diff options
Diffstat (limited to 'servers/rendering/renderer_rd')
-rw-r--r-- | servers/rendering/renderer_rd/effects_rd.cpp | 577 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/effects_rd.h | 159 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/renderer_scene_render_forward.cpp | 4 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/renderer_scene_render_rd.cpp | 174 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/renderer_scene_render_rd.h | 29 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/shaders/SCsub | 4 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/shaders/ssao.glsl | 606 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/shaders/ssao_blur.glsl | 245 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/shaders/ssao_downsample.glsl | 206 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/shaders/ssao_importance_map.glsl | 126 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/shaders/ssao_interleave.glsl | 119 | ||||
-rw-r--r-- | servers/rendering/renderer_rd/shaders/ssao_minify.glsl | 45 |
12 files changed, 1714 insertions, 580 deletions
diff --git a/servers/rendering/renderer_rd/effects_rd.cpp b/servers/rendering/renderer_rd/effects_rd.cpp index cbb000cb8c..b33255b54b 100644 --- a/servers/rendering/renderer_rd/effects_rd.cpp +++ b/servers/rendering/renderer_rd/effects_rd.cpp @@ -31,6 +31,7 @@ #include "effects_rd.h" #include "core/config/project_settings.h" +#include "core/math/math_defs.h" #include "core/os/os.h" #include "thirdparty/misc/cubemap_coeffs.h" @@ -125,6 +126,33 @@ RID EffectsRD::_get_compute_uniform_set_from_texture(RID p_texture, bool p_use_m return uniform_set; } +RID EffectsRD::_get_compute_uniform_set_from_texture_and_sampler(RID p_texture, RID p_sampler) { + TextureSamplerPair tsp; + tsp.texture = p_texture; + tsp.sampler = p_sampler; + + if (texture_sampler_to_compute_uniform_set_cache.has(tsp)) { + RID uniform_set = texture_sampler_to_compute_uniform_set_cache[tsp]; + if (RD::get_singleton()->uniform_set_is_valid(uniform_set)) { + return uniform_set; + } + } + + Vector<RD::Uniform> uniforms; + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE; + u.binding = 0; + u.ids.push_back(p_sampler); + u.ids.push_back(p_texture); + uniforms.push_back(u); + //any thing with the same configuration (one texture in binding 0 for set 0), is good + RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, ssao.blur_shader.version_get_shader(ssao.blur_shader_version, 0), 0); + + texture_sampler_to_compute_uniform_set_cache[tsp] = uniform_set; + + return uniform_set; +} + RID EffectsRD::_get_compute_uniform_set_from_texture_pair(RID p_texture1, RID p_texture2, bool p_use_mipmaps) { TexturePair tp; tp.texture1 = p_texture1; @@ -951,157 +979,345 @@ void EffectsRD::bokeh_dof(RID p_base_texture, RID p_depth_texture, const Size2i RD::get_singleton()->compute_list_end(); } -void EffectsRD::generate_ssao(RID p_depth_buffer, RID p_normal_buffer, const Size2i &p_depth_buffer_size, RID p_depth_mipmaps_texture, const Vector<RID> &depth_mipmaps, RID p_ao1, bool p_half_size, RID p_ao2, RID p_upscale_buffer, float p_intensity, float p_radius, float p_bias, const CameraMatrix &p_projection, RS::EnvironmentSSAOQuality p_quality, RS::EnvironmentSSAOBlur p_blur, float p_edge_sharpness) { - //minify first - ssao.minify_push_constant.orthogonal = p_projection.is_orthogonal(); - ssao.minify_push_constant.z_near = p_projection.get_z_near(); - ssao.minify_push_constant.z_far = p_projection.get_z_far(); - ssao.minify_push_constant.pixel_size[0] = 1.0 / p_depth_buffer_size.x; - ssao.minify_push_constant.pixel_size[1] = 1.0 / p_depth_buffer_size.y; - ssao.minify_push_constant.source_size[0] = p_depth_buffer_size.x; - ssao.minify_push_constant.source_size[1] = p_depth_buffer_size.y; +void EffectsRD::gather_ssao(RD::ComputeListID p_compute_list, const Vector<RID> p_ao_slices, const SSAOSettings &p_settings, bool p_adaptive_base_pass) { + RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, ssao.gather_uniform_set, 0); + if ((p_settings.quality == RS::ENV_SSAO_QUALITY_ULTRA) && !p_adaptive_base_pass) { + RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, ssao.importance_map_uniform_set, 1); + } + + for (int i = 0; i < 4; i++) { + if ((p_settings.quality == RS::ENV_SSAO_QUALITY_VERY_LOW) && ((i == 1) || (i == 2))) { + continue; + } + + ssao.gather_push_constant.pass_coord_offset[0] = i % 2; + ssao.gather_push_constant.pass_coord_offset[1] = i / 2; + ssao.gather_push_constant.pass_uv_offset[0] = ((i % 2) - 0.0) / p_settings.screen_size.x; + ssao.gather_push_constant.pass_uv_offset[1] = ((i / 2) - 0.0) / p_settings.screen_size.y; + ssao.gather_push_constant.pass = i; + RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, _get_uniform_set_from_image(p_ao_slices[i]), 2); + RD::get_singleton()->compute_list_set_push_constant(p_compute_list, &ssao.gather_push_constant, sizeof(SSAOGatherPushConstant)); + + int x_groups = ((p_settings.screen_size.x >> (p_settings.half_size ? 2 : 1)) - 1) / 8 + 1; + int y_groups = ((p_settings.screen_size.y >> (p_settings.half_size ? 2 : 1)) - 1) / 8 + 1; + RD::get_singleton()->compute_list_dispatch(p_compute_list, x_groups, y_groups, 1); + } + RD::get_singleton()->compute_list_add_barrier(p_compute_list); +} + +void EffectsRD::generate_ssao(RID p_depth_buffer, RID p_normal_buffer, RID p_depth_mipmaps_texture, const Vector<RID> &depth_mipmaps, RID p_ao, const Vector<RID> p_ao_slices, RID p_ao_pong, const Vector<RID> p_ao_pong_slices, RID p_upscale_buffer, RID p_importance_map, RID p_importance_map_pong, const CameraMatrix &p_projection, const SSAOSettings &p_settings, bool p_invalidate_uniform_sets) { RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); /* FIRST PASS */ - // Minify the depth buffer. - - for (int i = 0; i < depth_mipmaps.size(); i++) { - if (i == 0) { - RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_MINIFY_FIRST]); - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_depth_buffer), 0); - } else { - if (i == 1) { - RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_MINIFY_MIPMAP]); + // Downsample and deinterleave the depth buffer. + { + if (p_invalidate_uniform_sets) { + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 0; + u.ids.push_back(depth_mipmaps[1]); + uniforms.push_back(u); } + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 1; + u.ids.push_back(depth_mipmaps[2]); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 2; + u.ids.push_back(depth_mipmaps[3]); + uniforms.push_back(u); + } + ssao.downsample_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, ssao.downsample_shader.version_get_shader(ssao.downsample_shader_version, 2), 2); + } + + float depth_linearize_mul = -p_projection.matrix[3][2]; + float depth_linearize_add = p_projection.matrix[2][2]; + if (depth_linearize_mul * depth_linearize_add < 0) { + depth_linearize_add = -depth_linearize_add; + } + + ssao.downsample_push_constant.orthogonal = p_projection.is_orthogonal(); + ssao.downsample_push_constant.z_near = depth_linearize_mul; + ssao.downsample_push_constant.z_far = depth_linearize_add; + if (ssao.downsample_push_constant.orthogonal) { + ssao.downsample_push_constant.z_near = p_projection.get_z_near(); + ssao.downsample_push_constant.z_far = p_projection.get_z_far(); + } + ssao.downsample_push_constant.pixel_size[0] = 1.0 / p_settings.screen_size.x; + ssao.downsample_push_constant.pixel_size[1] = 1.0 / p_settings.screen_size.y; + ssao.downsample_push_constant.radius_sq = p_settings.radius * p_settings.radius; + + int downsample_pipeline = SSAO_DOWNSAMPLE; + if (p_settings.quality == RS::ENV_SSAO_QUALITY_VERY_LOW) { + downsample_pipeline = SSAO_DOWNSAMPLE_HALF; + } else if (p_settings.quality > RS::ENV_SSAO_QUALITY_MEDIUM) { + downsample_pipeline = SSAO_DOWNSAMPLE_MIPMAP; + } - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(depth_mipmaps[i - 1]), 0); + if (p_settings.half_size) { + downsample_pipeline++; } - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(depth_mipmaps[i]), 1); - RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.minify_push_constant, sizeof(SSAOMinifyPushConstant)); - // shrink after set - ssao.minify_push_constant.source_size[0] = MAX(1, ssao.minify_push_constant.source_size[0] >> 1); - ssao.minify_push_constant.source_size[1] = MAX(1, ssao.minify_push_constant.source_size[1] >> 1); + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[downsample_pipeline]); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_depth_buffer), 0); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(depth_mipmaps[0]), 1); + if (p_settings.quality > RS::ENV_SSAO_QUALITY_MEDIUM) { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, ssao.downsample_uniform_set, 2); + } + RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.downsample_push_constant, sizeof(SSAODownsamplePushConstant)); - int x_groups = (ssao.minify_push_constant.source_size[0] - 1) / 8 + 1; - int y_groups = (ssao.minify_push_constant.source_size[1] - 1) / 8 + 1; + int x_groups = (MAX(1, p_settings.screen_size.x >> (p_settings.half_size ? 