1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
|
/*************************************************************************/
/* joints_2d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "joints_2d_sw.h"
#include "space_2d_sw.h"
//based on chipmunk joint constraints
/* Copyright (c) 2007 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
static inline real_t k_scalar(Body2DSW *a,Body2DSW *b,const Vector2& rA, const Vector2& rB, const Vector2& n) {
real_t value=0;
{
value+=a->get_inv_mass();
real_t rcn = rA.cross(n);
value+=a->get_inv_inertia() * rcn * rcn;
}
if (b) {
value+=b->get_inv_mass();
real_t rcn = rB.cross(n);
value+=b->get_inv_inertia() * rcn * rcn;
}
return value;
}
static inline Vector2
relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB){
Vector2 sum = a->get_linear_velocity() -rA.tangent() * a->get_angular_velocity();
if (b)
return (b->get_linear_velocity() -rB.tangent() * b->get_angular_velocity()) - sum;
else
return -sum;
}
static inline real_t
normal_relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB, Vector2 n){
return relative_velocity(a, b, rA, rB).dot(n);
}
#if 0
bool PinJoint2DSW::setup(float p_step) {
Space2DSW *space = A->get_space();
ERR_FAIL_COND_V(!space,false;)
rA = A->get_transform().basis_xform(anchor_A);
rB = B?B->get_transform().basis_xform(anchor_B):anchor_B;
Vector2 gA = A->get_transform().get_origin();
Vector2 gB = B?B->get_transform().get_origin():Vector2();
Vector2 delta = gB - gA;
delta = (delta+rB) -rA;
real_t jdist = delta.length();
correct=false;
if (jdist==0)
return false; // do not correct
correct=true;
n = delta / jdist;
// calculate mass normal
mass_normal = 1.0f/k_scalar(A, B, rA, rB, n);
// calculate bias velocity
//real_t maxBias = joint->constraint.maxBias;
bias = -(get_bias()==0?space->get_constraint_bias():get_bias())*(1.0/p_step)*(jdist-dist);
bias = CLAMP(bias, -get_max_bias(), +get_max_bias());
// compute max impulse
jn_max = get_max_force() * p_step;
// apply accumulated impulse
Vector2 j = n * jn_acc;
A->apply_impulse(rA,-j);
if (B)
B->apply_impulse(rB,j);
print_line("setup");
return true;
}
void PinJoint2DSW::solve(float p_step){
if (!correct)
return;
Vector2 ln = n;
// compute relative velocity
real_t vrn = normal_relative_velocity(A,B, rA, rB, ln);
// compute normal impulse
real_t jn = (bias - vrn)*mass_normal;
real_t jnOld = jn_acc;
jn_acc = CLAMP(jnOld + jn,-jn_max,jn_max); //cpfclamp(jnOld + jn, -joint->jnMax, joint->jnMax);
jn = jn_acc - jnOld;
print_line("jn_acc: "+rtos(jn_acc));
Vector2 j = jn*ln;
A->apply_impulse(rA,-j);
if (B)
B->apply_impulse(rB,j);
}
PinJoint2DSW::PinJoint2DSW(const Vector2& p_pos,Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,p_body_b?2:1) {
A=p_body_a;
B=p_body_b;
anchor_A = p_body_a->get_inv_transform().xform(p_pos);
anchor_B = p_body_b?p_body_b->get_inv_transform().xform(p_pos):p_pos;
jn_acc=0;
dist=0;
p_body_a->add_constraint(this,0);
if (p_body_b)
p_body_b->add_constraint(this,1);
}
PinJoint2DSW::~PinJoint2DSW() {
if (A)
A->remove_constraint(this);
if (B)
B->remove_constraint(this);
}
#else
bool PinJoint2DSW::setup(float p_step) {
Space2DSW *space = A->get_space();
ERR_FAIL_COND_V(!space,false;)
rA = A->get_transform().basis_xform(anchor_A);
