summaryrefslogtreecommitdiff
path: root/core/math/basis.h
blob: 4be325cdd2efe8695a142f0a02fd88b82b9ac628 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*************************************************************************/
/*  basis.h                                                              */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#ifndef BASIS_H
#define BASIS_H

#include "core/math/quaternion.h"
#include "core/math/vector3.h"

struct _NO_DISCARD_ Basis {
	Vector3 rows[3] = {
		Vector3(1, 0, 0),
		Vector3(0, 1, 0),
		Vector3(0, 0, 1)
	};

	_FORCE_INLINE_ const Vector3 &operator[](int axis) const {
		return rows[axis];
	}
	_FORCE_INLINE_ Vector3 &operator[](int axis) {
		return rows[axis];
	}

	void invert();
	void transpose();

	Basis inverse() const;
	Basis transposed() const;

	_FORCE_INLINE_ real_t determinant() const;

	enum EulerOrder {
		EULER_ORDER_XYZ,
		EULER_ORDER_XZY,
		EULER_ORDER_YXZ,
		EULER_ORDER_YZX,
		EULER_ORDER_ZXY,
		EULER_ORDER_ZYX
	};

	void from_z(const Vector3 &p_z);

	void rotate(const Vector3 &p_axis, real_t p_angle);
	Basis rotated(const Vector3 &p_axis, real_t p_angle) const;

	void rotate_local(const Vector3 &p_axis, real_t p_angle);
	Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;

	void rotate(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ);
	Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) const;

	void rotate(const Quaternion &p_quaternion);
	Basis rotated(const Quaternion &p_quaternion) const;

	Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const;
	void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
	void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
	Quaternion get_rotation_quaternion() const;

	void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction);

	Vector3 rotref_posscale_decomposition(Basis &rotref) const;

	Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const;
	void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ);
	static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) {
		Basis b;
		b.set_euler(p_euler, p_order);
		return b;
	}

	Quaternion get_quaternion() const;
	void set_quaternion(const Quaternion &p_quaternion);

	void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
	void set_axis_angle(const Vector3 &p_axis, real_t p_angle);

	void scale(const Vector3 &p_scale);
	Basis scaled(const Vector3 &p_scale) const;

	void scale_local(const Vector3 &p_scale);
	Basis scaled_local(const Vector3 &p_scale) const;

	void scale_orthogonal(const Vector3 &p_scale);
	Basis scaled_orthogonal(const Vector3 &p_scale) const;

	void make_scale_uniform();
	float get_uniform_scale() const;

	Vector3 get_scale() const;
	Vector3 get_scale_abs() const;
	Vector3 get_scale_local() const;

	void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
	void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EULER_ORDER_YXZ);
	void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale);

	// transposed dot products
	_FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
		return rows[0][0] * v[0] + rows[1][0] * v[1] + rows[2][0] * v[2];
	}
	_FORCE_INLINE_ real_t tdoty(const Vector3 &v) const {
		return rows[0][1] * v[0] + rows[1][1] * v[1] + rows[2][1] * v[2];
	}
	_FORCE_INLINE_ real_t tdotz(const Vector3 &v) const {
		return rows[0][2] * v[0] + rows[1][2] * v[1] + rows[2][2] * v[2];
	}

	bool is_equal_approx(const Basis &p_basis) const;

	bool operator==(const Basis &p_matrix) const;
	bool operator!=(const Basis &p_matrix) const;

	_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
	_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
	_FORCE_INLINE_ void operator*=(const Basis &p_matrix);
	_FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
	_FORCE_INLINE_ void operator+=(const Basis &p_matrix);
	_FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
	_FORCE_INLINE_ void operator-=(const Basis &p_matrix);
	_FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
	_FORCE_INLINE_ void operator*=(const real_t p_val);
	_FORCE_INLINE_ Basis operator*(const real_t p_val) const;

	int get_orthogonal_index() const;
	void set_orthogonal_index(int p_index);

	bool is_orthogonal() const;
	bool is_diagonal() const;
	bool is_rotation() const;

	Basis lerp(const Basis &p_to, const real_t &p_weight) const;
	Basis slerp(const Basis &p_to, const real_t &p_weight) const;
	void rotate_sh(real_t *p_values);

	operator String() const;

	/* create / set */

	_FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
		rows[0][0] = xx;
		rows[0][1] = xy;
		rows[0][2] = xz;
		rows[1][0] = yx;
		rows[1][1] = yy;
		rows[1][2] = yz;
		rows[2][0] = zx;
		rows[2][1] = zy;
		rows[2][2] = zz;
	}
	_FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
		set_column(0, p_x);
		set_column(1, p_y);
		set_column(2, p_z);
	}

