using namespace mkldnn::impl::status;

namespace mkldnn {
namespace impl {
namespace cpu {

namespace tr {

/** ad-hoc structure to describe blocked memory layout */
struct layout_desc_t {
    data_type_t dt;
    int ndims;
    dims_t id;
    dims_t dims;
    strides_t strides;
};

status_t cvt_mem_desc_to_layout_desc(const memory_desc_t &md_,
        layout_desc_t &ld) {
    const auto md = memory_desc_wrapper(md_);

    bool ok = true
        && md.is_blocking_desc()
        && md.extra().flags == 0;
    if (!ok) return invalid_arguments;

    const auto &bd = md.blocking_desc();

    ld.ndims = 0;
    ld.dt = md.data_type();

    auto P = [&ld](int id, int dim, ptrdiff_t stride) {
        assert((size_t)ld.ndims < sizeof(ld.dims) / sizeof(ld.dims[0]));
        ld.id[ld.ndims] = id;
        ld.dims[ld.ndims] = dim;
        ld.strides[ld.ndims] = stride;
        ++ld.ndims;
    };

    dims_t blocks;
    md.compute_blocks(blocks);

    for (int d = 0; d < md.ndims(); ++d) {
        const int ld_ndims_start = ld.ndims;
        if (blocks[d] != 1) {
            stride_t stride = 1;
            for (int iblk = bd.inner_nblks - 1; iblk >= 0; --iblk) {
                if (bd.inner_idxs[iblk] == d)
                    P(d, bd.inner_blks[iblk], stride);
                stride *= bd.inner_blks[iblk];
            }
        }
        P(d, md.padded_dims()[d] / blocks[d], bd.strides[d]);

        // TODO: NOW: revisit, do we need a reverse?
        // TODO: NOW: consider using strides instead of block sizes in md
        // reverse the order of dims
        for (int ld_d = 0; ld_d < (ld.ndims - ld_ndims_start) / 2; ++ld_d) {
            const int idx0 = ld_ndims_start + ld_d;
            const int idx1 = ld.ndims - 1 - ld_d;
            nstl::swap(ld.dims[idx0], ld.dims[idx1]);
            nstl::swap(ld.strides[idx0], ld.strides[idx1]);
        }
    }

    return success;
}

status_t prb_init(prb_t &p, const memory_desc_t &imd, const memory_desc_t &omd,
        const primitive_attr_t *attr) {
    auto im_d = memory_desc_wrapper(imd);
    auto om_d = memory_desc_wrapper(omd);

    bool ok = true
        && im_d.is_blocking_desc()
        && om_d.is_blocking_desc()
        && !im_d.has_zero_dim()
        && !om_d.has_zero_dim();
    if (!ok)
        return unimplemented;

    dims_t iblocks, oblocks;
    im_d.compute_blocks(iblocks);
    om_d.compute_blocks(oblocks);

    /* padding_dim consistency check */
    for (int d = 0; d < im_d.ndims(); ++d) {
        const auto pdim = im_d.padded_dims()[d];
        bool ok = true
            && pdim == om_d.padded_dims()[d]
            && pdim % iblocks[d] == 0
            && pdim % oblocks[d] == 0;
            if (!ok) return unimplemented;
    }

    layout_desc_t ild, old;
    status_t status = cvt_mem_desc_to_layout_desc(imd, ild);
    if (status != success) return status;
    status = cvt_mem_desc_to_layout_desc(omd, old);
    if (status != success) return status;

    p.itype = ild.dt;
    p.otype = old.dt;

    p.scale_type = attr->output_scales_.has_default_values()
        ? scale_type_t::NONE
        : (attr->output_scales_.mask_ == 0
                ? scale_type_t::COMMON
                : scale_type_t::MANY);

    ptrdiff_t ss[max_ndims] = {0};
    if (p.scale_type == scale_type_t::MANY) {
        ptrdiff_t last_ss = 1;
        for (int d = old.ndims - 1; d >=0; --d) {
            assert((d == 0 || old.id[d - 1] <= old.id[d])
                    && "logical dimensions should be in ascending order");
            if (attr->output_scales_.mask_ & (1 << old.id[d])) {
                ss[d] = last_ss;
                last_ss *= old.dims[d];
            }
        }
    }

    int ndims = 0;

    int i_pos = 0; /* state for input  -- current dimension */
    int o_pos = 0; /* state for output -- current dimension */

    while (i_pos < ild.ndims && o_pos < old.ndims) {
        assert(ild.id[i_pos] == old.id[o_pos]);
        if (ild.id[i_pos] != old.id[o_pos])
            return runtime_error;

        assert(ndims < max_ndims);
        if (ndims == max_ndims)
            return runtime_error;