rB = B?B->get_transform().basis_xform(anchor_B):anchor_B;
#if 0
Vector2 gA = rA+A->get_transform().get_origin();
Vector2 gB = B?rB+B->get_transform().get_origin():rB;
VectorB delta = gB - gA;
real_t jdist = delta.length();
correct=false;
if (jdist==0)
return false; // do not correct
#endif
// deltaV = deltaV0 + K * impulse
// invM = [(1/m1 + 1/m2) * eye(2) - skew(rA) * invI1 * skew(rA) - skew(rB) * invI2 * skew(rB)]
// = [1/m1+1/m2 0 ] + invI1 * [rA.y*rA.y -rA.x*rA.y] + invI2 * [rA.y*rA.y -rA.x*rA.y]
// [ 0 1/m1+1/m2] [-rA.x*rA.y rA.x*rA.x] [-rA.x*rA.y rA.x*rA.x]
real_t B_inv_mass = B?B->get_inv_mass():0.0;
Transform2D K1;
K1[0].x = A->get_inv_mass() + B_inv_mass; K1[1].x = 0.0f;
K1[0].y = 0.0f; K1[1].y = A->get_inv_mass() + B_inv_mass;
Transform2D K2;
K2[0].x = A->get_inv_inertia() * rA.y * rA.y; K2[1].x = -A->get_inv_inertia() * rA.x * rA.y;
K2[0].y = -A->get_inv_inertia() * rA.x * rA.y; K2[1].y = A->get_inv_inertia() * rA.x * rA.x;
Transform2D K;
K[0]= K1[0] + K2[0];
K[1]= K1[1] + K2[1];
if (B) {
Transform2D K3;
K3[0].x = B->get_inv_inertia() * rB.y * rB.y; K3[1].x = -B->get_inv_inertia() * rB.x * rB.y;
K3[0].y = -B->get_inv_inertia() * rB.x * rB.y; K3[1].y = B->get_inv_inertia() * rB.x * rB.x;
K[0]+=K3[0];
K[1]+=K3[1];
}
K[0].x += softness;
K[1].y += softness;
M = K.affine_inverse();
Vector2 gA = rA+A->get_transform().get_origin();
Vector2 gB = B?rB+B->get_transform().get_origin():rB;
Vector2 delta = gB - gA;
bias = delta*-(get_bias()==0?space->get_constraint_bias():get_bias())*(1.0/p_step);
// apply accumulated impulse
A->apply_impulse(rA,-P);
if (B)
B->apply_impulse(rB,P);
return true;
}
void PinJoint2DSW::solve(float p_step){
// compute relative velocity
Vector2 vA = A->get_linear_velocity() - rA.cross(A->get_angular_velocity());
Vector2 rel_vel;
if (B)
rel_vel = B->get_linear_velocity() - rB.cross(B->get_angular_velocity()) - vA;
else
rel_vel = -vA;
Vector2 impulse = M.basis_xform(bias - rel_vel - Vector2(softness,softness) * P);
A->apply_impulse(rA,-impulse);
if (B)
B->apply_impulse(rB,impulse);
P += impulse;
}
void PinJoint2DSW::set_param(Physics2DServer::PinJointParam p_param, real_t p_value) {
if(p_param == Physics2DServer::PIN_JOINT_SOFTNESS)
softness = p_value;
}
real_t PinJoint2DSW::get_param(Physics2DServer::PinJointParam p_param) const {
if(p_param == Physics2DServer::PIN_JOINT_SOFTNESS)
return softness;
ERR_FAIL_V(0);
}
PinJoint2DSW::PinJoint2DSW(const Vector2& p_pos,Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,p_body_b?2:1) {
A=p_body_a;
B=p_body_b;
anchor_A = p_body_a->get_inv_transform().xform(p_pos);
anchor_B = p_body_b?p_body_b->get_inv_transform().xform(p_pos):p_pos;
softness=0;
p_body_a->add_constraint(this,0);
if (p_body_b)
p_body_b->add_constraint(this,1);
}
PinJoint2DSW::~PinJoint2DSW() {
if (A)
A->remove_constraint(this);
if (B)
B->remove_constraint(this);
}
#endif
//////////////////////////////////////////////
//////////////////////////////////////////////
//////////////////////////////////////////////
static inline void
k_tensor(Body2DSW *a, Body2DSW *b, Vector2 r1, Vector2 r2, Vector2 *k1, Vector2 *k2)
{
// calculate mass matrix
// If I wasn't lazy and wrote a proper matrix class, this wouldn't be so gross...