2 : 1)) - 1) / 8 + 1; + int y_groups = (MAX(1, p_settings.screen_size.y >> (p_settings.half_size ? 2 : 1)) - 1) / 8 + 1; RD::get_singleton()->compute_list_dispatch(compute_list, x_groups, y_groups, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); } /* SECOND PASS */ - // Gather samples - - RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[(SSAO_GATHER_LOW + p_quality) + (p_half_size ? 4 : 0)]); - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_depth_mipmaps_texture), 0); - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_ao1), 1); - if (!p_half_size) { - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_depth_buffer), 2); - } - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_normal_buffer), 3); - - ssao.gather_push_constant.screen_size[0] = p_depth_buffer_size.x; - ssao.gather_push_constant.screen_size[1] = p_depth_buffer_size.y; - if (p_half_size) { - ssao.gather_push_constant.screen_size[0] >>= 1; - ssao.gather_push_constant.screen_size[1] >>= 1; - } - ssao.gather_push_constant.z_far = p_projection.get_z_far(); - ssao.gather_push_constant.z_near = p_projection.get_z_near(); - ssao.gather_push_constant.orthogonal = p_projection.is_orthogonal(); - - ssao.gather_push_constant.proj_info[0] = -2.0f / (ssao.gather_push_constant.screen_size[0] * p_projection.matrix[0][0]); - ssao.gather_push_constant.proj_info[1] = -2.0f / (ssao.gather_push_constant.screen_size[1] * p_projection.matrix[1][1]); - ssao.gather_push_constant.proj_info[2] = (1.0f - p_projection.matrix[0][2]) / p_projection.matrix[0][0]; - ssao.gather_push_constant.proj_info[3] = (1.0f + p_projection.matrix[1][2]) / p_projection.matrix[1][1]; - //ssao.gather_push_constant.proj_info[2] = (1.0f - p_projection.matrix[0][2]) / p_projection.matrix[0][0]; - //ssao.gather_push_constant.proj_info[3] = -(1.0f + p_projection.matrix[1][2]) / p_projection.matrix[1][1]; - - ssao.gather_push_constant.radius = p_radius; - - ssao.gather_push_constant.proj_scale = float(p_projection.get_pixels_per_meter(ssao.gather_push_constant.screen_size[0])); - ssao.gather_push_constant.bias = p_bias; - ssao.gather_push_constant.intensity_div_r6 = p_intensity / pow(p_radius, 6.0f); - - ssao.gather_push_constant.pixel_size[0] = 1.0 / p_depth_buffer_size.x; - ssao.gather_push_constant.pixel_size[1] = 1.0 / p_depth_buffer_size.y; - - RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.gather_push_constant, sizeof(SSAOGatherPushConstant)); + // Sample SSAO + { + ssao.gather_push_constant.screen_size[0] = p_settings.screen_size.x; + ssao.gather_push_constant.screen_size[1] = p_settings.screen_size.y; + + ssao.gather_push_constant.half_screen_pixel_size[0] = 1.0 / p_settings.half_screen_size.x; + ssao.gather_push_constant.half_screen_pixel_size[1] = 1.0 / p_settings.half_screen_size.y; + float tan_half_fov_x = 1.0 / p_projection.matrix[0][0]; + float tan_half_fov_y = 1.0 / p_projection.matrix[1][1]; + ssao.gather_push_constant.NDC_to_view_mul[0] = tan_half_fov_x * 2.0; + ssao.gather_push_constant.NDC_to_view_mul[1] = tan_half_fov_y * -2.0; + ssao.gather_push_constant.NDC_to_view_add[0] = tan_half_fov_x * -1.0; + ssao.gather_push_constant.NDC_to_view_add[1] = tan_half_fov_y; + ssao.gather_push_constant.is_orthogonal = p_projection.is_orthogonal(); + + ssao.gather_push_constant.half_screen_pixel_size_x025[0] = ssao.gather_push_constant.half_screen_pixel_size[0] * 0.25; + ssao.gather_push_constant.half_screen_pixel_size_x025[1] = ssao.gather_push_constant.half_screen_pixel_size[1] * 0.25; + + float radius_near_limit = (p_settings.radius * 1.2f); + if (p_settings.quality <= RS::ENV_SSAO_QUALITY_LOW) { + radius_near_limit *= 1.50f; + + if (p_settings.quality == RS::ENV_SSAO_QUALITY_VERY_LOW) { + ssao.gather_push_constant.radius *= 0.8f; + } + if (p_settings.half_size) { + ssao.gather_push_constant.radius *= 0.5f; + } + } + radius_near_limit /= tan_half_fov_y; + ssao.gather_push_constant.radius = p_settings.radius; + ssao.gather_push_constant.intensity = p_settings.intensity; + ssao.gather_push_constant.shadow_power = p_settings.power; + ssao.gather_push_constant.shadow_clamp = 0.98; + ssao.gather_push_constant.fade_out_mul = -1.0 / (p_settings.fadeout_to - p_settings.fadeout_from); + ssao.gather_push_constant.fade_out_add = p_settings.fadeout_from / (p_settings.fadeout_to - p_settings.fadeout_from) + 1.0; + ssao.gather_push_constant.horizon_angle_threshold = p_settings.horizon; + ssao.gather_push_constant.inv_radius_near_limit = 1.0f / radius_near_limit; + ssao.gather_push_constant.neg_inv_radius = -1.0 / ssao.gather_push_constant.radius; + + ssao.gather_push_constant.load_counter_avg_div = 9.0 / float((p_settings.quarter_size.x) * (p_settings.quarter_size.y) * 255); + ssao.gather_push_constant.adaptive_sample_limit = p_settings.adaptive_target; + + ssao.gather_push_constant.detail_intensity = p_settings.detail; + ssao.gather_push_constant.quality = MAX(0, p_settings.quality - 1); + ssao.gather_push_constant.size_multiplier = p_settings.half_size ? 2 : 1; + + if (p_invalidate_uniform_sets) { + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE; + u.binding = 0; + u.ids.push_back(ssao.mirror_sampler); + u.ids.push_back(p_depth_mipmaps_texture); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 1; + u.ids.push_back(p_normal_buffer); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.binding = 2; + u.ids.push_back(ssao.gather_constants_buffer); + uniforms.push_back(u); + } + ssao.gather_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, ssao.gather_shader.version_get_shader(ssao.gather_shader_version, 0), 0); + } - int x_groups = (ssao.gather_push_constant.screen_size[0] - 1) / 8 + 1; - int y_groups = (ssao.gather_push_constant.screen_size[1] - 1) / 8 + 1; + if (p_invalidate_uniform_sets) { + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 0; + u.ids.push_back(p_ao_pong); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE; + u.binding = 1; + u.ids.push_back(default_sampler); + u.ids.push_back(p_importance_map); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 2; + u.ids.push_back(ssao.importance_map_load_counter); + uniforms.push_back(u); + } + ssao.importance_map_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, ssao.gather_shader.version_get_shader(ssao.gather_shader_version, 2), 1); + } - RD::get_singleton()->compute_list_dispatch(compute_list, x_groups, y_groups, 1); - RD::get_singleton()->compute_list_add_barrier(compute_list); + if (p_settings.quality == RS::ENV_SSAO_QUALITY_ULTRA) { + ssao.importance_map_push_constant.half_screen_pixel_size[0] = 1.0 / p_settings.half_screen_size.x; + ssao.importance_map_push_constant.half_screen_pixel_size[1] = 1.0 / p_settings.half_screen_size.y; + ssao.importance_map_push_constant.intensity = p_settings.intensity; + ssao.importance_map_push_constant.power = p_settings.power; + //base pass + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_GATHER_BASE]); + gather_ssao(compute_list, p_ao_pong_slices, p_settings, true); + //generate importance map + int x_groups = (p_settings.quarter_size.x - 1) / 8 + 1; + int y_groups = (p_settings.quarter_size.y - 1) / 8 + 1; + + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_GENERATE_IMPORTANCE_MAP]); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_ao_pong), 0); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_importance_map), 1); + RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.importance_map_push_constant, sizeof(SSAOImportanceMapPushConstant)); + RD::get_singleton()->compute_list_dispatch(compute_list, x_groups, y_groups, 1); + RD::get_singleton()->compute_list_add_barrier(compute_list); + //process importance map A + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_PROCESS_IMPORTANCE_MAPA]); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_importance_map), 0); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_importance_map_pong), 1); + RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.importance_map_push_constant, sizeof(SSAOImportanceMapPushConstant)); + RD::get_singleton()->compute_list_dispatch(compute_list, x_groups, y_groups, 1); + RD::get_singleton()->compute_list_add_barrier(compute_list); + //process Importance Map B + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_PROCESS_IMPORTANCE_MAPB]); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_importance_map_pong), 0); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_importance_map), 1); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, ssao.counter_uniform_set, 2); + RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.importance_map_push_constant, sizeof(SSAOImportanceMapPushConstant)); + RD::get_singleton()->compute_list_dispatch(compute_list, x_groups, y_groups, 1); + RD::get_singleton()->compute_list_add_barrier(compute_list); - /* THIRD PASS */ - // Blur horizontal - - ssao.blur_push_constant.edge_sharpness = p_edge_sharpness; - ssao.blur_push_constant.filter_scale = p_blur; - ssao.blur_push_constant.screen_size[0] = ssao.gather_push_constant.screen_size[0]; - ssao.blur_push_constant.screen_size[1] = ssao.gather_push_constant.screen_size[1]; - ssao.blur_push_constant.z_far = p_projection.get_z_far(); - ssao.blur_push_constant.z_near = p_projection.get_z_near(); - ssao.blur_push_constant.orthogonal = p_projection.is_orthogonal(); - ssao.blur_push_constant.axis[0] = 1; - ssao.blur_push_constant.axis[1] = 0; - - if (p_blur != RS::ENV_SSAO_BLUR_DISABLED) { - RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[p_half_size ? SSAO_BLUR_PASS_HALF : SSAO_BLUR_PASS]); - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_ao1), 0); - if (p_half_size) { - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_depth_mipmaps_texture), 1); + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_GATHER_ADAPTIVE]); } else { - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_depth_buffer), 1); + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_GATHER]); } - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_ao2), 3); - - RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.blur_push_constant, sizeof(SSAOBlurPushConstant)); - RD::get_singleton()->compute_list_dispatch(compute_list, x_groups, y_groups, 1); - RD::get_singleton()->compute_list_add_barrier(compute_list); - - /* THIRD PASS */ - // Blur vertical - - ssao.blur_push_constant.axis[0] = 0; - ssao.blur_push_constant.axis[1] = 1; + gather_ssao(compute_list, p_ao_slices, p_settings, false); + } - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_ao2), 0); - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_ao1), 3); + // /* THIRD PASS */ + // // Blur + // + { + ssao.blur_push_constant.edge_sharpness = 1.0 - p_settings.sharpness; + ssao.blur_push_constant.half_screen_pixel_size[0] = 1.0 / p_settings.half_screen_size.x; + ssao.blur_push_constant.half_screen_pixel_size[1] = 1.0 / p_settings.half_screen_size.y; + + int blur_passes = p_settings.quality > RS::ENV_SSAO_QUALITY_VERY_LOW ? p_settings.blur_passes : 1; + + for (int pass = 0; pass < blur_passes; pass++) { + int blur_pipeline = SSAO_BLUR_PASS; + if (p_settings.quality > RS::ENV_SSAO_QUALITY_VERY_LOW) { + if (pass < blur_passes - 2) { + blur_pipeline = SSAO_BLUR_PASS_WIDE; + } + blur_pipeline = SSAO_BLUR_PASS_SMART; + } - RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.blur_push_constant, sizeof(SSAOBlurPushConstant)); + for (int i = 0; i < 4; i++) { + if ((p_settings.quality == RS::ENV_SSAO_QUALITY_VERY_LOW) && ((i == 1) || (i == 2))) { + continue; + } + + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[blur_pipeline]); + if (pass % 2 == 0) { + if (p_settings.quality == RS::ENV_SSAO_QUALITY_VERY_LOW) { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_ao_slices[i]), 0); + } else { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture_and_sampler(p_ao_slices[i], ssao.mirror_sampler), 0); + } + + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_ao_pong_slices[i]), 1); + } else { + if (p_settings.quality == RS::ENV_SSAO_QUALITY_VERY_LOW) { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_ao_pong_slices[i]), 0); + } else { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture_and_sampler(p_ao_pong_slices[i], ssao.mirror_sampler), 0); + } + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_ao_slices[i]), 1); + } + RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.blur_push_constant, sizeof(SSAOBlurPushConstant)); + + int x_groups = ((p_settings.screen_size.x >> (p_settings.half_size ? 2 : 1)) - 1) / 8 + 1; + int y_groups = ((p_settings.screen_size.y >> (p_settings.half_size ? 2 : 1)) - 1) / 8 + 1; + + RD::get_singleton()->compute_list_dispatch(compute_list, x_groups, y_groups, 1); + } - RD::get_singleton()->compute_list_dispatch(compute_list, x_groups, y_groups, 1); + if (p_settings.quality > RS::ENV_SSAO_QUALITY_VERY_LOW) { + RD::get_singleton()->compute_list_add_barrier(compute_list); + } + } } - if (p_half_size) { //must upscale - /* FOURTH PASS */ - // upscale if half size - //back to full size - ssao.blur_push_constant.screen_size[0] = p_depth_buffer_size.x; - ssao.blur_push_constant.screen_size[1] = p_depth_buffer_size.y; + /* FOURTH PASS */ + // Interleave buffers + // back to full size + { + ssao.interleave_push_constant.inv_sharpness = 1.0 - p_settings.sharpness; + ssao.interleave_push_constant.pixel_size[0] = 1.0 / p_settings.screen_size.x; + ssao.interleave_push_constant.pixel_size[1] = 1.0 / p_settings.screen_size.y; + ssao.interleave_push_constant.size_modifier = uint32_t(p_settings.half_size ? 4 : 2); + + int interleave_pipeline = SSAO_INTERLEAVE_HALF; + if (p_settings.quality == RS::ENV_SSAO_QUALITY_LOW) { + interleave_pipeline = SSAO_INTERLEAVE; + } else if (p_settings.quality >= RS::ENV_SSAO_QUALITY_MEDIUM) { + interleave_pipeline = SSAO_INTERLEAVE_SMART; + } - RD::get_singleton()->compute_list_add_barrier(compute_list); - RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_BLUR_UPSCALE]); + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[interleave_pipeline]); - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_ao1), 0); - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_upscale_buffer), 3); - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_depth_buffer), 1); - RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_depth_mipmaps_texture), 2); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_uniform_set_from_image(p_upscale_buffer), 0); + if (p_settings.quality > RS::ENV_SSAO_QUALITY_VERY_LOW && p_settings.blur_passes % 2 == 0) { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_ao), 1); + } else { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_texture(p_ao_pong), 1); + } - RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.blur_push_constant, sizeof(SSAOBlurPushConstant)); //not used but set anyway + RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.interleave_push_constant, sizeof(SSAOInterleavePushConstant)); - x_groups = (p_depth_buffer_size.x - 1) / 8 + 1; - y_groups = (p_depth_buffer_size.y - 1) / 8 + 1; + int x_groups = (p_settings.screen_size.x - 1) / 8 + 1; + int y_groups = (p_settings.screen_size.y - 1) / 8 + 1; RD::get_singleton()->compute_list_dispatch(compute_list, x_groups, y_groups, 1); + RD::get_singleton()->compute_list_add_barrier(compute_list); } RD::get_singleton()->compute_list_end(); + + int zero[1] = { 0 }; + RD::get_singleton()->buffer_update(ssao.importance_map_load_counter, 0, sizeof(uint32_t), &zero, false); } void EffectsRD::roughness_limit(RID p_source_normal, RID p_roughness, const Size2i &p_size, float p_curve) { @@ -1486,57 +1702,142 @@ EffectsRD::EffectsRD() { { // Initialize ssao + + RD::SamplerState sampler; + sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST; + sampler.min_filter = RD::SAMPLER_FILTER_NEAREST; + sampler.mip_filter = RD::SAMPLER_FILTER_NEAREST; + sampler.repeat_u = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; + sampler.repeat_v = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; + sampler.repeat_w = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; + sampler.max_lod = 4; + + ssao.mirror_sampler = RD::get_singleton()->sampler_create(sampler); + uint32_t pipeline = 0; { Vector<String> ssao_modes; - ssao_modes.push_back("\n#define MINIFY_START\n"); ssao_modes.push_back("\n"); + ssao_modes.push_back("\n#define USE_HALF_SIZE\n"); + ssao_modes.push_back("\n#define GENERATE_MIPS\n"); + ssao_modes.push_back("\n#define