summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/jit_avx512_common_convolution_winograd.hpp
blob: 6c76f37c727db9f29997cb85a331146bdd8a76bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef CPU_JIT_AVX512_COMMON_CONVOLUTION_WINOGRAD_HPP
#define CPU_JIT_AVX512_COMMON_CONVOLUTION_WINOGRAD_HPP

#include "c_types_map.hpp"
#include "memory_tracking.hpp"
#include "mkldnn_thread.hpp"

#include "cpu_convolution_pd.hpp"
#include "cpu_primitive.hpp"

#include "jit_avx512_common_conv_winograd_kernel_f32.hpp"

namespace mkldnn {
namespace impl {
namespace cpu {

namespace winograd_avx512_common {
inline void init_scratchpad(memory_tracking::registrar_t &scratchpad,
        const jit_conv_winograd_conf_t &jcp) {
    using namespace memory_tracking::names;

    size_t U_sz = (size_t)alpha * alpha * jcp.ic * jcp.oc;
    size_t V_sz = (size_t)alpha * alpha * jcp.mb * jcp.ic
        * (jcp.itiles * jcp.jtiles + jcp.tile_4fma_padding);
    size_t M_sz = (size_t)alpha * alpha * jcp.mb * jcp.oc
        * (jcp.itiles * jcp.jtiles + jcp.tile_4fma_padding);

    scratchpad.book(key_wino_U, sizeof(float) * U_sz, PAGE_2M);
    scratchpad.book(key_wino_V, sizeof(float) * V_sz, PAGE_2M);
    scratchpad.book(key_wino_M, sizeof(float) * M_sz, PAGE_2M);

    if (jcp.sched_policy == WSCHED_WEI_S_D_G_W) {
        const int nthr = mkldnn_get_max_threads();

        size_t tr_src_sz = jcp.ver != ver_4fma ? 0 : (size_t)nthr
            * alpha * alpha * jcp.tile_4fma * jcp.ic_simd_block;
        scratchpad.book(key_conv_tr_src, sizeof(float) * tr_src_sz, PAGE_2M);

        size_t br_sz = jcp.with_bias ? nthr * jcp.oc : 0;
        scratchpad.book(key_conv_bia_reduction, sizeof(float) * br_sz, PAGE_2M);

        size_t padded_bias_sz =
            jcp.with_bias && jcp.oc_without_padding != jcp.oc ? jcp.oc : 0;
        scratchpad.book(key_conv_padded_bias, sizeof(float) * padded_bias_sz);
    }
}
}

template <bool is_fwd>
struct _jit_avx512_common_convolution_winograd_t {
    _jit_avx512_common_convolution_winograd_t(
            const jit_conv_winograd_conf_t &jcp, const primitive_attr_t *attr)
        : kernel_(nullptr), attr_(attr) {
        kernel_ = new _jit_avx512_common_conv_winograd_data_kernel_f32(jcp);
    }

    ~_jit_avx512_common_convolution_winograd_t() { delete kernel_; }

    protected:
        void _execute_data_W_S_G_D(float *inp_ptr, float *out_ptr,
                float *wei_ptr, float *bias_ptr,
                const memory_tracking::grantor_t &scratchpad) const;
        _jit_avx512_common_conv_winograd_data_kernel_f32 *kernel_;
        const primitive_attr_t *attr_;
};

struct jit_avx512_common_convolution_winograd_fwd_t
     : _jit_avx512_common_convolution_winograd_t<true>
     , public cpu_primitive_t
    {
    struct pd_t : public cpu_convolution_fwd_pd_t {
        pd_t(engine_t *engine, const convolution_desc_t *adesc,
                const primitive_attr_t *attr,
                const typename pd_t::base_class *hint_fwd_pd)
            : cpu_convolution_fwd_pd_t(engine, adesc, attr, hint_fwd_pd)
            , jcp_() {}

