summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/jit_uni_reorder.cpp
blob: 98796503b793d46d3a4aa2c52248d0d0168258d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <assert.h>

#include "c_types_map.hpp"
#include "memory_desc_wrapper.hpp"
#include "mkldnn_debug.h"
#include "nstl.hpp"
#include "type_helpers.hpp"

#include "cpu_primitive.hpp"
#include "cpu_reorder_pd.hpp"
#include "jit_uni_reorder.hpp"

#include "jit_generator.hpp"

// #define TR_DEBUG
#if defined(TR_DEBUG)
#define DEBUg(...) do { __VA_ARGS__ } while (0)
#else
#define DEBUg(...)
#endif
#define DEBUG(...) DEBUg(__VA_ARGS__)

#ifdef _WIN32
/* seems like s_addr is a reserved macro on Windows */
#undef s_addr
#endif

using namespace Xbyak;
using namespace mkldnn::impl::types;

namespace mkldnn {
namespace impl {
namespace cpu {

namespace tr {

/** Minimal reasonable/desirable kernel size.
 * The constant might be used to determine how a problem should be split
 * between kernel and threading driver. */
const size_t ker_prb_size_min = 64;

/* kernel */
struct jit_uni_reorder_kernel_f32: public kernel_t, public jit_generator {
    DECLARE_CPU_JIT_AUX_FUNCTIONS(jit_uni_reorder_kernel_f32)

    enum {
        len_unroll_max = 256,
        ndims_jit_loop_max = 3,
    };

    struct simple_impl_desc_t {
        int ndims_full_unroll;
        int len_last_dim_unroll;
        int len_unroll;
    };

    static bool simple_impl_desc_init(const prb_t &prb,
            simple_impl_desc_t *desc) {
        const int ndims = prb.ndims;

        int ndims_full_unroll = 0;
        int len_last_dim_unroll = 1;
        int len_unroll = 1;

        for (int d = 0; d < ndims; ++d) {
            auto &node = prb.nodes[d];
            if (len_unroll * node.n <= len_unroll_max) {
                ndims_full_unroll++;
                len_unroll *= node.n;
            } else {
                len_last_dim_unroll = len_unroll_max / len_unroll;
                while (node.n % len_last_dim_unroll)
                    --len_last_dim_unroll;
                len_unroll *= len_last_dim_unroll;
                break;
            }
        }

        if (prb.ndims - ndims_full_unroll > ndims_jit_loop_max)
            return false;

        if (desc) {
            desc->ndims_full_unroll = ndims_full_unroll;
            desc->len_last_dim_unroll = len_last_dim_unroll;
            desc->len_unroll = len_unroll;
        }

        return true;
    }

    static bool applicable(const prb_t &p) {
        using namespace data_type;

        bool ok = true
            && p.ndims > 0
            && utils::one_of(p.itype, f32, s32, s8, u8)
            && utils::one_of(p.otype, f32, s32, s8, u8)
            && utils::everyone_is(0, p.ioff, p.ooff) /* do we need this? */
            && utils::one_of(p.beta, 0.f, 1.f) /* anything else? */
            && simple_impl_desc_init(p, nullptr)
            && mayiuse(sse42)
            && IMPLICATION(!utils::everyone_is(f32, p.itype, p.otype),
                    mayiuse(avx));
        if (!ok) return false;

        const ptrdiff_t max_stride = (1LL<<31) - 1;
        for (int d = 0; d < p.ndims; ++d) {
            const ptrdiff_t cms = max_stride / p.nodes[d].n;
            bool strides_ok = true
                && p.nodes[d].is < cms / (int)data_type_size(p.itype)
                && p.nodes[d].os < cms / (int)data_type_size(p.otype);
            if (!strides_ok) return false;
        }

        return true;
    }

    int n(int d) { assert(d < prb_.ndims); return (int)prb_.nodes[d].n; }
    int is(int d) { assert(d < prb_.ndims); return (int)prb_.nodes[d].is; }
    int os(int d) { assert(d < prb_.ndims); return (int)prb_.nodes[d].os; }
    int ss(int d) { assert(d < prb_.ndims); return (int)prb_.nodes[d].ss; }

    Address i_addr(int i_off)
    { return ptr[reg_ptr_in + reg_off_in + i_off * itype_sz]; }

    Address o_addr(int o_off)
    { return ptr[reg_ptr_out + reg_off_out + o_off * otype_sz]; }