GENERATE_MIPS\n#define USE_HALF_SIZE"); + ssao_modes.push_back("\n#define USE_HALF_BUFFERS\n"); + ssao_modes.push_back("\n#define USE_HALF_BUFFERS\n#define USE_HALF_SIZE"); - ssao.minify_shader.initialize(ssao_modes); + ssao.downsample_shader.initialize(ssao_modes); - ssao.minify_shader_version = ssao.minify_shader.version_create(); + ssao.downsample_shader_version = ssao.downsample_shader.version_create(); - for (int i = 0; i <= SSAO_MINIFY_MIPMAP; i++) { - ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.minify_shader.version_get_shader(ssao.minify_shader_version, i)); + for (int i = 0; i <= SSAO_DOWNSAMPLE_HALF_RES_HALF; i++) { + ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.downsample_shader.version_get_shader(ssao.downsample_shader_version, i)); pipeline++; } } { Vector<String> ssao_modes; - ssao_modes.push_back("\n#define SSAO_QUALITY_LOW\n"); + ssao_modes.push_back("\n"); - ssao_modes.push_back("\n#define SSAO_QUALITY_HIGH\n"); - ssao_modes.push_back("\n#define SSAO_QUALITY_ULTRA\n"); - ssao_modes.push_back("\n#define SSAO_QUALITY_LOW\n#define USE_HALF_SIZE\n"); - ssao_modes.push_back("\n#define USE_HALF_SIZE\n"); - ssao_modes.push_back("\n#define SSAO_QUALITY_HIGH\n#define USE_HALF_SIZE\n"); - ssao_modes.push_back("\n#define SSAO_QUALITY_ULTRA\n#define USE_HALF_SIZE\n"); + ssao_modes.push_back("\n#define SSAO_BASE\n"); + ssao_modes.push_back("\n#define ADAPTIVE\n"); ssao.gather_shader.initialize(ssao_modes); ssao.gather_shader_version = ssao.gather_shader.version_create(); - for (int i = SSAO_GATHER_LOW; i <= SSAO_GATHER_ULTRA_HALF; i++) { - ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.gather_shader.version_get_shader(ssao.gather_shader_version, i - SSAO_GATHER_LOW)); + for (int i = SSAO_GATHER; i <= SSAO_GATHER_ADAPTIVE; i++) { + ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.gather_shader.version_get_shader(ssao.gather_shader_version, i - SSAO_GATHER)); pipeline++; } + + ssao.gather_constants_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SSAOGatherConstants)); + SSAOGatherConstants gather_constants; + + const int sub_pass_count = 5; + for (int pass = 0; pass < 4; pass++) { + for (int subPass = 0; subPass < sub_pass_count; subPass++) { + int a = pass; + int b = subPass; + + int spmap[5]{ 0, 1, 4, 3, 2 }; + b = spmap[subPass]; + + float ca, sa; + float angle0 = (float(a) + float(b) / float(sub_pass_count)) * Math_PI * 0.5f; + + ca = Math::cos(angle0); + sa = Math::sin(angle0); + + float scale = 1.0f + (a - 1.5f + (b - (sub_pass_count - 1.0f) * 0.5f) / float(sub_pass_count)) * 0.07f; + + gather_constants.rotation_matrices[pass * 20 + subPass * 4 + 0] = scale * ca; + gather_constants.rotation_matrices[pass * 20 + subPass * 4 + 1] = scale * -sa; + gather_constants.rotation_matrices[pass * 20 + subPass * 4 + 2] = -scale * sa; + gather_constants.rotation_matrices[pass * 20 + subPass * 4 + 3] = -scale * ca; + } + } + + RD::get_singleton()->buffer_update(ssao.gather_constants_buffer, 0, sizeof(SSAOGatherConstants), &gather_constants, false); } { Vector<String> ssao_modes; - ssao_modes.push_back("\n#define MODE_FULL_SIZE\n"); - ssao_modes.push_back("\n"); - ssao_modes.push_back("\n#define MODE_UPSCALE\n"); + ssao_modes.push_back("\n#define GENERATE_MAP\n"); + ssao_modes.push_back("\n#define PROCESS_MAPA\n"); + ssao_modes.push_back("\n#define PROCESS_MAPB\n"); + + ssao.importance_map_shader.initialize(ssao_modes); + + ssao.importance_map_shader_version = ssao.importance_map_shader.version_create(); + + for (int i = SSAO_GENERATE_IMPORTANCE_MAP; i <= SSAO_PROCESS_IMPORTANCE_MAPB; i++) { + ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.importance_map_shader.version_get_shader(ssao.importance_map_shader_version, i - SSAO_GENERATE_IMPORTANCE_MAP)); + + pipeline++; + } + ssao.importance_map_load_counter = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t)); + int zero[1] = { 0 }; + RD::get_singleton()->buffer_update(ssao.importance_map_load_counter, 0, sizeof(uint32_t), &zero, false); + + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 0; + u.ids.push_back(ssao.importance_map_load_counter); + uniforms.push_back(u); + } + ssao.counter_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, ssao.importance_map_shader.version_get_shader(ssao.importance_map_shader_version, 2), 2); + } + { + Vector<String> ssao_modes; + ssao_modes.push_back("\n#define MODE_NON_SMART\n"); + ssao_modes.push_back("\n#define MODE_SMART\n"); + ssao_modes.push_back("\n#define MODE_WIDE\n"); ssao.blur_shader.initialize(ssao_modes); ssao.blur_shader_version = ssao.blur_shader.version_create(); - for (int i = SSAO_BLUR_PASS; i <= SSAO_BLUR_UPSCALE; i++) { + for (int i = SSAO_BLUR_PASS; i <= SSAO_BLUR_PASS_WIDE; i++) { ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.blur_shader.version_get_shader(ssao.blur_shader_version, i - SSAO_BLUR_PASS)); pipeline++; } } + { + Vector<String> ssao_modes; + ssao_modes.push_back("\n#define MODE_NON_SMART\n"); + ssao_modes.push_back("\n#define MODE_SMART\n"); + ssao_modes.push_back("\n#define MODE_HALF\n"); + + ssao.interleave_shader.initialize(ssao_modes); + + ssao.interleave_shader_version = ssao.interleave_shader.version_create(); + for (int i = SSAO_INTERLEAVE; i <= SSAO_INTERLEAVE_HALF; i++) { + ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.interleave_shader.version_get_shader(ssao.interleave_shader_version, i - SSAO_INTERLEAVE)); + + pipeline++; + } + } ERR_FAIL_COND(pipeline != SSAO_MAX); } @@ -1777,6 +2078,10 @@ EffectsRD::~EffectsRD() { RD::get_singleton()->free(index_buffer); //array gets freed as dependency RD::get_singleton()->free(filter.coefficient_buffer); + RD::get_singleton()->free(ssao.mirror_sampler); + RD::get_singleton()->free(ssao.gather_constants_buffer); + RD::get_singleton()->free(ssao.importance_map_load_counter); + bokeh.shader.version_free(bokeh.shader_version); copy.shader.version_free(copy.shader_version); copy_to_fb.shader.version_free(copy_to_fb.shader_version); @@ -1791,7 +2096,9 @@ EffectsRD::~EffectsRD() { specular_merge.shader.version_free(specular_merge.shader_version); ssao.blur_shader.version_free(ssao.blur_shader_version); ssao.gather_shader.version_free(ssao.gather_shader_version); - ssao.minify_shader.version_free(ssao.minify_shader_version); + ssao.downsample_shader.version_free(ssao.downsample_shader_version); + ssao.interleave_shader.version_free(ssao.interleave_shader_version); + ssao.importance_map_shader.version_free(ssao.importance_map_shader_version); ssr.shader.version_free(ssr.shader_version); ssr_filter.shader.version_free(ssr_filter.shader_version); ssr_scale.shader.version_free(ssr_scale.shader_version); diff --git a/servers/rendering/renderer_rd/effects_rd.h b/servers/rendering/renderer_rd/effects_rd.h index 3afc111b9d..8731466dea 100644 --- a/servers/rendering/renderer_rd/effects_rd.h +++ b/servers/rendering/renderer_rd/effects_rd.h @@ -51,7 +51,9 @@ #include "servers/rendering/renderer_rd/shaders/specular_merge.glsl.gen.h" #include "servers/rendering/renderer_rd/shaders/ssao.glsl.gen.h" #include "servers/rendering/renderer_rd/shaders/ssao_blur.glsl.gen.h" -#include "servers/rendering/renderer_rd/shaders/ssao_minify.glsl.gen.h" +#include "servers/rendering/renderer_rd/shaders/ssao_downsample.glsl.gen.h" +#include "servers/rendering/renderer_rd/shaders/ssao_importance_map.glsl.gen.h" +#include "servers/rendering/renderer_rd/shaders/ssao_interleave.glsl.gen.h" #include "servers/rendering/renderer_rd/shaders/subsurface_scattering.glsl.gen.h" #include "servers/rendering/renderer_rd/shaders/tonemap.glsl.gen.h" @@ -288,71 +290,121 @@ class EffectsRD { } bokeh; enum SSAOMode { - SSAO_MINIFY_FIRST, - SSAO_MINIFY_MIPMAP, - SSAO_GATHER_LOW, - SSAO_GATHER_MEDIUM, - SSAO_GATHER_HIGH, - SSAO_GATHER_ULTRA, - SSAO_GATHER_LOW_HALF, - SSAO_GATHER_MEDIUM_HALF, - SSAO_GATHER_HIGH_HALF, - SSAO_GATHER_ULTRA_HALF, + SSAO_DOWNSAMPLE, + SSAO_DOWNSAMPLE_HALF_RES, + SSAO_DOWNSAMPLE_MIPMAP, + SSAO_DOWNSAMPLE_MIPMAP_HALF_RES, + SSAO_DOWNSAMPLE_HALF, + SSAO_DOWNSAMPLE_HALF_RES_HALF, + SSAO_GATHER, + SSAO_GATHER_BASE, + SSAO_GATHER_ADAPTIVE, + SSAO_GENERATE_IMPORTANCE_MAP, + SSAO_PROCESS_IMPORTANCE_MAPA, + SSAO_PROCESS_IMPORTANCE_MAPB, SSAO_BLUR_PASS, - SSAO_BLUR_PASS_HALF, - SSAO_BLUR_UPSCALE, + SSAO_BLUR_PASS_SMART, + SSAO_BLUR_PASS_WIDE, + SSAO_INTERLEAVE, + SSAO_INTERLEAVE_SMART, + SSAO_INTERLEAVE_HALF, SSAO_MAX }; - struct SSAOMinifyPushConstant { + struct SSAODownsamplePushConstant { float pixel_size[2]; float z_far; float z_near; - int32_t