summaryrefslogtreecommitdiff
path: root/servers/physics_2d/godot_body_pair_2d.cpp
blob: 1986191cc3e57b7e1fffb4912690a4a77ad6ff1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/*************************************************************************/
/*  godot_body_pair_2d.cpp                                               */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "godot_body_pair_2d.h"
#include "godot_collision_solver_2d.h"
#include "godot_space_2d.h"

#define ACCUMULATE_IMPULSES

#define MIN_VELOCITY 0.001
#define MAX_BIAS_ROTATION (Math_PI / 8)

void GodotBodyPair2D::_add_contact(const Vector2 &p_point_A, const Vector2 &p_point_B, void *p_self) {
	GodotBodyPair2D *self = (GodotBodyPair2D *)p_self;

	self->_contact_added_callback(p_point_A, p_point_B);
}

void GodotBodyPair2D::_contact_added_callback(const Vector2 &p_point_A, const Vector2 &p_point_B) {
	Vector2 local_A = A->get_inv_transform().basis_xform(p_point_A);
	Vector2 local_B = B->get_inv_transform().basis_xform(p_point_B - offset_B);

	int new_index = contact_count;

	ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1));

	Contact contact;
	contact.local_A = local_A;
	contact.local_B = local_B;
	contact.normal = (p_point_A - p_point_B).normalized();
	contact.used = true;

	// Attempt to determine if the contact will be reused.
	real_t recycle_radius_2 = space->get_contact_recycle_radius() * space->get_contact_recycle_radius();

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];
		if (c.local_A.distance_squared_to(local_A) < (recycle_radius_2) &&
				c.local_B.distance_squared_to(local_B) < (recycle_radius_2)) {
			contact.acc_normal_impulse = c.acc_normal_impulse;
			contact.acc_tangent_impulse = c.acc_tangent_impulse;
			contact.acc_bias_impulse = c.acc_bias_impulse;
			contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
			c = contact;
			return;
		}
	}

	// Figure out if the contact amount must be reduced to fit the new contact.
	if (new_index == MAX_CONTACTS) {
		// Remove the contact with the minimum depth.

		const Transform2D &transform_A = A->get_transform();
		const Transform2D &transform_B = B->get_transform();

		int least_deep = -1;
		real_t min_depth;

		// Start with depth for new contact.
		{
			Vector2 global_A = transform_A.basis_xform(contact.local_A);
			Vector2 global_B = transform_B.basis_xform(contact.local_B) + offset_B;

			Vector2 axis = global_A - global_B;
			min_depth = axis.dot(contact.normal);
		}

		for (int i = 0; i < contact_count; i++) {
			const Contact &c = contacts[i];
			Vector2 global_A = transform_A.basis_xform(c.local_A);
			Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;

			Vector2 axis = global_A - global_B;
			real_t depth = axis.dot(c.normal);

			if (depth < min_depth) {
				min_depth = depth;
				least_deep = i;
			}
		}

		if (least_deep > -1) {
			// Replace the least deep contact by the new one.
			contacts[least_deep] = contact;
		}

		return;
	}

	contacts[new_index] = contact;
	contact_count++;
}

void GodotBodyPair2D::_validate_contacts() {
	// Make sure to erase contacts that are no longer valid.
	real_t max_separation = space->get_contact_max_separation();
	real_t max_separation2 = max_separation * max_separation;

	const Transform2D &transform_A = A->get_transform();
	const Transform2D &transform_B = B->get_transform();

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];

		bool erase = false;
		if (!c.used) {
			// Was left behind in previous frame.
			erase = true;
		} else {
			c.used = false;

			Vector2 global_A = transform_A.basis_xform(c.local_A);
			Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
			Vector2 axis = global_A - global_B;
			real_t depth = axis.dot(c.normal);

			if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
				erase = true;
			}
		}

		if (erase) {
			// Contact no longer needed, remove.