        DECLARE_COMMON_PD_T(
                JIT_IMPL_NAME_HELPER("jit_wino:", avx512_common, ""),
                jit_avx512_common_convolution_winograd_fwd_t);

        status_t init() {
            bool ok = true
                && is_fwd()
                && utils::one_of(desc()->alg_kind,
                        alg_kind::convolution_auto,
                        alg_kind::convolution_winograd)
                && expect_data_types(data_type::f32, data_type::f32,
                        data_type::f32, data_type::f32, data_type::f32)
                && !has_zero_dim_memory()
                && set_default_formats();
            if (!ok) return status::unimplemented;

            status_t status = jit_avx512_common_conv_winograd_fwd_kernel_f32::
                init_conf(jcp_, *desc(), *src_md(), *weights_md(), *dst_md(),
                        *attr());
            if (status != status::success) return status;
            set_default_alg_kind(alg_kind::convolution_winograd);

            auto scratchpad = scratchpad_registry().registrar();
            winograd_avx512_common::init_scratchpad(scratchpad, jcp_);

            return status;
        }

        jit_conv_winograd_conf_t jcp_;

    protected:
        bool set_default_formats() {
            using namespace format_tag;
            auto wei_tag = with_groups() ? gOIhw16i16o : OIhw16i16o;
            return set_default_formats_common(nChw16c, wei_tag, nChw16c);
        }
    };

    jit_avx512_common_convolution_winograd_fwd_t(const pd_t *apd)
        : _jit_avx512_common_convolution_winograd_t<true>(apd->jcp_, apd->attr())
        , cpu_primitive_t(apd, true) {}

    ~jit_avx512_common_convolution_winograd_fwd_t(){};

    typedef typename prec_traits<data_type::f32>::type data_t;

    virtual status_t execute(const exec_ctx_t &ctx) const override
    {
        auto src = CTX_IN_MEM(const float *, MKLDNN_ARG_SRC);
        auto weights = CTX_IN_MEM(const float *, MKLDNN_ARG_WEIGHTS);
        auto bias = CTX_IN_MEM(const float *, MKLDNN_ARG_BIAS);
        auto dst = CTX_OUT_MEM(float *, MKLDNN_ARG_DST);
        this->_execute_data_W_S_G_D((float *)src, dst, (float *)weights,
                (float *)bias, this->scratchpad(ctx));
        return status::success;
    }

private:
    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
};

struct jit_avx512_common_convolution_winograd_bwd_data_t
        : _jit_avx512_common_convolution_winograd_t<false>,
        public cpu_primitive_t {
    struct pd_t : public cpu_convolution_bwd_data_pd_t {
        pd_t(engine_t *engine, const convolution_desc_t *adesc,
                const primitive_attr_t *attr,
                const convolution_fwd_pd_t *hint_fwd_pd)
            : cpu_convolution_bwd_data_pd_t(engine, adesc, attr, hint_fwd_pd)
            , jcp_() {}

        DECLARE_COMMON_PD_T(
                JIT_IMPL_NAME_HELPER("jit_wino:", avx512_common, ""),
                jit_avx512_common_convolution_winograd_bwd_data_t);

        status_t init() {
            bool ok = true
                && desc()->prop_kind == prop_kind::backward_data
                && expect_data_types(data_type::f32, data_type::f32,
                        data_type::undef, data_type::f32, data_type::f32)
                && utils::one_of(desc()->alg_kind,
                        alg_kind::convolution_auto,
                        alg_kind::convolution_winograd)
                && !has_zero_dim_memory()
                && set_default_formats()
                && mkldnn_thr_syncable();
            if (!ok) return status::unimplemented;

            status_t status =
                jit_avx512_common_conv_winograd_bwd_data_kernel_f32::init_conf(
                        jcp_, *desc(), *diff_src_md(), *weights_md(),
                        *diff_dst_md());
            if (status != status::success) return status;
            set_default_alg_kind(alg_kind::convolution_winograd);

            auto scratchpad = scratchpad_registry().registrar();
            winograd_avx512_common::init_scratchpad(scratchpad, jcp_);

            return status;
        }

        jit_conv_winograd_conf_t jcp_;

    protected:
        bool set_default_formats() {
            using namespace format_tag;
            auto wei_tag = with_groups() ? gOIhw16i16o : OIhw16i16o;
            return set_default_formats_common(nChw16c, wei_tag, nChw16c);
        }
    };

    jit_avx512_common_convolution_winograd_bwd_data_t(const pd_t *apd)
        : _jit_avx512_common_convolution_winograd_t<false>(apd->jcp_, apd->attr())
        , cpu_primitive_t(apd, true) {}

