1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
|
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "c_types_map.hpp"
#include "mkldnn_thread.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"
#include "jit_generator.hpp"
#include "jit_avx2_1x1_convolution.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
using namespace mkldnn::impl::status;
using namespace mkldnn::impl::memory_tracking::names;
using namespace mkldnn::impl::utils;
#define data_blk_off(f, n, c, h, w) \
((ndims == 3) \
? (f).blk_off(n, c, w) \
: (f).blk_off(n, c, h, w))
/* convolution forward */
void jit_avx2_1x1_convolution_fwd_t::execute_forward(
const exec_ctx_t &ctx) const {
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS);
auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS);
auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
const memory_desc_wrapper src_d(pd()->src_md());
const memory_desc_wrapper dst_d(pd()->dst_md());
const memory_desc_wrapper weights_d(pd()->weights_md(0));
const auto &jcp = kernel_->jcp;
auto rtus_space = scratchpad(ctx).get<data_t>(key_conv_rtus_space);
const int work_amount = jcp.mb * jcp.ngroups * jcp.nb_bcast;
const int ndims = dst_d.ndims();
const int stride_h = (ndims == 3) ? 1 : pd()->desc()->strides[0];
const int stride_w = pd()->desc()->strides[ndims - 3];
const int pad_t = (ndims == 3) ? 0 : pd()->desc()->padding[0][0];
const int pad_l = pd()->desc()->padding[0][ndims - 3];
auto step = [](int default_step, int remaining, int tail_step) {
assert(default_step <= tail_step);
return remaining < tail_step ? remaining : default_step;
};
auto ker = [&](const int ithr, const int nthr) {
// TODO (Roma): remove this restriction
assert(jcp.stride_w == 1 && jcp.stride_h == 1);
auto p = jit_1x1_conv_call_s();
auto rp = rtus_driver_t<avx2>::call_params_t();
const int nb_oc = jcp.nb_load;
const int nb_ic = jcp.nb_reduce;
const int nb_ic_blocking = jcp.nb_reduce_blocking;
const int os_block = jcp.bcast_block;
int start{0}, end{0};
balance211(work_amount, nthr, ithr, start, end);
int iwork = start;
while (iwork < end) {
int n{0}, g{0}, osb{0};
nd_iterator_init(iwork, n, jcp.mb, g, jcp.ngroups, osb,
jcp.nb_bcast);
int bcast_step = step(jcp.nb_bcast_blocking, jcp.nb_bcast - osb,
jcp.nb_bcast_blocking_max);
bcast_step = nstl::min(bcast_step, end - iwork);
const int os = osb * os_block;
const int oh = os / jcp.ow;
const int ow = os % jcp.ow;
const int ih = nstl::max(oh * stride_h - pad_t, 0);
const int iw = nstl::max(ow * stride_w - pad_l, 0);
rp.iw_start = iw;
p.bcast_dim = this_block_size(os, jcp.os, bcast_step * os_block);
rp.os = p.bcast_dim;
int ocb = 0;
while (ocb < jcp.nb_load) {
const int load_step = step(jcp.nb_load_blocking,
jcp.nb_load - ocb, jcp.nb_load_blocking_max);
const int _ocb = g * nb_oc + ocb;
p.load_dim = this_block_size(ocb * jcp.oc_block, jcp.oc,
load_step * jcp.oc_block);
const size_t dst_off = data_blk_off(dst_d, n, _ocb, oh, ow);
p.output_data = &dst[dst_off];
p.bias_data = &bias[_ocb * jcp.oc_block];