			if ((i + 1) < contact_count) {
				// Swap with the last one.
				SWAP(contacts[i], contacts[contact_count - 1]);
			}

			i--;
			contact_count--;
		}
	}
}

bool GodotBodyPair2D::_test_ccd(real_t p_step, GodotBody2D *p_A, int p_shape_A, const Transform2D &p_xform_A, GodotBody2D *p_B, int p_shape_B, const Transform2D &p_xform_B) {
	Vector2 motion = p_A->get_linear_velocity() * p_step;
	real_t mlen = motion.length();
	if (mlen < CMP_EPSILON) {
		return false;
	}

	Vector2 mnormal = motion / mlen;

	real_t min, max;
	p_A->get_shape(p_shape_A)->project_rangev(mnormal, p_xform_A, min, max);

	// Did it move enough in this direction to even attempt raycast?
	// Let's say it should move more than 1/3 the size of the object in that axis.
	bool fast_object = mlen > (max - min) * 0.3;
	if (!fast_object) {
		return false;
	}

	// Going too fast in that direction.

	// Cast a segment from support in motion normal, in the same direction of motion by motion length.
	// Support is the worst case collision point, so real collision happened before.
	int a;
	Vector2 s[2];
	p_A->get_shape(p_shape_A)->get_supports(p_xform_A.basis_xform(mnormal).normalized(), s, a);
	Vector2 from = p_xform_A.xform(s[0]);
	Vector2 to = from + motion;

	Transform2D from_inv = p_xform_B.affine_inverse();

	// Start from a little inside the bounding box.
	Vector2 local_from = from_inv.xform(from - mnormal * mlen * 0.1);
	Vector2 local_to = from_inv.xform(to);

	Vector2 rpos, rnorm;
	if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm)) {
		return false;
	}

	// Check one-way collision based on motion direction.
	if (p_A->get_shape(p_shape_A)->allows_one_way_collision() && p_B->is_shape_set_as_one_way_collision(p_shape_B)) {
		Vector2 direction = p_xform_B.get_axis(1).normalized();
		if (direction.dot(mnormal) < CMP_EPSILON) {
			collided = false;
			oneway_disabled = true;
			return false;
		}
	}

	// Shorten the linear velocity so it does not hit, but gets close enough,
	// next frame will hit softly or soft enough.
	Vector2 hitpos = p_xform_B.xform(rpos);

	real_t newlen = hitpos.distance_to(from) - (max - min) * 0.01;
	p_A->set_linear_velocity(mnormal * (newlen / p_step));

	return true;
}

real_t combine_bounce(GodotBody2D *A, GodotBody2D *B) {
	return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1);
}

real_t combine_friction(GodotBody2D *A, GodotBody2D *B) {
	return ABS(MIN(A->get_friction(), B->get_friction()));
}

bool GodotBodyPair2D::setup(real_t p_step) {
	check_ccd = false;

	if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) {
		collided = false;
		return false;
	}

	collide_A = (A->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && A->collides_with(B);
	collide_B = (B->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && B->collides_with(A);

	report_contacts_only = false;
	if (!collide_A && !collide_B) {
		if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) {
			report_contacts_only = true;
		} else {
			collided = false;
			return false;
		}
	}

	//use local A coordinates to avoid numerical issues on collision detection
	offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();

	_validate_contacts();

	const Vector2 &offset_A = A->get_transform().get_origin();
	Transform2D xform_Au = A->get_transform().untranslated();
	Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A);

	Transform2D xform_Bu = B->get_transform();
	xform_Bu.elements[2] -= offset_A;
	Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B);

	GodotShape2D *shape_A_ptr = A->get_shape(shape_A);
	GodotShape2D *shape_B_ptr = B->get_shape(shape_B);

	Vector2 motion_A, motion_B;

	if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) {
		motion_A = A->get_motion();
	}
	if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) {
		motion_B = B->get_motion();
	}

	bool prev_collided = collided;

	collided = GodotCollisionSolver2D::solve(shape_A_ptr, xform_A, motion_A, shape_B_ptr, xform_B, motion_B, _add_contact, this, &sep_axis);
	if (!collided) {
		oneway_disabled = false;

		if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) {
			check_ccd = true;
			return true;
		}

		if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) {
			check_ccd = true;
			return true;
		}