    Address s_addr(int s_off)
    { return ptr[reg_ptr_scale + reg_off_scale + s_off * stype_sz]; }

    void step(int off, int prev_i_off, int prev_o_off, int prev_s_off,
            int &i_off, int &o_off, int &s_off, int step_size = 1) {
        i_off = prev_i_off;
        o_off = prev_o_off;
        s_off = prev_s_off;

        if (off == 0) return;

        int start_dim = 0, dims_prod = 1;
        for (; start_dim < prb_.ndims && dims_prod != step_size; ++start_dim)
            dims_prod *= n(start_dim);
        assert(start_dim < prb_.ndims);
        off /= step_size;

        for (int d = start_dim; d < prb_.ndims; ++d) {
            i_off += is(d);
            o_off += os(d);
            s_off += ss(d);

            if (off % n(d)) break;

            i_off += - n(d) * is(d);
            o_off += - n(d) * os(d);
            s_off += - n(d) * ss(d);
            off /= n(d);

            if (off == 0) break; /* FIXME: is it really required? */
        }
    }

    void step(int off, int prev_i_off, int prev_o_off, int &i_off, int &o_off,
            int step_size = 1) {
        int dummy = 0;
        step(off, prev_i_off, prev_o_off, dummy, i_off, o_off, dummy,
                step_size);
    }

    void tr8x8_avx2(int i_off, int o_off) {
        for (int i = 0; i < 8; i++)
            vmovups(Ymm(i), i_addr(i_off + i * 8));

        for (int i = 0; i < 8 / 2; i++) {
            vunpcklps(Ymm(8 + i), Ymm(2 * i), Ymm(2 * i + 1));
            vunpckhps(Ymm(i), Ymm(2 * i), Ymm(2 * i + 1));
        }

        const unsigned int lfloat = 0x44;
        const unsigned int ufloat = 0xee;
        for (int i = 0; i < 8 / 2; i++) {
            int j = i % 2 == 0 ? 8 + i : i - 1;
            vshufps(Ymm(8 / 2 + 2 * i), Ymm(j), Ymm(j + 1), lfloat);
            vshufps(Ymm(8 / 2 + 2 * i + 1), Ymm(j), Ymm(j + 1), ufloat);
        }

        const unsigned int lquad = 0x20;
        for (int i = 0; i < 8 / 2; i++)
            vperm2f128(Ymm(i), Ymm(8 / 2 + i), Ymm(8 + i), lquad);

        const unsigned int uquad = 0x31;
        for (int i = 8 / 2; i < 8; i++)
            vperm2f128(Ymm(i), Ymm(i), Ymm(8 / 2 + i), uquad);

        for (int i = 0; i < 8; i++)
            vmovups(o_addr(o_off + i * 8), Ymm(i));
    }

    bool process_unroll_tr8x8(int len) {
        bool can_do = true
            && mayiuse(avx2)
            && prb_.ndims >= 2
            && utils::everyone_is(4, itype_sz, otype_sz)
            && utils::everyone_is(8, n(0), n(1))
            && utils::everyone_is(1, os(0), is(1))
            && utils::everyone_is(8, os(1), is(0))
            && prb_.scale_type == scale_type_t::NONE
            && prb_.beta == 0.f;
        if (!can_do) return false;

        const int step_size = n(0) * n(1);
        int i_off = 0, o_off = 0;
        for (int off = 0; off < len; off += step_size) {
            step(off, i_off, o_off, i_off, o_off, step_size);
            tr8x8_avx2(i_off, o_off);
        }

        return true;
    }

    template <cpu_isa_t isa>
    bool process_direct_copy(int len) {
        using namespace data_type;

        using Vmm = typename cpu_isa_traits<isa>::Vmm;
        const int simd_w = cpu_isa_traits<isa>::vlen / itype_sz;

        bool can_do = true
            && mayiuse(isa)
            && utils::everyone_is(1, os(0), is(0))
            && (false
                    || prb_.itype == prb_.otype
                    || (prb_.itype == s32 && prb_.otype == f32)
                    || (prb_.itype == f32 && prb_.otype == s32)
                    )
            && len % simd_w == 0
            && n(0) % len == 0
            && prb_.scale_type == scale_type_t::NONE
            && prb_.beta == 0.f;
        if (!can_do) return false;

        for (int off = 0; off < len;) {
            const int unroll = nstl::min(16, (len - off) / simd_w);

            for (int ur = 0; ur < unroll; ++ur)
                uni_vmovups(Vmm(ur), i_addr(off + ur * simd_w));

            if (prb_.itype != prb_.otype) {
                for (int ur = 0; ur < unroll; ++ur) {
                    if (prb_.itype == s32 && prb_.otype == f32)
                        uni_vcvtdq2ps(Vmm(ur), Vmm(ur));
                    else if (prb_.itype == f32 && prb_.otype == s32)
                        uni_vcvtps2dq(Vmm(ur), Vmm(ur));
                    else assert(!"unreachable");
                }
            }

            for (int ur = 0; ur < unroll; ++ur)
                uni_vmovups(o_addr(off + ur * simd_w), Vmm(ur));

            off += unroll * simd_w;
        }

        return true;
    }

    void process_unroll_generic_step(int reg_unroll, const int *i_off,
            const int *o_off, const int *s_off) {
        using namespace data_type;