source_size[2]; uint32_t orthogonal; - uint32_t pad; + float radius_sq; + uint32_t pad[2]; }; struct SSAOGatherPushConstant { int32_t screen_size[2]; - float z_far; - float z_near; + int pass; + int quality; + + float half_screen_pixel_size[2]; + int size_multiplier; + float detail_intensity; + + float NDC_to_view_mul[2]; + float NDC_to_view_add[2]; + + float pad[2]; + float half_screen_pixel_size_x025[2]; - uint32_t orthogonal; - float intensity_div_r6; float radius; - float bias; + float intensity; + float shadow_power; + float shadow_clamp; - float proj_info[4]; - float pixel_size[2]; - float proj_scale; - uint32_t pad; + float fade_out_mul; + float fade_out_add; + float horizon_angle_threshold; + float inv_radius_near_limit; + + bool is_orthogonal; + float neg_inv_radius; + float load_counter_avg_div; + float adaptive_sample_limit; + + int32_t pass_coord_offset[2]; + float pass_uv_offset[2]; + }; + + struct SSAOGatherConstants { + float rotation_matrices[80]; //5 vec4s * 4 + }; + + struct SSAOImportanceMapPushConstant { + float half_screen_pixel_size[2]; + float intensity; + float power; }; struct SSAOBlurPushConstant { float edge_sharpness; - int32_t filter_scale; - float z_far; - float z_near; - uint32_t orthogonal; - uint32_t pad[3]; - int32_t axis[2]; - int32_t screen_size[2]; + float pad; + float half_screen_pixel_size[2]; + }; + + struct SSAOInterleavePushConstant { + float inv_sharpness; + uint32_t size_modifier; + float pixel_size[2]; }; struct SSAO { - SSAOMinifyPushConstant minify_push_constant; - SsaoMinifyShaderRD minify_shader; - RID minify_shader_version; + SSAODownsamplePushConstant downsample_push_constant; + SsaoDownsampleShaderRD downsample_shader; + RID downsample_shader_version; + RID downsample_uniform_set; SSAOGatherPushConstant gather_push_constant; SsaoShaderRD gather_shader; RID gather_shader_version; + RID gather_uniform_set; + RID gather_constants_buffer; + bool gather_initialized = false; + + SSAOImportanceMapPushConstant importance_map_push_constant; + SsaoImportanceMapShaderRD importance_map_shader; + RID importance_map_shader_version; + RID importance_map_load_counter; + RID importance_map_uniform_set; + RID counter_uniform_set; SSAOBlurPushConstant blur_push_constant; SsaoBlurShaderRD blur_shader; RID blur_shader_version; + SSAOInterleavePushConstant interleave_push_constant; + SsaoInterleaveShaderRD interleave_shader; + RID interleave_shader_version; + + RID mirror_sampler; RID pipelines[SSAO_MAX]; } ssao; @@ -598,13 +650,27 @@ class EffectsRD { } }; + struct TextureSamplerPair { + RID texture; + RID sampler; + _FORCE_INLINE_ bool operator<(const TextureSamplerPair &p_pair) const { + if (texture == p_pair.texture) { + return sampler < p_pair.sampler; + } else { + return texture < p_pair.texture; + } + } + }; + Map<RID, RID> texture_to_compute_uniform_set_cache; Map<TexturePair, RID> texture_pair_to_compute_uniform_set_cache; Map<TexturePair, RID> image_pair_to_compute_uniform_set_cache; + Map<TextureSamplerPair, RID> texture_sampler_to_compute_uniform_set_cache; RID _get_uniform_set_from_image(RID p_texture); RID _get_uniform_set_from_texture(RID p_texture, bool p_use_mipmaps = false); RID _get_compute_uniform_set_from_texture(RID p_texture, bool p_use_mipmaps = false); + RID _get_compute_uniform_set_from_texture_and_sampler(RID p_texture, RID p_sampler); RID _get_compute_uniform_set_from_texture_pair(RID p_texture, RID p_texture2, bool p_use_mipmaps = false); RID _get_compute_uniform_set_from_image_pair(RID p_texture, RID p_texture2); @@ -664,9 +730,30 @@ public: Vector2i texture_size; }; + struct SSAOSettings { + float radius = 1.0; + float intensity = 2.0; + float power = 1.5; + float detail = 0.5; + float horizon = 0.06; + float sharpness = 0.98; + + RS::EnvironmentSSAOQuality quality = RS::ENV_SSAO_QUALITY_MEDIUM; + bool half_size = false; + float adaptive_target = 0.5; + int blur_passes = 2; + float fadeout_from = 50.0; + float fadeout_to = 300.0; + + Size2i screen_size = Size2i(); + Size2i half_screen_size = Size2i(); + Size2i quarter_size = Size2i(); + }; + void tonemapper(RID p_source_color, RID p_dst_framebuffer, const TonemapSettings &p_settings); - void generate_ssao(RID p_depth_buffer, RID p_normal_buffer, const Size2i &p_depth_buffer_size, RID p_depth_mipmaps_texture, const Vector<RID> &depth_mipmaps, RID p_ao1, bool p_half_size, RID p_ao2, RID p_upscale_buffer, float p_intensity, float p_radius, float p_bias, const CameraMatrix &p_projection, RS::EnvironmentSSAOQuality p_quality, RS::EnvironmentSSAOBlur p_blur, float p_edge_sharpness); + void gather_ssao(RD::ComputeListID p_compute_list, const Vector<RID> p_ao_slices, const SSAOSettings &p_settings, bool p_adaptive_base_pass); + void generate_ssao(RID p_depth_buffer, RID p_normal_buffer, RID p_depth_mipmaps_texture, const Vector<RID> &depth_mipmaps, RID p_ao, const Vector<RID> p_ao_slices, RID p_ao_pong, const Vector<RID> p_ao_pong_slices, RID p_upscale_buffer, RID p_importance_map, RID p_importance_map_pong, const CameraMatrix &p_projection, const SSAOSettings &p_settings, bool p_invalidate_uniform_sets); void roughness_limit(RID p_source_normal, RID p_roughness, const Size2i &p_size, float p_curve); void cubemap_downsample(RID p_source_cubemap, RID p_dest_cubemap, const Size2i &p_size); diff --git a/servers/rendering/renderer_rd/renderer_scene_render_forward.cpp b/servers/rendering/renderer_rd/renderer_scene_render_forward.cpp index 93f4b7bc8e..01dd2965c4 100644 --- a/servers/rendering/renderer_rd/renderer_scene_render_forward.cpp +++ b/servers/rendering/renderer_rd/renderer_scene_render_forward.cpp @@ -766,7 +766,7 @@ void RendererSceneRenderForward::_allocate_normal_roughness_texture(RenderBuffer tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tf.width = rb->width; tf.height = rb->height; - tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) { tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; @@ -782,7 +782,7 @@ void RendererSceneRenderForward::_allocate_normal_roughness_texture(RenderBuffer fb.push_back(rb->normal_roughness_buffer); rb->depth_normal_roughness_fb = RD::get_singleton()->framebuffer_create(fb); } else { - tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; + tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; tf.samples = rb->texture_samples; rb->normal_roughness_buffer_msaa = RD::get_singleton()->texture_create(tf, RD::TextureView()); diff --git a/servers/rendering/renderer_rd/renderer_scene_render_rd.cpp b/servers/rendering/renderer_rd/renderer_scene_render_rd.cpp index 4543ced8dc..1d9983a28c 100644 --- a/servers/rendering/renderer_rd/renderer_scene_render_rd.cpp +++ b/servers/rendering/renderer_rd/renderer_scene_render_rd.cpp @@ -3122,7 +3122,7 @@ RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_ro return ssr_roughness_quality; } -void RendererSceneRenderRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) { +void RendererSceneRenderRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); @@ -3133,15 +3133,21 @@ void RendererSceneRenderRD::environment_set_ssao(RID p_env, bool p_enable, float env->ssao_enabled = p_enable; env->ssao_radius = p_radius; env->ssao_intensity = p_intensity; - env->ssao_bias = p_bias; + env->ssao_power = p_power; + env->ssao_detail = p_detail; + env->ssao_horizon = p_horizon; + env->ssao_sharpness = p_sharpness; env->ssao_direct_light_affect = p_light_affect; env->ssao_ao_channel_affect = p_ao_channel_affect; - env->ssao_blur = p_blur; } -void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size) { +void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { ssao_quality = p_quality; ssao_half_size = p_half_size; + ssao_adaptive_target = p_adaptive_target; + ssao_blur_passes = p_blur_passes; + ssao_fadeout_from = p_fadeout_from; + ssao_fadeout_to = p_fadeout_to; } bool RendererSceneRenderRD::environment_is_ssao_enabled(RID p_env) const { @@ -5081,21 +5087,24 @@ void RendererSceneRenderRD::_free_render_buffer_data(RenderBuffers *rb) { rb->luminance.current = RID(); } - if (rb->ssao.ao[0].is_valid()) { + if (rb->ssao.depth.is_valid()) { RD::get_singleton()->free(rb->ssao.depth); - RD::get_singleton()->free(rb->ssao.ao[0]); - if (rb->ssao.ao[1].is_valid()) { - RD::get_singleton()->free(rb->ssao.ao[1]); - } - if (rb->ssao.ao_full.is_valid()) { - RD::get_singleton()->free(rb->ssao.ao_full); - } + RD::get_singleton()->free(rb->ssao.ao_deinterleaved); + RD::get_singleton()->free(rb->ssao.ao_pong); + RD::get_singleton()->free(rb->ssao.ao_final); + + RD::get_singleton()->free(rb->ssao.importance_map[0]); + RD::get_singleton()->free(rb->ssao.importance_map[1]); rb->ssao.depth = RID(); - rb->ssao.ao[0] = RID(); - rb->ssao.ao[1] = RID(); - rb->ssao.ao_full = RID(); + rb->ssao.ao_deinterleaved = RID(); + rb->ssao.ao_pong = RID(); + rb->ssao.ao_final = RID(); + rb->ssao.importance_map[0] = RID(); + rb->ssao.importance_map[1] = RID(); rb->ssao.depth_slices.clear(); + rb->ssao.ao_deinterleaved_slices.clear(); + rb->ssao.ao_pong_slices.clear(); } if (rb->ssr.blur_radius[0].is_valid()) { @@ -5194,64 +5203,133 @@ void RendererSceneRenderRD::_process_ssao(RID p_render_buffers, RID p_environmen RENDER_TIMESTAMP("Process SSAO"); - if (rb->ssao.ao[0].is_valid() && rb->ssao.ao_full.is_valid() != ssao_half_size) { + //TODO clear when settings chenge to or from ultra + if (rb->ssao.ao_final.is_valid() && ssao_using_half_size != ssao_half_size) { RD::get_singleton()->free(rb->ssao.depth); - RD::get_singleton()->free(rb->ssao.ao[0]); - if (rb->ssao.ao[1].is_valid()) { - RD::get_singleton()->free(rb->ssao.ao[1]); - } - if (rb->ssao.ao_full.is_valid()) { - RD::get_singleton()->free(rb->ssao.ao_full); - } + RD::get_singleton()->free(rb->ssao.ao_deinterleaved); + RD::get_singleton()->free(rb->ssao.ao_pong); + RD::get_singleton()->free(rb->ssao.ao_final); + + RD::get_singleton()->free(rb->ssao.importance_map[0]); + RD::get_singleton()->free(rb->ssao.importance_map[1]); rb->ssao.depth = RID(); - rb->ssao.ao[0] = RID(); - rb->ssao.ao[1] = RID(); - rb->ssao.ao_full = RID(); + rb->ssao.ao_deinterleaved = RID(); + rb->ssao.ao_pong = RID(); + rb->ssao.ao_final = RID(); + rb->ssao.importance_map[0] = RID(); + rb->ssao.importance_map[1] = RID(); rb->ssao.depth_slices.clear(); + rb->ssao.ao_deinterleaved_slices.clear(); + rb->ssao.ao_pong_slices.clear(); + } + + int buffer_width; + int buffer_height; + int half_width; + int half_height; + if (ssao_half_size) { + buffer_width = (rb->width + 3) / 4; + buffer_height = (rb->height + 3) / 4; + half_width = (rb->width + 7) / 8; + half_height = (rb->height + 7) / 8; + } else { + buffer_width = (rb->width + 1) / 2; + buffer_height = (rb->height + 1) / 2; + half_width = (rb->width + 3) / 4; + half_height = (rb->height + 3) / 4; } - - if (!rb->ssao.ao[0].is_valid()) { + bool uniform_sets_are_invalid = false; + if (rb->ssao.depth.is_null()) { //allocate depth slices { RD::TextureFormat tf; - tf.format = RD::DATA_FORMAT_R32_SFLOAT; - tf.width = rb->width / 2; - tf.height = rb->height / 2; - tf.mipmaps = Image::get_image_required_mipmaps(tf.width, tf.height, Image::FORMAT_RF) + 1; + tf.format = RD::DATA_FORMAT_R16_SFLOAT; + tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; + tf.width = buffer_width; + tf.height = buffer_height; + tf.mipmaps = 4; + tf.array_layers = 4; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); for (uint32_t i = 0; i < tf.mipmaps; i++) { - RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i); + RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i, RD::TEXTURE_SLICE_2D_ARRAY); rb->ssao.depth_slices.push_back(slice); } } { RD::TextureFormat tf; - tf.format = RD::DATA_FORMAT_R8_UNORM; - tf.width = ssao_half_size ? rb->width / 2 : rb->width; - tf.height = ssao_half_size ? rb->height / 2 : rb->height; + tf.format = RD::DATA_FORMAT_R8G8_UNORM; + tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; + tf.width = buffer_width; + tf.height = buffer_height; + tf.array_layers = 4; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; + rb->ssao.ao_deinterleaved = RD::get_singleton()->texture_create(tf, RD::TextureView()); + for (uint32_t i = 0; i < 4; i++) { + RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_deinterleaved, i, 0); + rb->ssao.ao_deinterleaved_slices.push_back(slice); + } + } + + { + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R8G8_UNORM; + tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; + tf.width = buffer_width; + tf.height = buffer_height; + tf.array_layers = 4; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; - rb->ssao.ao[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); - rb->ssao.ao[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); + rb->ssao.ao_pong = RD::get_singleton()->texture_create(tf, RD::TextureView()); + for (uint32_t i = 0; i < 4; i++) { + RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_pong, i, 0); + rb->ssao.ao_pong_slices.push_back(slice); + } } - if (ssao_half_size) { - //upsample texture + { + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R8_UNORM; + tf.width = half_width; + tf.height = half_height; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; + rb->ssao.importance_map[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); + rb->ssao.importance_map[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); + } + { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = rb->width; tf.height = rb->height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; - rb->ssao.ao_full = RD::get_singleton()->texture_create(tf, RD::TextureView()); + rb->ssao.ao_final = RD::get_singleton()->texture_create(tf, RD::TextureView()); + _render_buffers_uniform_set_changed(p_render_buffers); } - - _render_buffers_uniform_set_changed(p_render_buffers); + ssao_using_half_size = ssao_half_size; + uniform_sets_are_invalid = true; } - storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, Size2i(rb->width, rb->height), rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao[0], rb->ssao.ao_full.is_valid(), rb->ssao.ao[1], rb->ssao.ao_full, env->ssao_intensity, env->ssao_radius, env->ssao_bias, p_projection, ssao_quality, env->ssao_blur, env->ssao_blur_edge_sharpness); + EffectsRD::SSAOSettings settings; + settings.radius = env->ssao_radius; + settings.intensity = env->ssao_intensity; + settings.power = env->ssao_power; + settings.detail = env->ssao_detail; + settings.horizon = env->ssao_horizon; + settings.sharpness = env->ssao_sharpness; + + settings.quality = ssao_quality; + settings.half_size = ssao_half_size; + settings.adaptive_target = ssao_adaptive_target; + settings.blur_passes = ssao_blur_passes; + settings.fadeout_from = ssao_fadeout_from; + settings.fadeout_to = ssao_fadeout_to; + settings.screen_size = Size2i(rb->width, rb->height); + settings.half_screen_size = Size2i(buffer_width, buffer_height); + settings.quarter_size = Size2i(half_width, half_height); + + storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao_deinterleaved, rb->ssao.ao_deinterleaved_slices, rb->ssao.ao_pong, rb->ssao.ao_pong_slices, rb->ssao.ao_final, rb->ssao.importance_map[0], rb->ssao.importance_map[1], p_projection, settings, uniform_sets_are_invalid); } void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) { @@ -5431,9 +5509,9 @@ void RendererSceneRenderRD::_render_buffers_debug_draw(RID p_render_buffers, RID } } - if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao[0].is_valid()) { + if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao_final.is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); - RID ao_buf = rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0]; + RID ao_buf = rb->ssao.ao_final; effects->copy_to_fb_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true); } @@ -5621,7 +5699,7 @@ RID RendererSceneRenderRD::render_buffers_get_ao_texture(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); - return rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0]; + return rb->ssao.ao_final; } RID RendererSceneRenderRD::render_buffers_get_gi_probe_buffer(RID p_render_buffers) { @@ -8435,7 +8513,7 @@ RendererSceneRenderRD::RendererSceneRenderRD(RendererStorageRD *p_storage) { camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_shape")))); camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_use_jitter")); - environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size")); + environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size"), GLOBAL_GET("rendering/quality/ssao/adaptive_target"), GLOBAL_GET("rendering/quality/ssao/blur_passes"), GLOBAL_GET("rendering/quality/ssao/fadeout_from"), GLOBAL_GET("rendering/quality/ssao/fadeout_to")); screen_space_roughness_limiter = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_enabled"); screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_amount"); screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_limit"); diff --git a/servers/rendering/renderer_rd/renderer_scene_render_rd.h b/servers/rendering/renderer_rd/renderer_scene_render_rd.h index 3afe6e3f4a..1b0ae61042 