summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/common/batch_normalization_pd.hpp
blob: f61410b33c0149936fd33b97a7b20c272c956534 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef BATCH_NORMALIZATION_PD_HPP
#define BATCH_NORMALIZATION_PD_HPP

#include "mkldnn.h"

#include "c_types_map.hpp"
#include "primitive_desc.hpp"
#include "utils.hpp"

namespace mkldnn {
namespace impl {

struct batch_normalization_fwd_pd_t;

struct batch_normalization_pd_t: public primitive_desc_t {
    static constexpr auto base_pkind = primitive_kind::batch_normalization;

    batch_normalization_pd_t(engine_t *engine,
            const batch_normalization_desc_t *adesc,
            const primitive_attr_t *attr,
            const batch_normalization_fwd_pd_t *hint_fwd_pd)
        : primitive_desc_t(engine, attr, base_pkind)
        , desc_(*adesc)
        , hint_fwd_pd_(hint_fwd_pd)
        , data_md_(desc_.data_desc)
        , stat_md_(desc_.mean_desc)
        , scaleshift_md_(desc_.data_scaleshift_desc)
        , ws_md_()
    {}

    const batch_normalization_desc_t *desc() const { return &desc_; }
    virtual const op_desc_t *op_desc() const override
    { return reinterpret_cast<const op_desc_t *>(this->desc()); }
    virtual void init_info() override { impl::init_info(this, this->info_); }

    virtual status_t query(query_t what, int idx, void *result) const override {
        switch (what) {
        case query::batch_normalization_d:
            *(const batch_normalization_desc_t**)result = desc(); break;
        default: return primitive_desc_t::query(what, idx, result);
        }
        return status::success;
    }

    /* common batch_normalization aux functions */

    dim_t MB() const { return data_desc().dims[0]; }
    dim_t C() const { return data_desc().dims[1]; }
    dim_t D() const { return ndims() >= 5 ? data_desc().dims[ndims() - 3] : 1; }
    dim_t H() const { return ndims() >= 4 ? data_desc().dims[ndims() - 2] : 1; }
    dim_t W() const { return ndims() >= 3 ? data_desc().dims[ndims() - 1] : 1; }

    int ndims() const { return desc_.data_desc.ndims; }

    bool stats_is_src() const { return desc_.flags & mkldnn_use_global_stats; }
    bool use_scaleshift() const { return desc_.flags & mkldnn_use_scaleshift; }
    bool use_global_stats() const
    { return desc_.flags & mkldnn_use_global_stats; }
    bool fuse_bn_relu() const { return desc_.flags & mkldnn_fuse_bn_relu; }
    bool with_relu_post_op() const {
        const auto &p = this->attr()->post_ops_;
        return p.len_ == 1 && p.entry_[0].is_relu(true, true);
    }

    bool is_fwd() const {
        return utils::one_of(desc_.prop_kind, prop_kind::forward_training,
                prop_kind::forward_inference);
    }
    bool is_bwd() const { return !this->is_fwd(); }
    bool is_training() const
    { return desc_.prop_kind == prop_kind::forward_training; }

    bool has_zero_dim_memory() const
    { return memory_desc_wrapper(desc_.data_desc).has_zero_dim(); }

protected:
    batch_normalization_desc_t desc_;
    const batch_normalization_fwd_pd_t *hint_fwd_pd_;

    memory_desc_t data_md_;
    memory_desc_t stat_md_;
    memory_desc_t scaleshift_md_;

    memory_desc_t ws_md_;

    void init_default_ws(size_t bits_per_element) {
        const auto data_mdw = memory_desc_wrapper(data_md_);

        const dim_t data_nelems = data_mdw.nelems(true);
        const dim_t bits_per_byte = 8;
        const dims_t ws_sz = { (dim_t)utils::div_up(
                data_nelems * bits_per_element, bits_per_byte) };
        mkldnn_memory_desc_init_by_tag(&ws_md_, 1, ws_sz, impl::data_type::u8,
                format_tag::x);
    }

private:
    const memory_desc_t &data_desc() const { return desc_.data_desc; }
};

struct batch_normalization_fwd_pd_t: public batch_normalization_pd_t {
    typedef batch_normalization_fwd_pd_t base_class;
    typedef batch_normalization_fwd_pd_t hint_class;

    batch_normalization_fwd_pd_t(engine_t *engine,
            const batch_normalization_desc_t *adesc,
            const primitive_attr_t *attr,
            const batch_normalization_fwd_pd_t *hint_fwd_pd)
        : batch_normalization_pd_t(engine, adesc, attr, hint_fwd_pd)
    {}

    virtual arg_usage_t arg_usage(primitive_arg_index_t arg) const override {
        if (arg == MKLDNN_ARG_SRC) return arg_usage_t::input;
        if (arg == MKLDNN_ARG_DST) return arg_usage_t::output;