        auto cvt2ps = [=](const Xmm &dst, const Operand &src, data_type_t idt) {
            Xmm dst_pure = Xmm(dst.getIdx());
            switch (idt) {
            case f32:
                if (src.isMEM() || src.getIdx() != dst.getIdx())
                    vmovups(dst, src);
                break;
            case s32: vcvtdq2ps(dst, src); break;
            case s8: vpmovsxbd(dst, src); vcvtdq2ps(dst_pure, dst); break;
            case u8: vpmovzxbd(dst, src); vcvtdq2ps(dst_pure, dst); break;
            default: assert(!"unreachable");
            }
        };

        auto cvt2int = [=](const Xmm &xmm, data_type_t odt, data_type_t idt) {
            switch (odt) {
            case s32:
                if (idt == f32) vcvtps2dq(xmm, xmm);
                else if (idt == s8) vpmovsxbd(xmm, xmm);
                else if (idt == u8) vpmovzxbd(xmm, xmm);
                break;
            case s8:
                if (idt == f32) vcvtps2dq(xmm, xmm);
                if (idt == f32 || idt == s32) {
                    if (mayiuse(avx512_core)) {
                        vpmovsdb(xmm, xmm);
                    } else {
                        vpackssdw(xmm, xmm, xmm_zero);
                        vpacksswb(xmm, xmm, xmm_zero);
                    }
                }
                if (idt == u8) vpminub(xmm, xmm, xmm_4x127b);
                break;
            case u8:
                if (idt == f32) vcvtps2dq(xmm, xmm);
                if (idt == f32 || idt == s32) {
                    if (mayiuse(avx512_core)) {
                        vpmaxsd(xmm, xmm, xmm_zero);
                        vpmovusdb(xmm, xmm);
                    } else {
                        vpackssdw(xmm, xmm, xmm_zero);
                        vpackuswb(xmm, xmm, xmm_zero);
                    }
                }
                if (idt == s8) vpmaxsb(xmm, xmm, xmm_zero);
                break;
            default: assert(!"unreachable");
            }
        };

        auto load = [=](const Xmm &xmm, const Address &addr, int size) {
            switch (size) {
            case 16: movups(xmm, addr); break;
            case 4: movss(xmm, addr); break;
            case 1: pinsrb(xmm, addr, 0x0); break;
            default: assert(!"unreachable");
            }
        };

        auto store = [=](const Address &addr, const Xmm &xmm, int size) {
            switch (size) {
            case 16: movups(addr, xmm); break;
            case 4: movss(addr, xmm); break;
            case 1: pextrb(addr, xmm, 0x0); break;
            default: assert(!"unreachable");
            }
        };

        /* check whether loading 4 values at once is possible */
        bool can_load_xmm = mayiuse(avx) && reg_unroll % 4 == 0;
        for (int ur = 1; ur < reg_unroll; ++ur)
            if (i_off[ur] != i_off[ur - 1] + 1)
                can_load_xmm = false;
        const int load_step = can_load_xmm ? 4 : 1;

        /* check whether storing 4 values at once is possible */
        bool can_store_xmm = reg_unroll % 4 == 0;
        for (int ur = 1; ur < reg_unroll; ++ur)
            if (o_off[ur] != o_off[ur - 1] + 1)
                can_store_xmm = false;
        const int ur_step = can_store_xmm ? 4 : 1;

        const bool interim_f32 = false
            || utils::one_of(f32, prb_.itype, prb_.otype)
            || prb_.scale_type != scale_type_t::NONE
            || prb_.beta != 0.f;

        if (!can_load_xmm && can_store_xmm) {
            assert(ur_step == 4);
            /* load with stride */
            for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                for (int r = 0; r < ur_step; ++r) {
                    if (itype_sz == 4)
                        pinsrd(Xmm(ur), i_addr(i_off[ur + r]), r);
                    else
                        pinsrb(Xmm(ur), i_addr(i_off[ur + r]), r);
                }
            }
        } else {
            for (int ur = 0; ur < reg_unroll; ur += load_step)
                load(Xmm(ur), i_addr(i_off[ur]), load_step * itype_sz);
        }

        /* xmm[:] <-- (f32)xmm[:] */
        if (interim_f32) {
            const int cvt_step = nstl::max(load_step, ur_step);
            for (int ur = 0; ur < reg_unroll; ur += cvt_step)
                cvt2ps(Xmm(ur), Xmm(ur), prb_.itype);
        }

        if (can_load_xmm && !can_store_xmm) {
            const bool fast_return = true // transposition on the fly
                && prb_.scale_type != scale_type_t::MANY
                && prb_.beta == 0.f;
            if (fast_return) {
                for (int ur = 0; ur < reg_unroll; ur += load_step) {
                    if (prb_.scale_type == scale_type_t::COMMON)
                        mulps(Xmm(ur), xmm_scale);
                    if (prb_.otype != f32)
                        cvt2int(Xmm(ur), prb_.otype,
                                interim_f32 ? f32 : prb_.itype);
                    for (int r = 0; r < load_step; ++r) {
                        if (otype_sz == 4)
                            pextrd(o_addr(o_off[ur + r]), Xmm(ur), r);
                        else
                            pextrb(o_addr(o_off[ur + r]), Xmm(ur), r);
                    }
                }
                return;
            }

