summaryrefslogtreecommitdiff
path: root/servers
diff options
context:
space:
mode:
Diffstat (limited to 'servers')
-rw-r--r--servers/physics_3d/collision_solver_3d_sat.cpp279
-rw-r--r--servers/rendering/renderer_rd/shaders/skeleton.glsl2
2 files changed, 135 insertions, 146 deletions
diff --git a/servers/physics_3d/collision_solver_3d_sat.cpp b/servers/physics_3d/collision_solver_3d_sat.cpp
index 2a31cf1c22..f507cacdc3 100644
--- a/servers/physics_3d/collision_solver_3d_sat.cpp
+++ b/servers/physics_3d/collision_solver_3d_sat.cpp
@@ -35,7 +35,7 @@
#define fallback_collision_solver gjk_epa_calculate_penetration
-// Cylinder SAT analytic methods for Cylinder-trimesh and Cylinder-box are based on ODE colliders.
+// Cylinder SAT analytic methods and face-circle contact points for cylinder-trimesh and cylinder-box collision are based on ODE colliders.
/*
* Cylinder-trimesh and Cylinder-box colliders by Alen Ladavac
@@ -119,28 +119,9 @@ static void _generate_contacts_point_circle(const Vector3 *p_points_A, int p_poi
ERR_FAIL_COND(p_point_count_B != 3);
#endif
- const Vector3 &point_A = p_points_A[0];
-
- const Vector3 &circle_B_pos = p_points_B[0];
- Vector3 circle_B_line_1 = p_points_B[1] - circle_B_pos;
- Vector3 circle_B_line_2 = p_points_B[2] - circle_B_pos;
-
- real_t circle_B_radius = circle_B_line_1.length();
- Vector3 circle_B_normal = circle_B_line_1.cross(circle_B_line_2).normalized();
-
- // Project point onto Circle B plane.
- Plane circle_plane(circle_B_pos, circle_B_normal);
- Vector3 proj_point_A = circle_plane.project(point_A);
-
- // Clip point.
- Vector3 delta_point_1 = proj_point_A - circle_B_pos;
- real_t dist_point_1 = delta_point_1.length_squared();
- if (!Math::is_zero_approx(dist_point_1)) {
- dist_point_1 = Math::sqrt(dist_point_1);
- proj_point_A = circle_B_pos + delta_point_1 * MIN(dist_point_1, circle_B_radius) / dist_point_1;
- }
+ Vector3 closest_B = Plane(p_points_B[0], p_points_B[1], p_points_B[2]).project(*p_points_A);
- p_callback->call(point_A, proj_point_A);
+ p_callback->call(*p_points_A, closest_B);
}
static void _generate_contacts_edge_edge(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
@@ -189,6 +170,104 @@ static void _generate_contacts_edge_edge(const Vector3 *p_points_A, int p_point_
p_callback->call(closest_A, closest_B);
}
+static void _generate_contacts_edge_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
+#ifdef DEBUG_ENABLED
+ ERR_FAIL_COND(p_point_count_A != 2);
+ ERR_FAIL_COND(p_point_count_B != 3);
+#endif
+
+ const Vector3 &circle_B_pos = p_points_B[0];
+ Vector3 circle_B_line_1 = p_points_B[1] - circle_B_pos;
+ Vector3 circle_B_line_2 = p_points_B[2] - circle_B_pos;
+
+ real_t circle_B_radius = circle_B_line_1.length();
+ Vector3 circle_B_normal = circle_B_line_1.cross(circle_B_line_2).normalized();
+
+ Plane circle_plane(circle_B_pos, circle_B_normal);
+
+ static const int max_clip = 2;
+ Vector3 contact_points[max_clip];
+ int num_points = 0;
+
+ // Project edge point in circle plane.
+ const Vector3 &edge_A_1 = p_points_A[0];
+ Vector3 proj_point_1 = circle_plane.project(edge_A_1);
+
+ Vector3 dist_vec = proj_point_1 - circle_B_pos;
+ real_t dist_sq = dist_vec.length_squared();
+
+ // Point 1 is inside disk, add as contact point.
