1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "curve_intersector_precalculations.h"
namespace embree
{
namespace isa
{
template<int M>
struct LineIntersectorHitM
{
__forceinline LineIntersectorHitM() {}
__forceinline LineIntersectorHitM(const vfloat<M>& u, const vfloat<M>& v, const vfloat<M>& t, const Vec3vf<M>& Ng)
: vu(u), vv(v), vt(t), vNg(Ng) {}
__forceinline void finalize() {}
__forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); }
__forceinline float t (const size_t i) const { return vt[i]; }
__forceinline Vec3fa Ng(const size_t i) const { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); }
__forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); }
__forceinline vfloat<M> t () const { return vt; }
__forceinline Vec3vf<M> Ng() const { return vNg; }
public:
vfloat<M> vu;
vfloat<M> vv;
vfloat<M> vt;
Vec3vf<M> vNg;
};
template<int M>
struct FlatLinearCurveIntersector1
{
typedef CurvePrecalculations1 Precalculations;
template<typename Ray, typename Epilog>
static __forceinline bool intersect(const vbool<M>& valid_i,
Ray& ray,
IntersectContext* context,
const LineSegments* geom,
const Precalculations& pre,
const Vec4vf<M>& v0i, const Vec4vf<M>& v1i,
const Epilog& epilog)
{
/* transform end points into ray space */
vbool<M> valid = valid_i;
vfloat<M> depth_scale = pre.depth_scale;
LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space;
const Vec3vf<M> ray_org ((Vec3fa)ray.org);
const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i);
Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w);
Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w);
/* approximative intersection with cone */
const Vec4vf<M> v = p1-p0;
const Vec4vf<M> w = -p0;
const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y);
const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y);
const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one));
const Vec4vf<M> p = madd(u,v,p0);
const vfloat<M> t = p.z;
const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y);
const vfloat<M> r = p.w;
const vfloat<M> r2 = r*r;
valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()) <= t) & (t <= vfloat<M>(ray.tfar));
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f)
valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections
if (unlikely(none(valid))) return false;
/* ignore denormalized segments */
const Vec3vf<M> T = v1.xyz()-v0.xyz();
valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero));
if (unlikely(none(valid))) return false;
/* update hit information */
LineIntersectorHitM<M> hit(u,zero,t,T);
return epilog(valid,hit);
}
};
template<int M, int K>
struct FlatLinearCurveIntersectorK
{
typedef CurvePrecalculationsK<K> Precalculations;
template<typename Epilog>
static __forceinline bool intersect(const vbool<M>& valid_i,
RayK<K>& ray, size_t k,
IntersectContext* context,
const LineSegments* geom,
const Precalculations& pre,
const Vec4vf<M>& v0i, const Vec4vf<M>& v1i,
const Epilog& epilog)
{
/* transform end points into ray space */
vbool<M> valid = valid_i;
vfloat<M> depth_scale = pre.depth_scale[k];
LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space[k];
const Vec3vf<M> ray_org(ray.org.x[k],ray.org.y[k],ray.org.z[k]);
const Vec3vf<M> ray_dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]);
const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i);
Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w);
Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w);
/* approximative intersection with cone */
const Vec4vf<M> v = p1-p0;
const Vec4vf<M> w = -p0;
const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y);
const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y);
const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one));
const Vec4vf<M> p = madd(u,v,p0);
const vfloat<M> t = p.z;
const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y);
const vfloat<M> r = p.w;
const vfloat<M> r2 = r*r;
valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()[k]) <= t) & (t <= vfloat<M>(ray.tfar[k]));
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f)
valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections
if (unlikely(none(valid))) return false;
/* ignore denormalized segments */
const Vec3vf<M> T = v1.xyz()-v0.xyz();
valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero));
if (unlikely(none(valid))) return false;
/* update hit information */
LineIntersectorHitM<M> hit(u,zero,t,T);
return epilog(valid,hit);
}
};
}
}
|