            /* scatter elements of xmm into 4 xmms */
            if (itype_sz == 4 || interim_f32) {
                for (int ur = 0; ur < reg_unroll; ur += load_step)
                    for (int r = 1; r < load_step; ++r)
                        vshufps(Xmm(ur + r), Xmm(ur), Xmm(ur), r);
            } else {
                for (int ur = 0; ur < reg_unroll; ur += load_step)
                    for (int r = 1; r < load_step; ++r)
                        vpalignr(Xmm(ur + r), Xmm(ur), Xmm(ur), r);
            }
        }

        /* scale and beta processing */
        if (can_store_xmm) {
            /* xmm <-- scale * xmm[:] */
            if (prb_.scale_type == scale_type_t::COMMON) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step)
                    mulps(Xmm(ur), xmm_scale);
            } else if (prb_.scale_type == scale_type_t::MANY) {
                enum class scale_load_type_t { bcast, load, gather };

                for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                    scale_load_type_t scale_load_type =
                        scale_load_type_t::bcast; // the best case

                    for (int r = ur + 1; r < ur + ur_step; ++r)
                        if (s_off[r] != s_off[r - 1] + 0)
                            scale_load_type = scale_load_type_t::load;

                    if (scale_load_type == scale_load_type_t::bcast) {
                        movss(xmm_scale, s_addr(s_off[ur]));
                        shufps(xmm_scale, xmm_scale, 0x0);
                        mulps(Xmm(ur), xmm_scale);
                        continue;
                    }

                    // bcast doesn't work, the next try -- load
                    for (int r = ur + 1; r < ur + ur_step; ++r)
                        if (s_off[r] != s_off[r - 1] + 1)
                            scale_load_type = scale_load_type_t::gather;

                    if (scale_load_type == scale_load_type_t::load) {
                        movups(xmm_scale, s_addr(s_off[ur]));
                        mulps(Xmm(ur), xmm_scale);
                        continue;
                    }

                    // load doesn't work as well
                    // so gather the scale factors one by one
                    for (int r = ur; r < ur + ur_step; ++r)
                        pinsrd(xmm_scale, s_addr(s_off[r]), r - ur);
                    mulps(Xmm(ur), xmm_scale);
                }
            }

            /* dst <-- beta * dst + xmm[:] */
            assert(prb_.beta == 0.f || prb_.beta == 1.f);
            if (prb_.beta == 1.f) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                    if (prb_.otype == f32) {
                        /* non VEX instructions do not support unaligned
                         * memory for instructions other than movups. */
                        if (mayiuse(avx)) {
                            vaddps(Xmm(ur), o_addr(o_off[ur]));
                        } else {
                            /* register xmm(1) is unused */
                            movups(Xmm(1), o_addr(o_off[ur]));
                            addps(Xmm(ur), Xmm(1));
                        }
                    } else {
                        cvt2ps(Xmm(1), o_addr(o_off[ur]), prb_.otype);
                        vaddps(Xmm(ur), Xmm(1));
                    }
                }
            }
        } else {
            /* xmm[0] <-- scale * xmm[0] */
            if (prb_.scale_type == scale_type_t::COMMON) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step)
                    mulss(Xmm(ur), xmm_scale);
            } else if (prb_.scale_type == scale_type_t::MANY) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                    mulss(Xmm(ur), s_addr(s_off[ur]));
                }
            }

            /* dst <-- beta * dst + xmm[0] */
            assert(prb_.beta == 0.f || prb_.beta == 1.f);
            if (prb_.beta == 1.f) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                    if (prb_.otype == f32) {
                        addss(Xmm(ur), o_addr(o_off[ur]));
                    } else {
                        if (prb_.otype == s32) {
                            vmovss(xmm_tmp, o_addr(o_off[ur]));
                        } else if (utils::one_of(prb_.otype, s8, u8)) {
                            pinsrb(xmm_tmp, o_addr(o_off[ur]), 0x0);
                        } else {
                            assert(!"unsupported o_type");
                        }
                        cvt2ps(xmm_tmp, xmm_tmp, prb_.otype);
                        addps(Xmm(ur), xmm_tmp);
                    }
                }
            }
        }

        for (int ur = 0; ur < reg_unroll; ur += ur_step) {
            if (prb_.otype != f32)
                cvt2int(Xmm(ur), prb_.otype, interim_f32 ? f32 : prb_.itype);
            store(o_addr(o_off[ur]), Xmm(ur), ur_step * otype_sz);
        }
    }

    void process_unroll_generic(int len) {
        const int blk = 8;

        int i_off[2 * blk] = {0};
        int o_off[2 * blk] = {0};
        int s_off[2 * blk] = {0};

        int curr = 0; // will switch between 0 and 1

        for (int off = 0; off < len; off += blk) {
            const int reg_unroll = nstl::min(off + blk, len) - off;