        if (ild.dims[i_pos] == old.dims[o_pos]) {
            p.nodes[ndims].n = ild.dims[i_pos];
            p.nodes[ndims].is = ild.strides[i_pos];
            p.nodes[ndims].os = old.strides[o_pos];
            p.nodes[ndims].ss = ss[o_pos];
            ++ndims;
            ++i_pos;
            ++o_pos;
        } else if (ild.dims[i_pos] < old.dims[o_pos]) {
            assert(old.dims[o_pos] % ild.dims[i_pos] == 0);
            int factor = old.dims[o_pos] / ild.dims[i_pos];
            p.nodes[ndims].n = ild.dims[i_pos];
            p.nodes[ndims].is = ild.strides[i_pos];
            p.nodes[ndims].os = old.strides[o_pos] * factor;
            p.nodes[ndims].ss = ss[o_pos] * factor;
            ++ndims;
            ++i_pos;
            old.dims[o_pos] = factor;
        } else if (ild.dims[i_pos] > old.dims[o_pos]) {
            assert(ild.dims[i_pos] % old.dims[o_pos] == 0);
            int factor = ild.dims[i_pos] / old.dims[o_pos];
            p.nodes[ndims].n = old.dims[o_pos];
            p.nodes[ndims].is = ild.strides[i_pos] * factor;
            p.nodes[ndims].os = old.strides[o_pos];
            p.nodes[ndims].ss = ss[o_pos];
            ++ndims;
            ++o_pos;
            ild.dims[i_pos] = factor;
        }
    }
    p.ndims = ndims;

    dims_t zero_pos = {0};
    p.ioff = memory_desc_wrapper(imd).off_v(zero_pos);
    p.ooff = memory_desc_wrapper(omd).off_v(zero_pos);

    const int sum_idx = attr->post_ops_.find(primitive_kind::sum);
    p.beta = sum_idx == -1 ? 0.f : attr->post_ops_.entry_[sum_idx].sum.scale;

    return success;
}

void prb_normalize(prb_t &p) {
    for (int d = 0; d < p.ndims; ++d) {
        int min_pos = d;
        for (int j = d + 1; j < p.ndims; ++j) {
            bool new_min = false
                || p.nodes[j].os < p.nodes[min_pos].os
                || (true
                        && p.nodes[j].os == p.nodes[min_pos].os
                        && p.nodes[j].n < p.nodes[min_pos].n);
            if (new_min) min_pos = j;
        }
        if (min_pos != d)
            nstl::swap(p.nodes[d], p.nodes[min_pos]);
    }
}

void prb_simplify(prb_t &p) {
#if defined(__GNUC__) && __GNUC__ >= 4
/* GCC produces bogus array subscript is above array bounds warning for
 * the `p.nodes[j - 1] = p.nodes[j]` line below, so disable it for now. */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
    for (int d = 0; d < p.ndims - 1; ++d) {
        auto &this_node = p.nodes[d + 0];
        auto &next_node = p.nodes[d + 1];
        const bool fold = false
            || next_node.n == (size_t)1 // trivial case, just drop next node
            || (true // or real folding if possible
                    && next_node.is == (ptrdiff_t)this_node.n * this_node.is
                    && next_node.os == (ptrdiff_t)this_node.n * this_node.os
                    && next_node.ss == (ptrdiff_t)this_node.n * this_node.ss);
        if (fold) {
            this_node.n *= next_node.n;
            for (int j = d + 2; j < p.ndims; ++j)
                p.nodes[j - 1] = p.nodes[j];
            --p.ndims;
            --d; // make another try
        }
    }
#if defined(__GNUC__) && __GNUC__ >= 4
#pragma GCC diagnostic pop
#endif
}

void prb_node_split(prb_t &p, int dim, size_t n1) {
    assert(dim < p.ndims);
    assert(p.ndims < max_ndims);
    assert(p.nodes[dim].n % n1 == 0);

    p.ndims += 1;

    for (int d = p.ndims; d > dim + 1; --d)
        p.nodes[d] = p.nodes[d - 1];

    p.nodes[dim + 1].n = p.nodes[dim].n / n1;
    p.nodes[dim + 1].is = p.nodes[dim].is * n1;
    p.nodes[dim + 1].os = p.nodes[dim].os * n1;
    p.nodes[dim + 1].ss = p.nodes[dim].ss * n1;

    p.nodes[dim].n = n1;
}

void prb_node_swap(prb_t &p, int d0, int d1) {
    assert(d0 < p.ndims);
    assert(d1 < p.ndims);
    assert(p.ndims < max_ndims);

    if (d0 == d1) return;

    nstl::swap(p.nodes[d0], p.nodes[d1]);
}

void prb_node_move(prb_t &p, int d0, int d1) {
    assert(d0 < p.ndims);
    assert(d1 < p.ndims);
    assert(p.ndims < max_ndims);

    if (d0 == d1) return;

    node_t node = p.nodes[d0];

    if (d0 < d1)
        for (int d = d0; d < d1; ++d)
            p.nodes[d] = p.nodes[d + 1];
    else
        for (int d = d0; d > d1; --d)
            p.nodes[d] = p.nodes[d - 1];

    p.nodes[d1] = node;
}

void prb_dump(const prb_t &p) {
    printf("@@@ type:%s:%s ndims:%d ", mkldnn_dt2str(p.itype),
            mkldnn_dt2str(p.otype), p.ndims);
    for (int d = 0; d < p.ndims; ++d)
        printf("[%zu:%td:%td:%td]",
                p.nodes[d].n, p.nodes[d].is, p.nodes[d].os, p.nodes[d].ss);
    printf(" off:%zu:%zu\n", p.ioff, p.ooff);
}

}

}
}
}