    ~jit_avx512_common_convolution_winograd_bwd_data_t(){};

    typedef typename prec_traits<data_type::f32>::type data_t;

    virtual status_t execute(const exec_ctx_t &ctx) const override {
        auto diff_dst = CTX_IN_MEM(const float *, MKLDNN_ARG_DIFF_DST);
        auto weights = CTX_IN_MEM(const float *, MKLDNN_ARG_WEIGHTS);
        auto diff_src = CTX_OUT_MEM(float *, MKLDNN_ARG_DIFF_SRC);
        this->_execute_data_W_S_G_D((float *)diff_dst, diff_src,
                (float *)weights, nullptr, this->scratchpad(ctx));
        return status::success;
    }

private:
    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
};

struct jit_avx512_common_convolution_winograd_bwd_weights_t
        : public cpu_primitive_t {
    struct pd_t : public cpu_convolution_bwd_weights_pd_t {
        pd_t(engine_t *engine, const convolution_desc_t *adesc,
                const primitive_attr_t *attr,
                const convolution_fwd_pd_t *hint_fwd_pd)
            : cpu_convolution_bwd_weights_pd_t(engine, adesc, attr,
                    hint_fwd_pd)
            , jcp_() {}

        DECLARE_COMMON_PD_T(
                JIT_IMPL_NAME_HELPER("jit_wino:", avx512_common, ""),
                jit_avx512_common_convolution_winograd_bwd_weights_t);

        status_t init() {
            bool ok = true
                && desc()->prop_kind == prop_kind::backward_weights
                && utils::one_of(desc()->alg_kind,
                        alg_kind::convolution_auto,
                        alg_kind::convolution_winograd)
                && expect_data_types(data_type::f32, data_type::f32,
                        data_type::f32, data_type::f32, data_type::f32)
                && !has_zero_dim_memory()
                && set_default_formats()
                && mkldnn_thr_syncable();
            if (!ok) return status::unimplemented;

            status_t status =
                jit_avx512_common_conv_winograd_bwd_weights_kernel_f32::
                init_conf(jcp_, *desc(), *src_md(), *diff_dst_md(),
                        *diff_weights_md());
            if (status != status::success) return status;
            set_default_alg_kind(alg_kind::convolution_winograd);

            auto scratchpad = scratchpad_registry().registrar();
            winograd_avx512_common::init_scratchpad(scratchpad, jcp_);

            return status;
        }

        jit_conv_winograd_conf_t jcp_;

    protected:
        bool set_default_formats() {
            using namespace format_tag;
            auto wei_tag = with_groups() ? gOIhw16i16o : OIhw16i16o;
            return set_default_formats_common(nChw16c, wei_tag, nChw16c);
        }
    };

    jit_avx512_common_convolution_winograd_bwd_weights_t(const pd_t *apd)
        : cpu_primitive_t(apd, true), kernel_(nullptr)
    {
        kernel_ = new jit_avx512_common_conv_winograd_bwd_weights_kernel_f32(
                pd()->jcp_);
    }

    ~jit_avx512_common_convolution_winograd_bwd_weights_t()
    { delete kernel_; }

    typedef typename prec_traits<data_type::f32>::type data_t;

    virtual status_t execute(const exec_ctx_t &ctx) const override
    {
        _execute_backward_weights_S_D_G_W(ctx, scratchpad(ctx));
        return status::success;
    }

private:
    void _execute_backward_weights_S_D_G_W(const exec_ctx_t &ctx,
            const memory_tracking::grantor_t &scratchpad) const;
    void _maybe_execute_diff_bias_copy(float *diff_bias,
            const memory_tracking::grantor_t &scratchpad) const;

    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
    jit_avx512_common_conv_winograd_bwd_weights_kernel_f32 *kernel_;
};

void trans_W_4x4_3x3(float Fw_[6][6][16][16], float F[3][3][16][16]);
void trans_O_4x4_3x3(float Mw[6][6][16], float O[4][4][16]);
void trans_W_3x3_4x4(float Fw[6][6][16], float F[4][6][16]);
void trans_O_3x3_4x4(float Mw[6][6][16][16], float M[3][3][16][16]);
void trans_I_4x4_3x3(float Iw[6][6][16], float I[6][6][16]);
void trans_W_3x3_4x4_wu(float Fw[6][6][16], float F[4][6][16]);
void trans_O_3x3_4x4_wu(float Mw[6][6][16][16], float M[3][3][16][16]);

}
}
}

#endif

// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s