            /* compute offsets */
            for (int ur = off != 0 ? 0 : 1; ur < reg_unroll; ++ur) {
                const int ur_c = curr * blk + ur;
                const int ur_p = (ur_c - 1 + 2 * blk) % (2 * blk); // prev ur
                step(off + ur,
                        i_off[ur_p], o_off[ur_p], s_off[ur_p],
                        i_off[ur_c], o_off[ur_c], s_off[ur_c]);
            }

            process_unroll_generic_step(reg_unroll, i_off + curr * blk,
                    o_off + curr * blk, s_off + curr * blk);

            curr = 1 - curr;
        }
    }

    void loop_begin(Label &l, Reg64 reg_cnt, int len) {
        mov(reg_cnt, len);
        L(l);
    }

    void loop_end(Label &l, Reg64 reg_cnt, int len,
            int i_step, int o_step, int s_step) {
        add(reg_off_in, i_step * itype_sz);
        add(reg_off_out, o_step * otype_sz);
        if (prb_.scale_type == scale_type_t::MANY)
            add(reg_off_scale, s_step * stype_sz);
        dec(reg_cnt);
        jnz(l);

        sub(reg_off_in, len * i_step * itype_sz);
        sub(reg_off_out, len * o_step * otype_sz);
        if (prb_.scale_type == scale_type_t::MANY)
            sub(reg_off_scale, len * s_step * stype_sz);
    }

    bool simple_impl() {
        simple_impl_desc_t d;
        if (!simple_impl_desc_init(prb_, &d)) return false;

        const int nfu = d.ndims_full_unroll;
        const int ldu = d.len_last_dim_unroll;
        const int n_jit_loops = prb_.ndims - d.ndims_full_unroll;
        assert(n_jit_loops <= ndims_jit_loop_max);

        xor_(reg_off_in, reg_off_in);
        xor_(reg_off_out, reg_off_out);
        if (prb_.scale_type == scale_type_t::MANY)
            xor_(reg_off_scale, reg_off_scale);

        Label l_loop[3];
        Reg64 reg_cnt[3] = {r15, r14, r13};

        if (n_jit_loops > 2)
            loop_begin(l_loop[2], reg_cnt[2], n(nfu + 2));

        if (n_jit_loops > 1)
            loop_begin(l_loop[1], reg_cnt[1], n(nfu + 1));

        if (n_jit_loops > 0)
            loop_begin(l_loop[0], reg_cnt[0], n(nfu + 0) / ldu);

        const bool optimized = false
            || process_direct_copy<avx>(d.len_unroll)
            || process_direct_copy<sse42>(d.len_unroll)
            || process_unroll_tr8x8(d.len_unroll);
        if (!optimized)
            process_unroll_generic(d.len_unroll);

        if (n_jit_loops > 0)
            loop_end(l_loop[0], reg_cnt[0],
                    n(nfu + 0) / ldu, is(nfu + 0) * ldu, os(nfu + 0) * ldu,
                    ss(nfu + 0) * ldu);

        if (n_jit_loops > 1)
            loop_end(l_loop[1], reg_cnt[1],
                    n(nfu + 1), is(nfu + 1), os(nfu + 1), ss(nfu + 1));

        if (n_jit_loops > 2)
            loop_end(l_loop[2], reg_cnt[2],
                    n(nfu + 2), is(nfu + 2), os(nfu + 2), ss(nfu + 2));

        return true;
    }

    void impl() {
        if (simple_impl()) return;
        assert(!"no implementation available");
    }

    jit_uni_reorder_kernel_f32(const desc_t &desc)
        : kernel_t(desc), jit_generator() {
        itype_sz = data_type_size(prb_.itype);
        otype_sz = data_type_size(prb_.otype);
        stype_sz = sizeof(float);

        preamble();
#       define PARAM(x) ptr[abi_param1 + offsetof(call_param_t, x)]
        if (prb_.scale_type == scale_type_t::COMMON) {
            auto reg_ptr_scale_tmp = reg_ptr_in;
            mov(reg_ptr_scale_tmp, PARAM(scale));
            movups(xmm_scale, ptr[reg_ptr_scale_tmp]);
        } else if (prb_.scale_type == scale_type_t::MANY) {
            mov(reg_ptr_scale, PARAM(scale));
        }
        mov(reg_ptr_in, PARAM(in));
        mov(reg_ptr_out, PARAM(out));
#       undef PARAM

        if (mayiuse(avx)) {
            vxorps(xmm_zero, xmm_zero, xmm_zero);

            if (prb_.itype == data_type::u8 && prb_.otype == data_type::s8) {
                mov(reg_tmp.cvt32(), 0x7f7f7f7f);
                movd(xmm_4x127b, reg_tmp.cvt32());
            }
        }

        impl();
        postamble();
        ker_ = (void (*)(const call_param_t *))getCode();
    }

private:
    int itype_sz;
    int otype_sz;
    int stype_sz;