100644 --- a/servers/rendering/renderer_rd/renderer_scene_render_rd.h +++ b/servers/rendering/renderer_rd/renderer_scene_render_rd.h @@ -737,13 +737,14 @@ private: /// SSAO bool ssao_enabled = false; - float ssao_radius = 1; - float ssao_intensity = 1; - float ssao_bias = 0.01; + float ssao_radius = 1.0; + float ssao_intensity = 2.0; + float ssao_power = 1.5; + float ssao_detail = 0.5; + float ssao_horizon = 0.06; + float ssao_sharpness = 0.98; float ssao_direct_light_affect = 0.0; float ssao_ao_channel_affect = 0.0; - float ssao_blur_edge_sharpness = 4.0; - RS::EnvironmentSSAOBlur ssao_blur = RS::ENV_SSAO_BLUR_3x3; /// SSR /// @@ -777,6 +778,12 @@ private: RS::EnvironmentSSAOQuality ssao_quality = RS::ENV_SSAO_QUALITY_MEDIUM; bool ssao_half_size = false; + bool ssao_using_half_size = false; + float ssao_adaptive_target = 0.5; + int ssao_blur_passes = 2; + float ssao_fadeout_from = 50.0; + float ssao_fadeout_to = 300.0; + bool glow_bicubic_upscale = false; bool glow_high_quality = false; RS::EnvironmentSSRRoughnessQuality ssr_roughness_quality = RS::ENV_SSR_ROUGNESS_QUALITY_LOW; @@ -861,8 +868,12 @@ private: struct SSAO { RID depth; Vector<RID> depth_slices; - RID ao[2]; - RID ao_full; //when using half-size + RID ao_deinterleaved; + Vector<RID> ao_deinterleaved_slices; + RID ao_pong; + Vector<RID> ao_pong_slices; + RID ao_final; + RID importance_map[2]; } ssao; struct SSR { @@ -1567,8 +1578,8 @@ public: virtual void environment_set_volumetric_fog_positional_shadow_shrink_size(int p_shrink_size); void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance); - void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness); - void environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size); + void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect); + void environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to); bool environment_is_ssao_enabled(RID p_env) const; float environment_get_ssao_ao_affect(RID p_env) const; float environment_get_ssao_light_affect(RID p_env) const; diff --git a/servers/rendering/renderer_rd/shaders/SCsub b/servers/rendering/renderer_rd/shaders/SCsub index cb62882deb..deaa9668df 100644 --- a/servers/rendering/renderer_rd/shaders/SCsub +++ b/servers/rendering/renderer_rd/shaders/SCsub @@ -21,8 +21,10 @@ if "RD_GLSL" in env["BUILDERS"]: env.RD_GLSL("luminance_reduce.glsl") env.RD_GLSL("bokeh_dof.glsl") env.RD_GLSL("ssao.glsl") - env.RD_GLSL("ssao_minify.glsl") + env.RD_GLSL("ssao_downsample.glsl") + env.RD_GLSL("ssao_importance_map.glsl") env.RD_GLSL("ssao_blur.glsl") + env.RD_GLSL("ssao_interleave.glsl") env.RD_GLSL("roughness_limiter.glsl") env.RD_GLSL("screen_space_reflection.glsl") env.RD_GLSL("screen_space_reflection_filter.glsl") diff --git a/servers/rendering/renderer_rd/shaders/ssao.glsl b/servers/rendering/renderer_rd/shaders/ssao.glsl index 346338181a..f67965ab49 100644 --- a/servers/rendering/renderer_rd/shaders/ssao.glsl +++ b/servers/rendering/renderer_rd/shaders/ssao.glsl @@ -1,249 +1,491 @@ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Copyright (c) 2016, Intel Corporation +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated +// documentation files (the "Software"), to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to +// permit persons to whom the Software is furnished to do so, subject to the following conditions: +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of +// the Software. +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// File changes (yyyy-mm-dd) +// 2016-09-07: filip.strugar@intel.com: first commit +// 2020-12-05: clayjohn: convert to Vulkan and Godot +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + #[compute] #version 450 VERSION_DEFINES -layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; +#define SSAO_ADAPTIVE_TAP_BASE_COUNT 5 + +#define INTELSSAO_MAIN_DISK_SAMPLE_COUNT (32) +const vec4 sample_pattern[INTELSSAO_MAIN_DISK_SAMPLE_COUNT] = { + vec4(0.78488064, 0.56661671, 1.500000, -0.126083), vec4(0.26022232, -0.29575172, 1.500000, -1.064030), vec4(0.10459357, 0.08372527, 1.110000, -2.730563), vec4(-0.68286800, 0.04963045, 1.090000, -0.498827), + vec4(-0.13570161, -0.64190155, 1.250000, -0.532765), vec4(-0.26193795, -0.08205118, 0.670000, -1.783245), vec4(-0.61177456, 0.66664219, 0.710000, -0.044234), vec4(0.43675563, 0.25119025, 0.610000, -1.167283), + vec4(0.07884444, 0.86618668, 0.640000, -0.459002), vec4(-0.12790935, -0.29869005, 0.600000, -1.729424), vec4(-0.04031125, 0.02413622, 0.600000, -4.792042), vec4(0.16201244, -0.52851415, 0.790000, -1.067055), + vec4(-0.70991218, 0.47301072, 0.640000, -0.335236), vec4(0.03277707, -0.22349690, 0.600000, -1.982384), vec4(0.68921727, 0.36800742, 0.630000, -0.266718), vec4(0.29251814, 0.37775412, 0.610000, -1.422520), + vec4(-0.12224089, 0.96582592, 0.600000, -0.426142), vec4(0.11071457, -0.16131058, 0.600000, -2.165947), vec4(0.46562141, -0.59747696, 0.600000, -0.189760), vec4(-0.51548797, 0.11804193, 0.600000, -1.246800), + vec4(0.89141309, -0.42090443, 0.600000, 0.028192), vec4(-0.32402530, -0.01591529, 0.600000, -1.543018), vec4(0.60771245, 0.41635221, 0.600000, -0.605411), vec4(0.02379565, -0.08239821, 0.600000, -3.809046), + vec4(0.48951152, -0.23657045, 0.600000, -1.189011), vec4(-0.17611565, -0.81696892, 0.600000, -0.513724), vec4(-0.33930185, -0.20732205, 0.600000, -1.698047), vec4(-0.91974425, 0.05403209, 0.600000, 0.062246), + vec4(-0.15064627, -0.14949332, 0.600000, -1.896062), vec4(0.53180975, -0.35210401, 0.600000, -0.758838), vec4(0.41487166, 0.81442589, 0.600000, -0.505648), vec4(-0.24106961, -0.32721516, 0.600000, -1.665244) +}; + +// these values can be changed (up to SSAO_MAX_TAPS) with no changes required elsewhere; values for 4th and 5th preset are ignored but array needed to avoid compilation errors +// the actual number of texture samples is two times this value (each "tap" has two symmetrical depth texture samples) +const int num_taps[5] = { 3, 5, 12, 0, 0 }; + +#define SSAO_TILT_SAMPLES_ENABLE_AT_QUALITY_PRESET (99) // to disable simply set to 99 or similar +#define SSAO_TILT_SAMPLES_AMOUNT (0.4) +// +#define SSAO_HALOING_REDUCTION_ENABLE_AT_QUALITY_PRESET (1) // to disable simply set to 99 or similar +#define SSAO_HALOING_REDUCTION_AMOUNT (0.6) // values from 0.0 - 1.0, 1.0 means max weighting (will cause artifacts, 0.8 is more reasonable) +// +#define SSAO_NORMAL_BASED_EDGES_ENABLE_AT_QUALITY_PRESET (2) // to disable simply set to 99 or similar +#define SSAO_NORMAL_BASED_EDGES_DOT_THRESHOLD (0.5) // use 0-0.1 for super-sharp normal-based edges +// +#define SSAO_DETAIL_AO_ENABLE_AT_QUALITY_PRESET (1) // whether to use detail; to disable simply set to 99 or similar +// +#define SSAO_DEPTH_MIPS_ENABLE_AT_QUALITY_PRESET (2) // !!warning!! the MIP generation on the C++ side will be enabled on quality preset 2 regardless of this value, so if changing here, change the C++ side too +#define SSAO_DEPTH_MIPS_GLOBAL_OFFSET (-4.3) // best noise/quality/performance tradeoff, found empirically +// +// !!warning!! the edge handling is hard-coded to 'disabled' on quality level 0, and enabled above, on the C++ side; while toggling it here will work for +// testing purposes, it will not yield performance gains (or correct results) +#define SSAO_DEPTH_BASED_EDGES_ENABLE_AT_QUALITY_PRESET (1) +// +#define SSAO_REDUCE_RADIUS_NEAR_SCREEN_BORDER_ENABLE_AT_QUALITY_PRESET (1) + +#define SSAO_MAX_TAPS 32 +#define SSAO_MAX_REF_TAPS 512 +#define SSAO_ADAPTIVE_TAP_BASE_COUNT 5 +#define SSAO_ADAPTIVE_TAP_FLEXIBLE_COUNT (SSAO_MAX_TAPS - SSAO_ADAPTIVE_TAP_BASE_COUNT) +#define SSAO_DEPTH_MIP_LEVELS 4 -#define TWO_PI 6.283185307179586476925286766559 +layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; -#ifdef SSAO_QUALITY_HIGH -#define NUM_SAMPLES (20) -#endif +layout(set = 0, binding = 0) uniform sampler2DArray source_depth_mipmaps; +layout(rgba8, set = 0, binding = 1) uniform restrict readonly image2D source_normal; +layout(set = 0, binding = 2) uniform Constants { //get into a lower set + vec4 rotation_matrices[20]; +} +constants; -#ifdef SSAO_QUALITY_ULTRA -#define NUM_SAMPLES (48) +#ifdef ADAPTIVE +layout(rg8, set = 1, binding = 0) uniform restrict readonly image2DArray source_ssao; +layout(set = 1, binding = 1) uniform sampler2D source_importance; +layout(set = 1, binding = 2, std430) buffer Counter { + uint sum; +} +counter; #endif -#ifdef SSAO_QUALITY_LOW -#define NUM_SAMPLES (8) -#endif +layout(rg8, set = 2, binding = 0) uniform restrict writeonly