+ if (dist_sq <= circle_B_radius * circle_B_radius) {
+ contact_points[num_points] = edge_A_1;
+ ++num_points;
+ }
+
+ const Vector3 &edge_A_2 = p_points_A[1];
+ Vector3 proj_point_2 = circle_plane.project(edge_A_2);
+
+ Vector3 dist_vec_2 = proj_point_2 - circle_B_pos;
+ real_t dist_sq_2 = dist_vec_2.length_squared();
+
+ // Point 2 is inside disk, add as contact point.
+ if (dist_sq_2 <= circle_B_radius * circle_B_radius) {
+ contact_points[num_points] = edge_A_2;
+ ++num_points;
+ }
+
+ if (num_points < 2) {
+ Vector3 line_vec = proj_point_2 - proj_point_1;
+ real_t line_length_sq = line_vec.length_squared();
+
+ // Create a quadratic formula of the form ax^2 + bx + c = 0
+ real_t a, b, c;
+
+ a = line_length_sq;
+ b = 2.0 * dist_vec.dot(line_vec);
+ c = dist_sq - circle_B_radius * circle_B_radius;
+
+ // Solve for t.
+ real_t sqrtterm = b * b - 4.0 * a * c;
+
+ // If the term we intend to square root is less than 0 then the answer won't be real,
+ // so the line doesn't intersect.
+ if (sqrtterm >= 0) {
+ sqrtterm = Math::sqrt(sqrtterm);
+
+ Vector3 edge_dir = edge_A_2 - edge_A_1;
+
+ real_t fraction_1 = (-b - sqrtterm) / (2.0 * a);
+ if ((fraction_1 > 0.0) && (fraction_1 < 1.0)) {
+ Vector3 face_point_1 = edge_A_1 + fraction_1 * edge_dir;
+ ERR_FAIL_COND(num_points >= max_clip);
+ contact_points[num_points] = face_point_1;
+ ++num_points;
+ }
+
+ real_t fraction_2 = (-b + sqrtterm) / (2.0 * a);
+ if ((fraction_2 > 0.0) && (fraction_2 < 1.0) && !Math::is_equal_approx(fraction_1, fraction_2)) {
+ Vector3 face_point_2 = edge_A_1 + fraction_2 * edge_dir;
+ ERR_FAIL_COND(num_points >= max_clip);
+ contact_points[num_points] = face_point_2;
+ ++num_points;
+ }
+ }
+ }
+
+ // Generate contact points.
+ for (int i = 0; i < num_points; i++) {
+ const Vector3 &contact_point_A = contact_points[i];
+
+ real_t d = circle_plane.distance_to(contact_point_A);
+ Vector3 closest_B = contact_point_A - circle_plane.normal * d;
+
+ if (p_callback->normal.dot(contact_point_A) >= p_callback->normal.dot(closest_B)) {
+ continue;
+ }
+
+ p_callback->call(contact_point_A, closest_B);
+ }
+}
+
static void _generate_contacts_face_face(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND(p_point_count_A < 2);
@@ -280,7 +359,7 @@ static void _generate_contacts_face_face(const Vector3 *p_points_A, int p_point_
static void _generate_contacts_face_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
- ERR_FAIL_COND(p_point_count_A < 2);
+ ERR_FAIL_COND(p_point_count_A < 3);
ERR_FAIL_COND(p_point_count_B != 3);
#endif
@@ -288,150 +367,60 @@ static void _generate_contacts_face_circle(const Vector3 *p_points_A, int p_poin
Vector3 circle_B_line_1 = p_points_B[1] - circle_B_pos;
Vector3 circle_B_line_2 = p_points_B[2] - circle_B_pos;
- real_t circle_B_radius = circle_B_line_1.length();
+ // Clip face with circle segments.
+ static const int circle_segments = 8;
+ Vector3 circle_points[circle_segments];
+
+ real_t angle_delta = 2.0 * Math_PI / circle_segments;
+
+ for (int i = 0; i < circle_segments; ++i) {
+ Vector3 point_pos = circle_B_pos;
+ point_pos += circle_B_line_1 * Math::cos(i * angle_delta);
+ point_pos += circle_B_line_2 * Math::sin(i * angle_delta);
+ circle_points[i] = point_pos;
+ }
+
+ _generate_contacts_face_face(p_points_A, p_point_count_A, circle_points, circle_segments, p_callback);
+
+ // Clip face with circle plane.