    Reg64 reg_ptr_in = rsi;
    Reg64 reg_ptr_out = rdx;
    Reg64 reg_ptr_scale = abi_not_param1;

    Reg64 reg_off_in = r8;
    Reg64 reg_off_out = r9;
    Reg64 reg_off_scale = r10;

    Reg64 reg_tmp = rax;

    Xmm xmm_scale = xmm15;
    Xmm xmm_zero = xmm14;
    Xmm xmm_4x127b = xmm13; // TODO: unite with xmm_zero
    Xmm xmm_tmp = xmm12;
};

status_t kernel_t::desc_init(kernel_t::desc_t &desc, const prb_t &prb,
        int ndims_ker_max) {
    desc.prb = prb;
    desc.prb.ioff = desc.prb.ooff = 0;

    if (ndims_ker_max > prb.ndims)
        return status::invalid_arguments;

    auto ndims_ker_max_f = [&]() {
        size_t cur_size = 1;
        for (int d = 0; d < prb.ndims; cur_size *= prb.nodes[d++].n)
            if (cur_size >= ker_prb_size_min) return d;
        return prb.ndims;
    };

    if (ndims_ker_max <= 0)
        ndims_ker_max = ndims_ker_max_f();

    /* traverse through kernel implementations */
    /* TODO: find a better way to do that... */
    desc.id = 0;
    for (int ndims_ker = ndims_ker_max; ndims_ker > 0; --ndims_ker) {
        desc.prb.ndims = ndims_ker;
        if (jit_uni_reorder_kernel_f32::applicable(desc.prb))
            return status::success;
    }

    return status::unimplemented;
}

kernel_t *kernel_t::create(const kernel_t::desc_t &desc) {
    switch (desc.id) {
    case 0: return new jit_uni_reorder_kernel_f32(desc);
    default: assert(!"unknown kernel id"); return nullptr;
    }

    return nullptr;
}

}

static void prb_block_for_cache(tr::prb_t &prb) {
    if (prb.nodes[0].is % 64 == 0 && prb.nodes[0].n > 16) {
        /** an attempt to use caches more efficient and
         * address the 4K-aliasing issue */
        /* TODO: improve the logic around here */
        int j = 1;
        for (; j < prb.ndims && prb.nodes[j].is != 1; ++j);
        if (j == prb.ndims) return;

        /* it makes sense to re-prioritize sequential read over
         * sequential write if the former would not trash the
         * cache, i.e. is == 1 and os % 2^smth != 0. Smth is
         * set to 2 at the moment */
        const int move_to = prb.nodes[j].os % 4 != 0 ? 0 : 1;
        if (j == move_to) return;

        if (prb.nodes[j].n > 16 && prb.nodes[j].n % 16 == 0)
            prb_node_split(prb, j, 16);

        prb_node_move(prb, j, move_to);
        DEBUG({ printf("cache: "); prb_dump(prb); });
    }
}

/** finds the maximum number of dimension the kernel should process and
 * optionally splits one of the dimension to achieve better balance between
 * parallel driver and the kernel. */
static void prb_thread_kernel_balance(tr::prb_t &prb, int &ndims_ker_max) {
    size_t sz_total = 1;
    for (int d = 0; d < prb.ndims; ++d)
        sz_total *= prb.nodes[d].n;

    /* sz_drv_min is the minimal size for the parallel
     * driver required for good parallelization */
    const size_t sz_drv_min = nstl::min<size_t>(
            16 * mkldnn_get_max_threads(),
            utils::div_up(sz_total, 1024));

    /* kdims -- # of dimensions processed by a kernel
     * sz_ker_cur -- product of the dimension processed by a kernel
     * sz_drv_cur -- product of the dimension processed by a driver */

    int kdims = prb.ndims;
    size_t sz_drv_cur = 1;
    for (; kdims > 1 && sz_drv_cur < sz_drv_min; --kdims)
        sz_drv_cur *= prb.nodes[kdims - 1].n;

    size_t sz_ker_cur = 1;
    for (int d = 0; d < kdims; ++d)
        sz_ker_cur *= prb.nodes[d].n;

    /* Initially kdims is chosen so that sz_drv_cur >= sz_drv_min.
     *
     * It might happen that for chosen kdims the sz_ker_cur is too small
     * (less than tr::ker_prb_size_min). In that case try to split the
     * innermost driver dimension into two, to increase sz_ker_cur. */
    bool want_borrow_ker_from_drv = true
        && kdims < prb.ndims
        && sz_ker_cur < tr::ker_prb_size_min
        && sz_drv_cur > sz_drv_min;
    if (want_borrow_ker_from_drv) {
        /* sz_want_borrow is the minimal sz, so that:
         *  o) sz_ker_cur * sz_want_borrow >= tr::ker_prb_size_min
         *  o) current innermost driver dimension is divisible by
         *     sz_want_borrow (so that we can evenly split that
         *     dimension into two)
         *
         *  In the worst case the minimal sz_want_borrow is equal
         *  to the innermost driver dimension itself. In that case
         *  we will sacrifice it in favor of kernel (is it fine?). */
        size_t sz_want_borrow
            = utils::div_up(tr::ker_prb_size_min, sz_ker_cur);
        for (; prb.nodes[kdims].n % sz_want_borrow; ++sz_want_borrow);
        if (sz_want_borrow != prb.nodes[kdims].n)
            prb_node_split(prb, kdims, sz_want_borrow);
        kdims += 1;
    }