for (int icb = 0; icb < nb_ic; icb += nb_ic_blocking) {
p.first_last_flag = 0
| (icb == 0 ? FLAG_REDUCE_FIRST : 0)
| (icb + nb_ic_blocking >= nb_ic
? FLAG_REDUCE_LAST : 0);
p.reduce_dim = this_block_size(icb * jcp.ic_block, jcp.ic,
nb_ic_blocking * jcp.ic_block);
rp.icb = p.reduce_dim / jcp.reduce_block;
p.load_data = &weights[pd()->with_groups()
? weights_d.blk_off(g, ocb, icb)
: weights_d.blk_off(ocb, icb)];
const int _icb = g * nb_ic + icb;
if (pd()->rtus_.reduce_src_) {
rp.ws = rtus_space
+ ithr * pd()->rtus_.space_per_thread_
+ _icb * jcp.is * jcp.ic_block;
if (ocb == 0) {
rp.src = src + data_blk_off(src_d, n, _icb, ih, iw);
rtus_driver_->ker_(&rp);
}
p.bcast_data = rp.ws;
} else
p.bcast_data = src + data_blk_off(src_d, n, _icb, ih, iw);
kernel_->jit_ker(&p);
}
ocb += load_step;
}
iwork += bcast_step;
}
};
if (pd()->wants_padded_bias()) {
auto padded_bias = scratchpad(ctx).get<data_t>(key_conv_padded_bias);
utils::array_copy(padded_bias, bias, jcp.oc_without_padding);
utils::array_set(padded_bias + jcp.oc_without_padding, 0.f,
jcp.oc - jcp.oc_without_padding);
bias = padded_bias;
}
parallel(0, ker);
if (pd()->wants_zero_pad_dst())
ctx.memory(MKLDNN_ARG_DST)->zero_pad();
}
/* convolution backward wtr data */
void jit_avx2_1x1_convolution_bwd_data_t::execute_backward_data(
const exec_ctx_t &ctx) const {
auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS);
auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md());
const memory_desc_wrapper weights_d(pd()->weights_md(0));
const memory_desc_wrapper diff_src_d(pd()->diff_src_md());
const auto &jcp = kernel_->jcp;
auto rtus_space = scratchpad(ctx).get<data_t>(key_conv_rtus_space);
// TODO (Roma): remove this restriction
assert(jcp.stride_w == 1 && jcp.stride_h == 1);
const int ndims = diff_dst_d.ndims();
const int stride_h = (ndims == 3) ? 1 : pd()->desc()->strides[0];
const int stride_w = pd()->desc()->strides[ndims - 3];
const int pad_t = (ndims == 3) ? 0 : pd()->desc()->padding[0][0];
const int pad_l = pd()->desc()->padding[0][ndims - 3];
const int nb_ic = jcp.nb_load;
const int nb_oc = jcp.nb_reduce;
const int os_block = jcp.bcast_block;
const int nb_oc_blocking = jcp.nb_reduce_blocking;
const int work_amount = jcp.mb * jcp.ngroups * jcp.nb_bcast;
auto step = [](int default_step, int remaining, int tail_step) {
assert(default_step <= tail_step);
return remaining < tail_step ? remaining : default_step;
};
auto ker = [&](const int ithr, const int nthr) {
auto p = jit_1x1_conv_call_s();
auto rp = rtus_driver_t<avx2>::call_params_t();
int start{0}, end{0};
balance211(work_amount, nthr, ithr, start, end);
int load_step = 0;
for (int icb = 0; icb < jcp.nb_load; icb += load_step) {
load_step = step(jcp.nb_load_blocking, jcp.nb_load - icb,
jcp.nb_load_blocking_max);
p.load_dim = this_block_size(icb * jcp.ic_block, jcp.ic,
load_step * jcp.ic_block);
rp.icb = p.load_dim / jcp.ic_block;
int bcast_step;
for (int iwork = start; iwork < end; iwork += bcast_step) {