Vector3 circle_B_normal = circle_B_line_1.cross(circle_B_line_2).normalized();
Plane circle_plane(circle_B_pos, circle_B_normal);
- bool edge = (p_point_count_A == 2);
-
static const int max_clip = 32;
Vector3 contact_points[max_clip];
int num_points = 0;
- // Clip edges with circle.
for (int i = 0; i < p_point_count_A; i++) {
int i_n = (i + 1) % p_point_count_A;
- // Project edge point in circle plane.
- const Vector3 &edge_A_1 = p_points_A[i];
- Vector3 proj_point_1 = circle_plane.project(edge_A_1);
+ const Vector3 &edge0_A = p_points_A[i];
+ const Vector3 &edge1_A = p_points_A[i_n];
- Vector3 dist_vec = proj_point_1 - circle_B_pos;
- real_t dist_sq = dist_vec.length_squared();
+ real_t dist0 = circle_plane.distance_to(edge0_A);
+ real_t dist1 = circle_plane.distance_to(edge1_A);
- // Point 1 is inside disk, add as contact point.
- if (dist_sq <= circle_B_radius * circle_B_radius) {
- //p_callback->call(edge_A_1, proj_point_1);
+ // First point in front of plane, generate contact point.
+ if (dist0 * circle_plane.d >= 0) {
ERR_FAIL_COND(num_points >= max_clip);
- contact_points[num_points] = edge_A_1;
+ contact_points[num_points] = edge0_A;
++num_points;
}
- // No need to test point 2 now, as it will be part of the next edge.
-
- if (edge && i > 0) {
- // Done with testing the only two points.
- break;
- }
- // Project edge point in circle plane.
- const Vector3 &edge_A_2 = p_points_A[i_n];
- Vector3 proj_point_2 = circle_plane.project(edge_A_2);
+ // Points on different sides, generate contact point.
+ if (dist0 * dist1 < 0) {
+ // calculate intersection
+ Vector3 rel = edge1_A - edge0_A;
+ real_t den = circle_plane.normal.dot(rel);
+ real_t dist = -(circle_plane.normal.dot(edge0_A) - circle_plane.d) / den;
+ Vector3 inters = edge0_A + rel * dist;
- Vector3 line_vec = proj_point_2 - proj_point_1;
- real_t line_length_sq = line_vec.length_squared();
-
- // Create a quadratic formula of the form ax^2 + bx + c = 0
- real_t a, b, c;
-
- a = line_length_sq;
- b = 2.0 * dist_vec.dot(line_vec);
- c = dist_sq - circle_B_radius * circle_B_radius;
-
- // Solve for t.
- real_t sqrtterm = b * b - 4.0 * a * c;
-
- // If the term we intend to square root is less than 0 then the answer won't be real,
- // so the line doesn't intersect.
- if (sqrtterm < 0) {
- continue;
- }
-
- sqrtterm = Math::sqrt(sqrtterm);
-
- Vector3 edge_dir = edge_A_2 - edge_A_1;
-
- real_t fraction_1 = (-b - sqrtterm) / (2.0 * a);
- if ((fraction_1 > 0.0) && (fraction_1 < 1.0)) {
- //Vector3 intersection_1 = proj_point_1 + fraction_1 * line_vec;
- Vector3 face_point_1 = edge_A_1 + fraction_1 * edge_dir;
- //p_callback->call(face_point_1, intersection_1);
- ERR_FAIL_COND(num_points >= max_clip);
- contact_points[num_points] = face_point_1;
- ++num_points;
- }
-
- real_t fraction_2 = (-b + sqrtterm) / (2.0 * a);
- if ((fraction_2 > 0.0) && (fraction_2 < 1.0) && !Math::is_equal_approx(fraction_1, fraction_2)) {
- //Vector3 intersection_2 = proj_point_1 + fraction_2 * line_vec;
- Vector3 face_point_2 = edge_A_1 + fraction_2 * edge_dir;
- //p_callback->call(face_point_2, intersection_2);
ERR_FAIL_COND(num_points >= max_clip);
- contact_points[num_points] = face_point_2;
+ contact_points[num_points] = inters;
++num_points;
}
}
- // In case of a face, add extra contact points for proper support.