    /* On the other hand it might happen that for chosen kdims
     * the sz_drv_cur is too small (less than sz_drv_min). In that case
     * try to split the outermost kernel dimension into two, to increase
     * sz_drv_cur. */
    bool want_borrow_drv_from_ker = true
        && sz_ker_cur > tr::ker_prb_size_min
        && sz_drv_cur < sz_drv_min;
    if (want_borrow_drv_from_ker) {
        size_t sz_want_borrow = utils::div_up(sz_drv_min, sz_drv_cur);
        for (; prb.nodes[kdims - 1].n % sz_want_borrow; ++sz_want_borrow);
        if (sz_want_borrow != prb.nodes[kdims - 1].n)
            prb_node_split(prb, kdims - 1,
                    prb.nodes[kdims - 1].n / sz_want_borrow);
    }

    ndims_ker_max = kdims;

    if (want_borrow_ker_from_drv || want_borrow_drv_from_ker) {
        DEBUG({ printf("split: "); prb_dump(prb);
                printf("ndims_ker_max = %d\n", ndims_ker_max); });
    }
}

struct jit_uni_reorder_t : public cpu_primitive_t {
    struct pd_t : public cpu_reorder_pd_t {
        using cpu_reorder_pd_t::cpu_reorder_pd_t;

        DECLARE_COMMON_PD_T("jit:uni", jit_uni_reorder_t);

        static status_t create(reorder_pd_t **reorder_pd,
                engine_t *engine, const primitive_attr_t *attr,
                engine_t *src_engine, const memory_desc_t *src_md,
                engine_t *dst_engine, const memory_desc_t *dst_md) {
            auto prb = tr::prb_t();

            status_t prb_init_status = prb_init(prb, *src_md, *dst_md, attr);
            if (prb_init_status != status::success) return prb_init_status;

            DEBUG({ printf("init : "); prb_dump(prb); });
            prb_normalize(prb);
            DEBUG({ printf("norm : "); prb_dump(prb); });
            prb_simplify(prb);
            DEBUG({ printf("smpl : "); prb_dump(prb); });

            prb_block_for_cache(prb);

            int ndims_ker_max;
            prb_thread_kernel_balance(prb, ndims_ker_max);

            tr::kernel_t::desc_t ker_desc;
            status_t ker_init_status
                = tr::kernel_t::desc_init(ker_desc, prb, ndims_ker_max);
            if (ker_init_status != status::success) return ker_init_status;

            const int ndims_driver = prb.ndims - ker_desc.prb.ndims;
            if (ndims_driver > jit_uni_reorder_t::ndims_driver_max)
                return status::unimplemented;

            DEBUG({ printf("ker  : "); prb_dump(ker_desc.prb); });

            auto _pd = new pd_t(engine, attr, src_engine, src_md, dst_engine,
                    dst_md);
            if (_pd == nullptr) return status::out_of_memory;
            if (_pd->init() != status::success) {
                delete _pd;
                return status::unimplemented;
            }
            _pd->prb_ = prb;
            _pd->ker_desc_ = ker_desc;
            return safe_ptr_assign<reorder_pd_t>(*reorder_pd, _pd);
        }

        tr::prb_t prb_;
        tr::kernel_t::desc_t ker_desc_;
    };

    jit_uni_reorder_t(const pd_t *apd): cpu_primitive_t(apd) {
        kernel_ = tr::kernel_t::create(pd()->ker_desc_);
        assert(kernel_);
    }
    ~jit_uni_reorder_t() { delete kernel_; }

    void omp_driver_0d(int off, const char *in, char *out,
            const float *scale) const {
        tr::call_param_t c{in, out, scale};
        (*kernel_)(&c);
    }

    void omp_driver_1d(int ithr, int nthr, int off, const char *in, char *out,
            const float *scale) const {
        const tr::node_t *ns = pd()->prb_.nodes + off;
        for_nd(ithr, nthr, (ptrdiff_t)ns[0].n, [&](ptrdiff_t d0) {
            auto c = tr::call_param_t();
            c.in = in + d0 * ns[0].is * data_type_size(pd()->prb_.itype);
            c.out = out + d0 * ns[0].os * data_type_size(pd()->prb_.otype);
            c.scale = scale + d0 * ns[0].ss;
            (*kernel_)(&c);
        });
    }