		return false;
	}

	if (oneway_disabled) {
		return false;
	}

	if (!prev_collided) {
		if (shape_B_ptr->allows_one_way_collision() && A->is_shape_set_as_one_way_collision(shape_A)) {
			Vector2 direction = xform_A.get_axis(1).normalized();
			bool valid = false;
			for (int i = 0; i < contact_count; i++) {
				Contact &c = contacts[i];
				if (c.normal.dot(direction) > -CMP_EPSILON) { //greater (normal inverted)
					continue;
				}
				valid = true;
				break;
			}
			if (!valid) {
				collided = false;
				oneway_disabled = true;
				return false;
			}
		}

		if (shape_A_ptr->allows_one_way_collision() && B->is_shape_set_as_one_way_collision(shape_B)) {
			Vector2 direction = xform_B.get_axis(1).normalized();
			bool valid = false;
			for (int i = 0; i < contact_count; i++) {
				Contact &c = contacts[i];
				if (c.normal.dot(direction) < CMP_EPSILON) { //less (normal ok)
					continue;
				}
				valid = true;
				break;
			}
			if (!valid) {
				collided = false;
				oneway_disabled = true;
				return false;
			}
		}
	}

	return true;
}

bool GodotBodyPair2D::pre_solve(real_t p_step) {
	if (oneway_disabled) {
		return false;
	}

	if (!collided) {
		if (check_ccd) {
			const Vector2 &offset_A = A->get_transform().get_origin();
			Transform2D xform_Au = A->get_transform().untranslated();
			Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A);

			Transform2D xform_Bu = B->get_transform();
			xform_Bu.elements[2] -= offset_A;
			Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B);

			if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) {
				_test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B);
			}

			if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) {
				_test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A);
			}
		}

		return false;
	}

	real_t max_penetration = space->get_contact_max_allowed_penetration();

	real_t bias = space->get_contact_bias();

	GodotShape2D *shape_A_ptr = A->get_shape(shape_A);
	GodotShape2D *shape_B_ptr = B->get_shape(shape_B);

	if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
		if (shape_A_ptr->get_custom_bias() == 0) {
			bias = shape_B_ptr->get_custom_bias();
		} else if (shape_B_ptr->get_custom_bias() == 0) {
			bias = shape_A_ptr->get_custom_bias();
		} else {
			bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5;
		}
	}

	real_t inv_dt = 1.0 / p_step;

	bool do_process = false;

	const Vector2 &offset_A = A->get_transform().get_origin();
	const Transform2D &transform_A = A->get_transform();
	const Transform2D &transform_B = B->get_transform();

	real_t inv_inertia_A = collide_A ? A->get_inv_inertia() : 0.0;
	real_t inv_inertia_B = collide_B ? B->get_inv_inertia() : 0.0;

	real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
	real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];
		c.active = false;

		Vector2 global_A = transform_A.basis_xform(c.local_A);
		Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;

		Vector2 axis = global_A - global_B;
		real_t depth = axis.dot(c.normal);

		if (depth <= 0.0) {
			continue;
		}

#ifdef DEBUG_ENABLED
		if (space->is_debugging_contacts()) {
			space->add_debug_contact(global_A + offset_A);
			space->add_debug_contact(global_B + offset_A);
		}
#endif

		c.rA = global_A - A->get_center_of_mass();
		c.rB = global_B - B->get_center_of_mass() - offset_B;

		if (A->can_report_contacts()) {
			Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
			A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB + B->get_linear_velocity());
		}

		if (B->can_report_contacts()) {
			Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
			B->add_contact(global_B + offset_A, c.normal, depth, shape_B, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA + A->get_linear_velocity());
		}

		if (report_contacts_only) {
			collided = false;
			continue;
		}

		// Precompute normal mass, tangent mass, and bias.
		real_t rnA = c.rA.dot(c.normal);
		real_t rnB = c.rB.dot(c.normal);
		real_t kNormal = inv_mass_A + inv_mass_B;
		kNormal += inv_inertia_A * (c.rA.dot(c.rA) - rnA * rnA) + inv_inertia_B * (c.rB.dot(c.rB) - rnB * rnB);
		c.mass_normal = 1.0f / kNormal;