        if (utils::one_of(arg, MKLDNN_ARG_MEAN, MKLDNN_ARG_VARIANCE)) {
            if (stats_is_src()) return arg_usage_t::input;
            if (!stats_is_src() && is_training()) return arg_usage_t::output;
            return arg_usage_t::unused;
        }

        if (arg == MKLDNN_ARG_SCALE_SHIFT && use_scaleshift())
            return arg_usage_t::input;

        if (arg == MKLDNN_ARG_WORKSPACE && is_training() && fuse_bn_relu())
            return arg_usage_t::output;

        return primitive_desc_t::arg_usage(arg);
    }

    virtual const memory_desc_t *src_md(int index = 0) const override {
        if (index == 0) return &data_md_;
        if (stats_is_src() && (index == 1 || index == 2)) return &stat_md_;
        return nullptr;
    }

    virtual const memory_desc_t *dst_md(int index = 0) const override {
        if (index == 0) return &data_md_;
        if (!stats_is_src() && is_training() && (index == 1 || index == 2))
            return &stat_md_;
        return nullptr;
    }

    virtual const memory_desc_t *weights_md(int index = 0) const override
    { return index == 0 ? &scaleshift_md_ : nullptr; }

    virtual const memory_desc_t *workspace_md(int index = 0) const override
    { return index == 0 && is_training() && fuse_bn_relu() ? &ws_md_ : nullptr; }

    const memory_desc_t *stat_md() const
    { return stats_is_src() ? src_md(1) : dst_md(1); }

    virtual int n_inputs() const override
    { return 1 + 2 * stats_is_src() + use_scaleshift(); }
    virtual int n_outputs() const override
    { return 1 + (fuse_bn_relu() + 2 * (!stats_is_src())) * is_training(); }
};

struct batch_normalization_bwd_pd_t: public batch_normalization_pd_t {
    typedef batch_normalization_bwd_pd_t base_class;
    typedef batch_normalization_fwd_pd_t hint_class;

    batch_normalization_bwd_pd_t(engine_t *engine,
            const batch_normalization_desc_t *adesc,
            const primitive_attr_t *attr,
            const batch_normalization_fwd_pd_t *hint_fwd_pd)
        : batch_normalization_pd_t(engine, adesc, attr, hint_fwd_pd)
        , diff_data_md_(desc_.diff_data_desc)
        , diff_scaleshift_md_(desc_.diff_data_scaleshift_desc)
    {}

    virtual arg_usage_t arg_usage(primitive_arg_index_t arg) const override {
        if (utils::one_of(arg, MKLDNN_ARG_SRC, MKLDNN_ARG_MEAN,
                    MKLDNN_ARG_VARIANCE, MKLDNN_ARG_DIFF_DST))
            return arg_usage_t::input;

        if (arg == MKLDNN_ARG_SCALE_SHIFT && use_scaleshift())
            return arg_usage_t::input;

        if (arg == MKLDNN_ARG_WORKSPACE && fuse_bn_relu())
            return arg_usage_t::input;

        if (arg == MKLDNN_ARG_DIFF_SRC)
            return arg_usage_t::output;

        if (arg == MKLDNN_ARG_DIFF_SCALE_SHIFT && use_scaleshift())
            return arg_usage_t::output;

        return primitive_desc_t::arg_usage(arg);
    }

    virtual const memory_desc_t *src_md(int index = 0) const override
    { return index == 0 ? &data_md_ : index <= 2 ? &stat_md_ : nullptr; }
    virtual const memory_desc_t *diff_dst_md(int index = 0) const override
    { return index == 0 ? &diff_data_md_ : nullptr; }
    virtual const memory_desc_t *diff_src_md(int index = 0) const override
    { return index == 0 ? &diff_data_md_ : nullptr; }

    virtual const memory_desc_t *weights_md(int index = 0) const override
    { return index == 0 ? &scaleshift_md_ : nullptr; }
    virtual const memory_desc_t *diff_weights_md(int index = 0) const override
    { return index == 0 ? &diff_scaleshift_md_ : nullptr; }

    virtual const memory_desc_t *workspace_md(int index = 0) const override
    { return index == 0 && fuse_bn_relu() ? &ws_md_ : nullptr; }

    const memory_desc_t *stat_md() const { return src_md(1); }

    virtual int n_inputs() const override
    { return 4 + use_scaleshift() + fuse_bn_relu(); }
    virtual int n_outputs() const override
    { return 1 + (desc_.prop_kind == prop_kind::backward); }

protected:
    memory_desc_t diff_data_md_;
    memory_desc_t diff_scaleshift_md_;
};

}
}

#endif

// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s