    void omp_driver_2d(int ithr, int nthr, int off, const char *in, char *out,
            const float *scale) const {
        const tr::node_t *ns = pd()->prb_.nodes + off;
        for_nd(ithr, nthr, (ptrdiff_t)ns[1].n, (ptrdiff_t)ns[0].n,
                [&](ptrdiff_t d1, ptrdiff_t d0) {
            auto c = tr::call_param_t();
            c.in = in + (d0 * ns[0].is + d1 * ns[1].is)
                * data_type_size(pd()->prb_.itype);
            c.out = out + (d0 * ns[0].os + d1 * ns[1].os)
                * data_type_size(pd()->prb_.otype);
            c.scale = scale + d0 * ns[0].ss + d1 * ns[1].ss;
            (*kernel_)(&c);
        });
    }

    void omp_driver_3d(int ithr, int nthr, int off, const char *in, char *out,
            const float *scale) const {
        const tr::node_t *ns = pd()->prb_.nodes + off;
        for_nd(ithr, nthr, (ptrdiff_t)ns[2].n, (ptrdiff_t)ns[1].n,
                (ptrdiff_t)ns[0].n,
                [&](ptrdiff_t d2, ptrdiff_t d1, ptrdiff_t d0) {
            auto c = tr::call_param_t();
            c.in = in + (d0 * ns[0].is + d1 * ns[1].is + d2 * ns[2].is)
                * data_type_size(pd()->prb_.itype);
            c.out = out + (d0 * ns[0].os + d1 * ns[1].os + d2 * ns[2].os)
                * data_type_size(pd()->prb_.otype);
            c.scale = scale + d0 * ns[0].ss + d1 * ns[1].ss + d2 * ns[2].ss;
            (*kernel_)(&c);
        });
    }

    void omp_driver_4d(int ithr, int nthr, int off, const char *in, char *out,
            const float *scale) const {
        const tr::node_t *ns = pd()->prb_.nodes + off;
        for_nd(ithr, nthr, (ptrdiff_t)ns[3].n, (ptrdiff_t)ns[2].n,
                (ptrdiff_t)ns[1].n, (ptrdiff_t)ns[0].n,
                [&](ptrdiff_t d3, ptrdiff_t d2, ptrdiff_t d1, ptrdiff_t d0) {
            auto c = tr::call_param_t();
            c.in = in + (d0 * ns[0].is + d1 * ns[1].is + d2 * ns[2].is
                    + d3 * ns[3].is) * data_type_size(pd()->prb_.itype);
            c.out = out + (d0 * ns[0].os + d1 * ns[1].os + d2 * ns[2].os
                    + d3 * ns[3].os) * data_type_size(pd()->prb_.otype);
            c.scale = scale + d0 * ns[0].ss + d1 * ns[1].ss + d2 * ns[2].ss
                + d3 * ns[3].ss;
            (*kernel_)(&c);
        });
    }

    void omp_driver(const char *in, char *out, const float *scale) const {
        in += pd()->prb_.ioff * data_type_size(pd()->prb_.itype);
        out += pd()->prb_.ooff * data_type_size(pd()->prb_.otype);

        DEBUG({ printf("prb : "); tr::prb_dump(pd()->prb_); });
        DEBUG({ printf("ker : "); tr::prb_dump(pd()->ker_desc_.prb); });

        int ndims = pd()->prb_.ndims;
        int ndims_ker = pd()->ker_desc_.prb.ndims;
        assert(ndims - ndims_ker <= ndims_driver_max);

        if (ndims - ndims_ker == 0) {
            omp_driver_0d(ndims_ker, in, out, scale);
        } else {
            parallel(0, [&](const int ithr, const int nthr) {
                switch (ndims - ndims_ker) {
                case 1: omp_driver_1d(ithr, nthr, ndims_ker, in, out, scale); break;
                case 2: omp_driver_2d(ithr, nthr, ndims_ker, in, out, scale); break;
                case 3: omp_driver_3d(ithr, nthr, ndims_ker, in, out, scale); break;
                case 4: omp_driver_4d(ithr, nthr, ndims_ker, in, out, scale); break;
                default: assert(!"unimplemented");
                }
            });
        }
    }

    virtual status_t execute(const exec_ctx_t &ctx) const override {
        auto in = CTX_IN_MEM(const char *, MKLDNN_ARG_FROM);
        auto out = CTX_OUT_MEM(char *, MKLDNN_ARG_TO);

        omp_driver(in, out, pd()->attr()->output_scales_.scales_);

        return status::success;
    }

    enum { ndims_driver_max = 4 };

private:
    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
    tr::kernel_t *kernel_;
};

status_t jit_uni_reorder_create(reorder_pd_t **reorder_pd,
        engine_t *engine, const primitive_attr_t *attr,
        engine_t *src_engine, const memory_desc_t *src_md,
        engine_t *dst_engine, const memory_desc_t *dst_md) {
    return jit_uni_reorder_t::pd_t::create(reorder_pd, engine, attr,
            src_engine, src_md, dst_engine, dst_md);
}

}
}
}