int n{0}, g{0}, osb{0};
nd_iterator_init(iwork, n, jcp.mb, g, jcp.ngroups, osb,
jcp.nb_bcast);
bcast_step = step(jcp.nb_bcast_blocking, jcp.nb_bcast - osb,
jcp.nb_bcast_blocking_max);
bcast_step = nstl::min(bcast_step, end - iwork);
const int os = osb * os_block;
p.bcast_dim = this_block_size(os, jcp.os,
bcast_step * os_block);
rp.os = p.bcast_dim;
const int oh = os / jcp.ow;
const int ow = os % jcp.ow;
const int ih = nstl::max(oh * stride_h - pad_t, 0);
const int iw = nstl::max(ow * stride_w - pad_l, 0);
rp.iw_start = iw;
const int _icb = g * nb_ic + icb;
rp.src = diff_src + data_blk_off(diff_src_d, n, _icb, ih, iw);
if (pd()->rtus_.reduce_src_) {
rp.ws = rtus_space
+ ithr * pd()->rtus_.space_per_thread_;
p.output_data = rp.ws;
} else
p.output_data = rp.src;
for (int ocb = 0; ocb < jcp.nb_reduce;
ocb += jcp.nb_reduce_blocking) {
const int _ocb = g * nb_oc + ocb;
size_t diff_dst_off = data_blk_off(diff_dst_d, n, _ocb, oh,
ow);
p.bcast_data = &diff_dst[diff_dst_off];
p.load_data = &weights[pd()->with_groups()
? weights_d.blk_off(g, ocb, icb)
: weights_d.blk_off(ocb, icb)];
p.first_last_flag = ocb == 0 ? FLAG_REDUCE_FIRST : 0;
p.reduce_dim = this_block_size(ocb * jcp.oc_block, jcp.oc,
nb_oc_blocking * jcp.oc_block);
kernel_->jit_ker(&p);
}
if (pd()->rtus_.reduce_src_)
rtus_driver_->ker_(&rp);
}
}
};
parallel(0, ker);
}
/* convolution backward wtr weights */
jit_avx2_1x1_convolution_bwd_weights_t::jit_avx2_1x1_convolution_bwd_weights_t(
const pd_t *apd)
: cpu_primitive_t(apd)
, kernel_(nullptr)
, rtus_driver_(nullptr)
{
kernel_ = new jit_avx2_1x1_conv_kernel_f32(pd()->jcp_, *pd()->attr());
reducer_weights_ =
new cpu_reducer_2d_t<data_type::f32>(pd()->reducer_wei_conf_);
reducer_bias_ = new cpu_reducer_t<data_type::f32>(pd()->reducer_bia_conf_);
init_rtus_driver<avx2>(this);
}
void jit_avx2_1x1_convolution_bwd_weights_t::execute_backward_weights(
const exec_ctx_t &ctx) const {
auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
auto diff_weights = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_WEIGHTS);
auto diff_bias_in = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_BIAS);
auto scratchpad = this->scratchpad(ctx);
const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md());
const memory_desc_wrapper src_d(pd()->src_md());
const memory_desc_wrapper diff_weights_d(pd()->diff_weights_md(0));
const memory_desc_wrapper diff_bias_d(pd()->diff_weights_md(1));
const auto &jcp = kernel_->jcp;
auto rtus_space = scratchpad.get<data_t>(key_conv_rtus_space);
data_t *diff_bias = pd()->wants_padded_bias()
? scratchpad.get<data_t>(key_conv_padded_bias) : diff_bias_in;
auto reducer_bia_scratchpad = memory_tracking::grantor_t(scratchpad,
prefix_reducer_bia);
auto rb = this->reducer_bias_;
rb->init(reducer_bia_scratchpad);
auto reducer_wei_scratchpad = memory_tracking::grantor_t(scratchpad,
prefix_reducer_wei);
auto rw = this->reducer_weights_;
rw->init(reducer_wei_scratchpad);
const int ndims = diff_dst_d.ndims();