real_t k11, k12, k21, k22;
real_t m_sum = a->get_inv_mass() + b->get_inv_mass();
// start with I*m_sum
k11 = m_sum; k12 = 0.0f;
k21 = 0.0f; k22 = m_sum;
// add the influence from r1
real_t a_i_inv = a->get_inv_inertia();
real_t r1xsq = r1.x * r1.x * a_i_inv;
real_t r1ysq = r1.y * r1.y * a_i_inv;
real_t r1nxy = -r1.x * r1.y * a_i_inv;
k11 += r1ysq; k12 += r1nxy;
k21 += r1nxy; k22 += r1xsq;
// add the influnce from r2
real_t b_i_inv = b->get_inv_inertia();
real_t r2xsq = r2.x * r2.x * b_i_inv;
real_t r2ysq = r2.y * r2.y * b_i_inv;
real_t r2nxy = -r2.x * r2.y * b_i_inv;
k11 += r2ysq; k12 += r2nxy;
k21 += r2nxy; k22 += r2xsq;
// invert
real_t determinant = k11*k22 - k12*k21;
ERR_FAIL_COND(determinant== 0.0);
real_t det_inv = 1.0f/determinant;
*k1 = Vector2( k22*det_inv, -k12*det_inv);
*k2 = Vector2(-k21*det_inv, k11*det_inv);
}
static _FORCE_INLINE_ Vector2
mult_k(const Vector2& vr, const Vector2 &k1, const Vector2 &k2)
{
return Vector2(vr.dot(k1), vr.dot(k2));
}
bool GrooveJoint2DSW::setup(float p_step) {
// calculate endpoints in worldspace
Vector2 ta = A->get_transform().xform(A_groove_1);
Vector2 tb = A->get_transform().xform(A_groove_2);
Space2DSW *space=A->get_space();
// calculate axis
Vector2 n = -(tb - ta).tangent().normalized();
real_t d = ta.dot(n);
xf_normal = n;
rB = B->get_transform().basis_xform(B_anchor);
// calculate tangential distance along the axis of rB
real_t td = (B->get_transform().get_origin() + rB).cross(n);
// calculate clamping factor and rB
if(td <= ta.cross(n)){
clamp = 1.0f;
rA = ta - A->get_transform().get_origin();
} else if(td >= tb.cross(n)){
clamp = -1.0f;
rA = tb - A->get_transform().get_origin();
} else {
clamp = 0.0f;
//joint->r1 = cpvsub(cpvadd(cpvmult(cpvperp(n), -td), cpvmult(n, d)), a->p);
rA = ((-n.tangent() * -td) + n*d) - A->get_transform().get_origin();
}
// Calculate mass tensor
k_tensor(A, B, rA, rB, &k1, &k2);
// compute max impulse
jn_max = get_max_force() * p_step;
// calculate bias velocity
//cpVect delta = cpvsub(cpvadd(b->p, joint->r2), cpvadd(a->p, joint->r1));
//joint->bias = cpvclamp(cpvmult(delta, -joint->constraint.biasCoef*dt_inv), joint->constraint.maxBias);
Vector2 delta = (B->get_transform().get_origin() +rB) - (A->get_transform().get_origin() + rA);
float _b = get_bias();
_b=0.001;
gbias=(delta*-(_b==0?space->get_constraint_bias():_b)*(1.0/p_step)).clamped(get_max_bias());
// apply accumulated impulse
A->apply_impulse(rA,-jn_acc);
B->apply_impulse(rB,jn_acc);
correct=true;
return true;
}
void GrooveJoint2DSW::solve(float p_step){
// compute impulse
Vector2 vr = relative_velocity(A, B, rA,rB);
Vector2 j = mult_k(gbias-vr, k1, k2);
Vector2 jOld = jn_acc;
j+=jOld;
jn_acc = (((clamp * j.cross(xf_normal)) > 0) ? j : xf_normal.project(j)).clamped(jn_max);
j = jn_acc - jOld;
A->apply_impulse(rA,-j);
B->apply_impulse(rB,j);
}