		Vector2 tangent = c.normal.orthogonal();
		real_t rtA = c.rA.dot(tangent);
		real_t rtB = c.rB.dot(tangent);
		real_t kTangent = inv_mass_A + inv_mass_B;
		kTangent += inv_inertia_A * (c.rA.dot(c.rA) - rtA * rtA) + inv_inertia_B * (c.rB.dot(c.rB) - rtB * rtB);
		c.mass_tangent = 1.0f / kTangent;

		c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
		c.depth = depth;

#ifdef ACCUMULATE_IMPULSES
		{
			// Apply normal + friction impulse
			Vector2 P = c.acc_normal_impulse * c.normal + c.acc_tangent_impulse * tangent;

			if (collide_A) {
				A->apply_impulse(-P, c.rA + A->get_center_of_mass());
			}
			if (collide_B) {
				B->apply_impulse(P, c.rB + B->get_center_of_mass());
			}
		}
#endif

		c.bounce = combine_bounce(A, B);
		if (c.bounce) {
			Vector2 crA(-A->get_prev_angular_velocity() * c.rA.y, A->get_prev_angular_velocity() * c.rA.x);
			Vector2 crB(-B->get_prev_angular_velocity() * c.rB.y, B->get_prev_angular_velocity() * c.rB.x);
			Vector2 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA;
			c.bounce = c.bounce * dv.dot(c.normal);
		}

		c.active = true;
		do_process = true;
	}

	return do_process;
}

void GodotBodyPair2D::solve(real_t p_step) {
	if (!collided || oneway_disabled) {
		return;
	}

	const real_t max_bias_av = MAX_BIAS_ROTATION / p_step;

	real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
	real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;

	for (int i = 0; i < contact_count; ++i) {
		Contact &c = contacts[i];

		if (!c.active) {
			continue;
		}

		// Relative velocity at contact

		Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
		Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
		Vector2 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;

		Vector2 crbA(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x);
		Vector2 crbB(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x);
		Vector2 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;

		real_t vn = dv.dot(c.normal);
		real_t vbn = dbv.dot(c.normal);

		Vector2 tangent = c.normal.orthogonal();
		real_t vt = dv.dot(tangent);

		real_t jbn = (c.bias - vbn) * c.mass_normal;
		real_t jbnOld = c.acc_bias_impulse;
		c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);

		Vector2 jb = c.normal * (c.acc_bias_impulse - jbnOld);

		if (collide_A) {
			A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av);
		}
		if (collide_B) {
			B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av);
		}

		crbA = Vector2(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x);
		crbB = Vector2(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x);
		dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;

		vbn = dbv.dot(c.normal);

		if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
			real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B);
			real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
			c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);

			Vector2 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);

			if (collide_A) {
				A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f);
			}
			if (collide_B) {
				B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f);
			}
		}

		real_t jn = -(c.bounce + vn) * c.mass_normal;
		real_t jnOld = c.acc_normal_impulse;
		c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);

		real_t friction = combine_friction(A, B);

		real_t jtMax = friction * c.acc_normal_impulse;
		real_t jt = -vt * c.mass_tangent;
		real_t jtOld = c.acc_tangent_impulse;
		c.acc_tangent_impulse = CLAMP(jtOld + jt, -jtMax, jtMax);

		Vector2 j = c.normal * (c.acc_normal_impulse - jnOld) + tangent * (c.acc_tangent_impulse - jtOld);

		if (collide_A) {
			A->apply_impulse(-j, c.rA + A->get_center_of_mass());
		}
		if (collide_B) {
			B->apply_impulse(j, c.rB + B->get_center_of_mass());
		}
	}
}

GodotBodyPair2D::GodotBodyPair2D(GodotBody2D *p_A, int p_shape_A, GodotBody2D *p_B, int p_shape_B) :
		GodotConstraint2D(_arr, 2) {
	A = p_A;
	B = p_B;
	shape_A = p_shape_A;
	shape_B = p_shape_B;
	space = A->get_space();
	A->add_constraint(this, 0);
	B->add_constraint(this, 1);
}

GodotBodyPair2D::~GodotBodyPair2D() {
	A->remove_constraint(this, 0);
	B->remove_constraint(this, 1);
}