// TODO (Roma): remove this restriction
assert(jcp.stride_w == 1 && jcp.stride_h == 1);
const int nb_ic = jcp.nb_bcast;
const int nb_ic_blocking = jcp.nb_bcast_blocking;
const int bcast_work = div_up(nb_ic, nb_ic_blocking);
const int nb_oc = jcp.nb_load;
const int nb_oc_blocking = jcp.nb_load_blocking;
const int load_work = div_up(nb_oc, nb_oc_blocking);
const int sp_dim = jcp.reduce_dim;
const int mb_sp_work = jcp.mb * sp_dim;
const int stride_h = (ndims == 3) ? 1 : pd()->desc()->strides[0];
const int stride_w = pd()->desc()->strides[ndims - 3];
const int pad_t = (ndims == 3) ? 0 : pd()->desc()->padding[0][0];
const int pad_l = pd()->desc()->padding[0][ndims - 3];
auto step = [](int default_step, int remaining, int tail_step) {
assert(default_step <= tail_step);
return remaining < tail_step ? remaining : default_step;
};
auto oc_ic_sp_loop = [=](int sp_start, int sp_end, bool first_image,
data_t *store_to, size_t store_to_ld, const data_t *diff_dst,
const data_t *src, int ithr) {
auto p = jit_1x1_conv_call_s();
auto rp = rtus_driver_t<avx2>::call_params_t();
p.output_stride = store_to_ld * sizeof(float);
const int sp_step_def = jcp.nb_reduce_blocking * jcp.reduce_block;
int oc_b_step = 0;
for (int oc_b = 0; oc_b < nb_oc_blocking; oc_b += oc_b_step) {
oc_b_step = step(12, nb_oc_blocking - oc_b, 18);
p.load_dim = oc_b_step * jcp.oc_block;
int ic_b_step = 0;
for (int ic_b = 0; ic_b < nb_ic_blocking; ic_b += ic_b_step) {
ic_b_step = step(12, nb_ic_blocking - ic_b, 18);
p.bcast_dim = ic_b_step * jcp.ic_block;
rp.icb = p.bcast_dim / jcp.ic_block;
p.output_data = store_to + oc_b * store_to_ld
+ ic_b * jcp.ic_block * jcp.oc_block;
/* spatial reduction */
int sp_step = 0;
for (int sp = sp_start; sp < sp_end; sp += sp_step) {
sp_step = step(sp_step_def, sp_end - sp, 192);
p.reduce_dim = sp_step;
rp.os = p.reduce_dim;
p.first_last_flag = sp == sp_start && first_image
? FLAG_REDUCE_FIRST : 0;
p.load_data = diff_dst
+ (oc_b * jcp.reduce_dim + sp) * jcp.oc_block;
if (pd()->rtus_.reduce_src_) {
const int oh = sp / jcp.ow;
const int ow = sp % jcp.ow;
const int ih = nstl::max(oh * stride_h - pad_t, 0);
const int iw = nstl::max(ow * stride_w - pad_l, 0);
rp.iw_start = iw;
rp.ws = rtus_space
+ ithr * pd()->rtus_.space_per_thread_
+ (ic_b * jcp.is + sp) * jcp.ic_block;
if (ndims == 3)
rp.src = src
+ iw * src_d.blocking_desc().strides[2];
else
rp.src = src
+ ih * src_d.blocking_desc().strides[2]
+ iw * src_d.blocking_desc().strides[3];
if (oc_b == 0)
rtus_driver_->ker_(&rp);
p.bcast_data = rp.ws;
} else
p.bcast_data = src
+ (ic_b * jcp.reduce_dim + sp) * jcp.ic_block;
kernel_->jit_ker(&p);
}
}
}
};
auto ker = [&](const int ithr, const int nthr) {
assert(nthr == rw->balancer().nthr_);
const int w_njobs = rw->balancer().ithr_njobs(ithr);
if (w_njobs == 0) return;
/* setup: independent work (oc, ic) */
const int w_job_start = rw->balancer().ithr_job_off(ithr);
int g{0}, load_i{0}, bcast_i{0};
nd_iterator_init(w_job_start, g, jcp.ngroups, load_i, load_work,
bcast_i, bcast_work);