- if (!edge) {
- Plane plane_A(p_points_A[0], p_points_A[1], p_points_A[2]);
-
- if (num_points < 3) {
- if (num_points == 0) {
- // Use 3 arbitrary equidistant points from the circle.
- for (int i = 0; i < 3; ++i) {
- Vector3 circle_point = circle_B_pos;
- circle_point += circle_B_line_1 * Math::cos(2.0 * Math_PI * i / 3.0);
- circle_point += circle_B_line_2 * Math::sin(2.0 * Math_PI * i / 3.0);
-
- Vector3 face_point = plane_A.project(circle_point);
-
- contact_points[num_points] = face_point;
- ++num_points;
- }
- } else if (num_points == 1) {
- Vector3 line_center = circle_B_pos - contact_points[0];
- Vector3 line_tangent = line_center.cross(plane_A.normal);
-
- Vector3 dir = line_tangent.cross(plane_A.normal).normalized();
- if (line_center.dot(dir) > 0.0) {
- // Use 2 equidistant points on the circle inside the face.
- line_center.normalize();
- line_tangent.normalize();
- for (int i = 0; i < 2; ++i) {
- Vector3 circle_point = circle_B_pos;
- circle_point -= line_center * circle_B_radius * Math::cos(2.0 * Math_PI * (i + 1) / 3.0);
- circle_point += line_tangent * circle_B_radius * Math::sin(2.0 * Math_PI * (i + 1) / 3.0);
-
- Vector3 face_point = plane_A.project(circle_point);
-
- contact_points[num_points] = face_point;
- ++num_points;
- }
- }
- // Otherwise the circle touches an edge from the outside, no extra contact point.
- } else { // if (num_points == 2)
- // Use equidistant 3rd point on the circle inside the face.
- Vector3 contacts_line = contact_points[1] - contact_points[0];
- Vector3 dir = contacts_line.cross(plane_A.normal).normalized();
-
- Vector3 circle_point = contact_points[0] + 0.5 * contacts_line;
- Vector3 line_center = (circle_B_pos - circle_point);
-
- if (line_center.dot(dir) > 0.0) {
- circle_point += dir * (line_center.length() + circle_B_radius);
- } else {
- circle_point += dir * (circle_B_radius - line_center.length());
- }
-
- Vector3 face_point = plane_A.project(circle_point);
-
- contact_points[num_points] = face_point;
- ++num_points;
- }
- }
- }
-
// Generate contact points.
for (int i = 0; i < num_points; i++) {
const Vector3 &contact_point_A = contact_points[i];
@@ -567,7 +556,7 @@ static void _generate_contacts_from_supports(const Vector3 *p_points_A, int p_po
nullptr,
_generate_contacts_edge_edge,
_generate_contacts_face_face,
- _generate_contacts_face_circle,
+ _generate_contacts_edge_circle,
},
{
nullptr,
diff --git a/servers/rendering/renderer_rd/shaders/skeleton.glsl b/servers/rendering/renderer_rd/shaders/skeleton.glsl
index b19f5a9ad3..d675e548d7 100644
--- a/servers/rendering/renderer_rd/shaders/skeleton.glsl
+++ b/servers/rendering/renderer_rd/shaders/skeleton.glsl
@@ -100,7 +100,7 @@ void main() {
for (uint i = 0; i < params.blend_shape_count; i++) {
float w = blend_shape_weights.data[i];
- if (w > 0.0001) {
+ if ((w < 0.0001) || (w > 0.0001)) {
uint base_offset = (params.vertex_count * i + index) * params.vertex_stride;
blend_vertex += uintBitsToFloat(uvec3(src_blend_shapes.data[base_offset + 0], src_blend_shapes.data[base_offset + 1], src_blend_shapes.data[base_offset + 2])) * w;