GrooveJoint2DSW::GrooveJoint2DSW(const Vector2& p_a_groove1,const Vector2& p_a_groove2, const Vector2& p_b_anchor, Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,2) {
A=p_body_a;
B=p_body_b;
A_groove_1 = A->get_inv_transform().xform(p_a_groove1);
A_groove_2 = A->get_inv_transform().xform(p_a_groove2);
B_anchor=B->get_inv_transform().xform(p_b_anchor);
A_groove_normal = -(A_groove_2 - A_groove_1).normalized().tangent();
A->add_constraint(this,0);
B->add_constraint(this,1);
}
GrooveJoint2DSW::~GrooveJoint2DSW() {
A->remove_constraint(this);
B->remove_constraint(this);
}
//////////////////////////////////////////////
//////////////////////////////////////////////
//////////////////////////////////////////////
bool DampedSpringJoint2DSW::setup(float p_step) {
rA = A->get_transform().basis_xform(anchor_A);
rB = B->get_transform().basis_xform(anchor_B);
Vector2 delta = (B->get_transform().get_origin() + rB) - (A->get_transform().get_origin() + rA) ;
real_t dist = delta.length();
if (dist)
n=delta/dist;
else
n=Vector2();
real_t k = k_scalar(A, B, rA, rB, n);
n_mass = 1.0f/k;
target_vrn = 0.0f;
v_coef = 1.0f - Math::exp(-damping*(p_step)*k);
// apply spring force
real_t f_spring = (rest_length - dist) * stiffness;
Vector2 j = n * f_spring*(p_step);
A->apply_impulse(rA,-j);
B->apply_impulse(rB,j);
return true;
}
void DampedSpringJoint2DSW::solve(float p_step) {
// compute relative velocity
real_t vrn = normal_relative_velocity(A, B, rA, rB, n) - target_vrn;
// compute velocity loss from drag
// not 100% certain this is derived correctly, though it makes sense
real_t v_damp = -vrn*v_coef;
target_vrn = vrn + v_damp;
Vector2 j=n*v_damp*n_mass;
A->apply_impulse(rA,-j);
B->apply_impulse(rB,j);
}
void DampedSpringJoint2DSW::set_param(Physics2DServer::DampedStringParam p_param, real_t p_value) {
switch(p_param) {
case Physics2DServer::DAMPED_STRING_REST_LENGTH: {
rest_length=p_value;
} break;
case Physics2DServer::DAMPED_STRING_DAMPING: {
damping=p_value;
} break;
case Physics2DServer::DAMPED_STRING_STIFFNESS: {
stiffness=p_value;
} break;
}
}
real_t DampedSpringJoint2DSW::get_param(Physics2DServer::DampedStringParam p_param) const{
switch(p_param) {
case Physics2DServer::DAMPED_STRING_REST_LENGTH: {
return rest_length;
} break;
case Physics2DServer::DAMPED_STRING_DAMPING: {
return damping;
} break;
case Physics2DServer::DAMPED_STRING_STIFFNESS: {
return stiffness;
} break;
}
ERR_FAIL_V(0);
}
DampedSpringJoint2DSW::DampedSpringJoint2DSW(const Vector2& p_anchor_a,const Vector2& p_anchor_b, Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,2) {
A=p_body_a;
B=p_body_b;
anchor_A = A->get_inv_transform().xform(p_anchor_a);
anchor_B = B->get_inv_transform().xform(p_anchor_b);
rest_length=p_anchor_a.distance_to(p_anchor_b);
stiffness=20;
damping=1.5;
A->add_constraint(this,0);
B->add_constraint(this,1);
}
DampedSpringJoint2DSW::~DampedSpringJoint2DSW() {
A->remove_constraint(this);
B->remove_constraint(this);
}
|