/* setup: reduction work (mb, sp) */
int mb_sp_start{0}, mb_sp_end{0};
balance211(mb_sp_work, rw->balancer().nthr_per_group_,
rw->balancer().id_in_group(ithr), mb_sp_start, mb_sp_end);
int img_start{0}, sp_start{0};
nd_iterator_init(mb_sp_start, img_start, jcp.mb, sp_start, sp_dim);
/* independent work */
for (int iwork = 0; iwork < w_njobs; ++iwork) {
const int oc_b = nb_oc_blocking * load_i;
const int ic_b = nb_ic_blocking * bcast_i;
const int _ic_b = g * nb_ic + ic_b;
const int _oc_b = g * nb_oc + oc_b;
data_t *store_to;
size_t store_to_ld;
if (rw->balancer().nthr_per_group_ == 1) {
const size_t off = pd()->with_groups()
? diff_weights_d.blk_off(g, oc_b, ic_b)
: diff_weights_d.blk_off(oc_b, ic_b);
store_to = &diff_weights[off];
store_to_ld = jcp.ic * jcp.oc_block;
} else {
const size_t off = iwork * rw->balancer().job_size_;
store_to =
rw->get_local_ptr(ithr, reducer_wei_scratchpad) + off;
store_to_ld = nb_ic_blocking * jcp.ic_block * jcp.oc_block;
}
/* reduction work */
int img = img_start;
int sp = sp_start;
int sp_step = 0;
for (int mb_sp = mb_sp_start; mb_sp < mb_sp_end; mb_sp += sp_step)
{
sp_step = nstl::min(sp_dim - sp, mb_sp_end - mb_sp);
const bool first_image = img == img_start;
oc_ic_sp_loop(sp, sp + sp_step, first_image, store_to,
store_to_ld, &diff_dst[diff_dst_d.blk_off(img, _oc_b)],
&src[src_d.blk_off(img, _ic_b)], ithr);
sp = 0;
img += 1;
}
nd_iterator_step(g, jcp.ngroups, load_i, load_work, bcast_i,
bcast_work);
}
rw->reduce(ithr, diff_weights, reducer_wei_scratchpad);
};
auto ker_bias = [&](int ithr, int nthr) {
assert(nthr == rb->balancer().nthr_);
const int b_job_start = rb->balancer().ithr_job_off(ithr);
const int b_njobs = rb->balancer().ithr_njobs(ithr);
if (b_njobs == 0) return;
/* reduction dimension */
int img_start{0}, img_end{0};
balance211(jcp.mb, rb->balancer().nthr_per_group_,
rb->balancer().id_in_group(ithr), img_start, img_end);
/* jobs */
int g_start{0}, ocb_start{0};
nd_iterator_init(b_job_start, g_start, jcp.ngroups, ocb_start, nb_oc);
for (int img = img_start; img < img_end; ++img) {
int g = g_start, ocb = ocb_start;
for (int b_job_loc = 0; b_job_loc < b_njobs; ++b_job_loc) {
const size_t _oc = g * nb_oc + ocb;
const data_t *d_dst = &diff_dst[diff_dst_d.blk_off(img, _oc)];
data_t *d_bias =
rb->get_local_ptr(ithr, diff_bias, reducer_bia_scratchpad)
+ b_job_loc * rb->balancer().job_size_;
if (img == img_start)
for (int o = 0; o < 8; ++o) d_bias[o] = 0.;
for (int hw = 0; hw < jcp.oh * jcp.ow; ++hw) {
PRAGMA_OMP_SIMD()
for (int o = 0; o < 8; ++o)
d_bias[o] += d_dst[o];
d_dst += 8;
}
nd_iterator_step(g, jcp.ngroups, ocb, nb_oc);
}
}
rb->reduce(ithr, diff_bias, reducer_bia_scratchpad);
};
parallel(0, [&](const int ithr, const int nthr) {
ker(ithr, nthr);
if (pd()->with_bias())
ker_bias(ithr, nthr);
});
/* TODO: put this in ker_bias */
if (pd()->wants_padded_bias()) {
assert(jcp.ngroups == 1);
for (int oc = 0; oc < jcp.oc_without_padding; ++oc)
diff_bias_in[oc] = diff_bias[oc];
}
}
}
}
}
|