	_FORCE_INLINE_ Vector3 get_column(int p_index) const {
		// Get actual basis axis column (we store transposed as rows for performance).
		return Vector3(rows[0][p_index], rows[1][p_index], rows[2][p_index]);
	}

	_FORCE_INLINE_ void set_column(int p_index, const Vector3 &p_value) {
		// Set actual basis axis column (we store transposed as rows for performance).
		rows[0][p_index] = p_value.x;
		rows[1][p_index] = p_value.y;
		rows[2][p_index] = p_value.z;
	}

	_FORCE_INLINE_ Vector3 get_main_diagonal() const {
		return Vector3(rows[0][0], rows[1][1], rows[2][2]);
	}

	_FORCE_INLINE_ void set_zero() {
		rows[0].zero();
		rows[1].zero();
		rows[2].zero();
	}

	_FORCE_INLINE_ Basis transpose_xform(const Basis &m) const {
		return Basis(
				rows[0].x * m[0].x + rows[1].x * m[1].x + rows[2].x * m[2].x,
				rows[0].x * m[0].y + rows[1].x * m[1].y + rows[2].x * m[2].y,
				rows[0].x * m[0].z + rows[1].x * m[1].z + rows[2].x * m[2].z,
				rows[0].y * m[0].x + rows[1].y * m[1].x + rows[2].y * m[2].x,
				rows[0].y * m[0].y + rows[1].y * m[1].y + rows[2].y * m[2].y,
				rows[0].y * m[0].z + rows[1].y * m[1].z + rows[2].y * m[2].z,
				rows[0].z * m[0].x + rows[1].z * m[1].x + rows[2].z * m[2].x,
				rows[0].z * m[0].y + rows[1].z * m[1].y + rows[2].z * m[2].y,
				rows[0].z * m[0].z + rows[1].z * m[1].z + rows[2].z * m[2].z);
	}
	Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
		set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
	}

	void orthonormalize();
	Basis orthonormalized() const;

	void orthogonalize();
	Basis orthogonalized() const;

#ifdef MATH_CHECKS
	bool is_symmetric() const;
#endif
	Basis diagonalize();

	operator Quaternion() const { return get_quaternion(); }

	static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0));

	Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
	Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }

	Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
	Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
	static Basis from_scale(const Vector3 &p_scale);

	_FORCE_INLINE_ Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) {
		rows[0] = row0;
		rows[1] = row1;
		rows[2] = row2;
	}

	_FORCE_INLINE_ Basis() {}

private:
	// Helper method.
	void _set_diagonal(const Vector3 &p_diag);
};

_FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
	set(
			p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
			p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
			p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
}

_FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
	return Basis(
			p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
			p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
			p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
}

_FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
	rows[0] += p_matrix.rows[0];
	rows[1] += p_matrix.rows[1];
	rows[2] += p_matrix.rows[2];
}

_FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
	Basis ret(*this);
	ret += p_matrix;
	return ret;
}

_FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
	rows[0] -= p_matrix.rows[0];
	rows[1] -= p_matrix.rows[1];
	rows[2] -= p_matrix.rows[2];
}

_FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
	Basis ret(*this);
	ret -= p_matrix;
	return ret;
}

_FORCE_INLINE_ void Basis::operator*=(const real_t p_val) {
	rows[0] *= p_val;
	rows[1] *= p_val;
	rows[2] *= p_val;
}

_FORCE_INLINE_ Basis Basis::operator*(const real_t p_val) const {
	Basis ret(*this);
	ret *= p_val;
	return ret;
}

Vector3 Basis::xform(const Vector3 &p_vector) const {
	return Vector3(
			rows[0].dot(p_vector),
			rows[1].dot(p_vector),
			rows[2].dot(p_vector));
}

Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
	return Vector3(
			(rows[0][0] * p_vector.x) + (rows[1][0] * p_vector.y) + (rows[2][0] * p_vector.z),
			(rows[0][1] * p_vector.x) + (rows[1][1] * p_vector.y) + (rows[2][1] * p_vector.z),
			(rows[0][2] * p_vector.x) + (rows[1][2] * p_vector.y) + (rows[2][2] * p_vector.z));
}

real_t Basis::determinant() const {
	return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) -
			rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) +
			rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]);
}

#endif // BASIS_H