image2D dest_image; -#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH) && !defined(SSAO_QUALITY_ULTRA) -#define NUM_SAMPLES (12) -#endif +// This push_constant is full - 128 bytes - if you need to add more data, consider adding to the uniform buffer instead +layout(push_constant, binding = 1, std430) uniform Params { + ivec2 screen_size; + int pass; + int quality; -// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower -// miplevel to maintain reasonable spatial locality in the cache -// If this number is too small (< 3), too many taps will land in the same pixel, and we'll get bad variance that manifests as flashing. -// If it is too high (> 5), we'll get bad performance because we're not using the MIP levels effectively -#define LOG_MAX_OFFSET (3) - -// This must be less than or equal to the MAX_MIP_LEVEL defined in SSAO.cpp -#define MAX_MIP_LEVEL (4) - -// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent -// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9 - -const int ROTATIONS[] = int[]( - 1, 1, 2, 3, 2, 5, 2, 3, 2, - 3, 3, 5, 5, 3, 4, 7, 5, 5, 7, - 9, 8, 5, 5, 7, 7, 7, 8, 5, 8, - 11, 12, 7, 10, 13, 8, 11, 8, 7, 14, - 11, 11, 13, 12, 13, 19, 17, 13, 11, 18, - 19, 11, 11, 14, 17, 21, 15, 16, 17, 18, - 13, 17, 11, 17, 19, 18, 25, 18, 19, 19, - 29, 21, 19, 27, 31, 29, 21, 18, 17, 29, - 31, 31, 23, 18, 25, 26, 25, 23, 19, 34, - 19, 27, 21, 25, 39, 29, 17, 21, 27); - -//#define NUM_SPIRAL_TURNS (7) -const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1]; - -layout(set = 0, binding = 0) uniform sampler2D source_depth_mipmaps; -layout(r8, set = 1, binding = 0) uniform restrict writeonly image2D dest_image; - -#ifndef USE_HALF_SIZE -layout(set = 2, binding = 0) uniform sampler2D source_depth; -#endif + vec2 half_screen_pixel_size; + int size_multiplier; + float detail_intensity; -layout(set = 3, binding = 0) uniform sampler2D source_normal; + vec2 NDC_to_view_mul; + vec2 NDC_to_view_add; -layout(push_constant, binding = 1, std430) uniform Params { - ivec2 screen_size; - float z_far; - float z_near; + vec2 pad2; + vec2 half_screen_pixel_size_x025; - bool orthogonal; - float intensity_div_r6; float radius; - float bias; - - vec4 proj_info; - vec2 pixel_size; - float proj_scale; - uint pad; + float intensity; + float shadow_power; + float shadow_clamp; + + float fade_out_mul; + float fade_out_add; + float horizon_angle_threshold; + float inv_radius_near_limit; + + bool is_orthogonal; + float neg_inv_radius; + float load_counter_avg_div; + float adaptive_sample_limit; + + ivec2 pass_coord_offset; + vec2 pass_uv_offset; } params; -vec3 reconstructCSPosition(vec2 S, float z) { - if (params.orthogonal) { - return vec3((S.xy * params.proj_info.xy + params.proj_info.zw), z); +// packing/unpacking for edges; 2 bits per edge mean 4 gradient values (0, 0.33, 0.66, 1) for smoother transitions! +float pack_edges(vec4 p_edgesLRTB) { + p_edgesLRTB = round(clamp(p_edgesLRTB, 0.0, 1.0) * 3.05); + return dot(p_edgesLRTB, vec4(64.0 / 255.0, 16.0 / 255.0, 4.0 / 255.0, 1.0 / 255.0)); +} + +vec3 NDC_to_view_space(vec2 p_pos, float p_viewspace_depth) { + if (params.is_orthogonal) { + return vec3((params.NDC_to_view_mul * p_pos.xy + params.NDC_to_view_add), p_viewspace_depth); } else { - return vec3((S.xy * params.proj_info.xy + params.proj_info.zw) * z, z); + return vec3((params.NDC_to_view_mul * p_pos.xy + params.NDC_to_view_add) * p_viewspace_depth, p_viewspace_depth); } } -vec3 getPosition(ivec2 ssP) { - vec3 P; -#ifdef USE_HALF_SIZE - P.z = texelFetch(source_depth_mipmaps, ssP, 0).r; - P.z = -P.z; -#else - P.z = texelFetch(source_depth, ssP, 0).r; +// calculate effect radius and fit our screen sampling pattern inside it +void calculate_radius_parameters(const float p_pix_center_length, const vec2 p_pixel_size_at_center, out float r_lookup_radius, out float r_radius, out float r_fallof_sq) { + r_radius = params.radius; - P.z = P.z * 2.0 - 1.0; - if (params.orthogonal) { - P.z = ((P.z + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; - } else { - P.z = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - P.z * (params.z_far - params.z_near)); - } - P.z = -P.z; -#endif - // Offset to pixel center - P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z); - return P; + // when too close, on-screen sampling disk will grow beyond screen size; limit this to avoid closeup temporal artifacts + const float too_close_limit = clamp(p_pix_center_length * params.inv_radius_near_limit, 0.0, 1.0) * 0.8 + 0.2; + + r_radius *= too_close_limit; + + // 0.85 is to reduce the radius to allow for more samples on a slope to still stay within influence + r_lookup_radius = (0.85 * r_radius) / p_pixel_size_at_center.x; + + // used to calculate falloff (both for AO samples and per-sample weights) + r_fallof_sq = -1.0 / (r_radius * r_radius); } -/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */ -vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) { - // Radius relative to ssR - float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES)); - float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle; +vec4 calculate_edges(const float p_center_z, const float p_left_z, const float p_right_z, const float p_top_z, const float p_bottom_z) { + // slope-sensitive depth-based edge detection + vec4 edgesLRTB = vec4(p_left_z, p_right_z, p_top_z, p_bottom_z) - p_center_z; + vec4 edgesLRTB_slope_adjusted = edgesLRTB + edgesLRTB.yxwz; + edgesLRTB = min(abs(edgesLRTB), abs(edgesLRTB_slope_adjusted)); + return clamp((1.3 - edgesLRTB / (p_center_z * 0.040)), 0.0, 1.0); +} - ssR = alpha; - return vec2(cos(angle), sin(angle)); +vec3 decode_normal(vec3 p_encoded_normal) { + vec3 normal = p_encoded_normal * 2.0 - 1.0; + return normal; } -/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */ -vec3 getOffsetPosition(ivec2 ssP, float ssR) { - // Derivation: - // mipLevel = floor(log(ssR / MAX_OFFSET)); +vec3 load_normal(ivec2 p_pos) { + vec3 encoded_normal = imageLoad(source_normal, p_pos).xyz; + encoded_normal.z = 1.0 - encoded_normal.z; + return decode_normal(encoded_normal); +} - int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL); +vec3 load_normal(ivec2 p_pos, ivec2 p_offset) { + vec3 encoded_normal = imageLoad(source_normal, p_pos + p_offset).xyz; + encoded_normal.z = 1.0 - encoded_normal.z; + return decode_normal(encoded_normal); +} - vec3 P; +// all vectors in viewspace +float calculate_pixel_obscurance(vec3 p_pixel_normal, vec3 p_hit_delta, float p_fallof_sq) { + float length_sq = dot(p_hit_delta, p_hit_delta); + float NdotD = dot(p_pixel_normal, p_hit_delta) / sqrt(length_sq); - // We need to divide by 2^mipLevel to read the appropriately scaled coordinate from a MIP-map. - // Manually clamp to the texture size because texelFetch bypasses the texture unit - ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (params.screen_size >> mipLevel) - ivec2(1)); + float falloff_mult = max(0.0, length_sq * p_fallof_sq + 1.0); -#ifdef USE_HALF_SIZE - P.z = texelFetch(source_depth_mipmaps, mipP, mipLevel).r; - P.z = -P.z; -#else - if (mipLevel < 1) { - //read from depth buffer - P.z = texelFetch(source_depth, mipP, 0).r; - P.z = P.z * 2.0 - 1.0; - if (params.orthogonal) { - P.z = ((P.z + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; - } else { - P.z = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - P.z * (params.z_far - params.z_near)); - } - P.z = -P.z; + return max(0, NdotD - params.horizon_angle_threshold) * falloff_mult; +} - } else { - //read from mipmaps - P.z = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r; - P.z = -P.z; +void SSAO_tap_inner(const int p_quality_level, inout float r_obscurance_sum, inout float r_weight_sum, const vec2 p_sampling_uv, const float p_mip_level, const vec3 p_pix_center_pos, vec3 p_pixel_normal, const float p_fallof_sq, const float p_weight_mod) { + // get depth at sample + float viewspace_sample_z = textureLod(source_depth_mipmaps, vec3(p_sampling_uv, params.pass), p_mip_level).x; + + // convert to viewspace + vec3 hit_pos = NDC_to_view_space(p_sampling_uv.xy, viewspace_sample_z).xyz; + vec3 hit_delta = hit_pos - p_pix_center_pos; + + float obscurance = calculate_pixel_obscurance(p_pixel_normal, hit_delta, p_fallof_sq); + float weight = 1.0; + + if (p_quality_level >= SSAO_HALOING_REDUCTION_ENABLE_AT_QUALITY_PRESET) { + float reduct = max(0, -hit_delta.z); + reduct = clamp(reduct * params.neg_inv_radius + 2.0, 0.0, 1.0); + weight = SSAO_HALOING_REDUCTION_AMOUNT * reduct + (1.0 - SSAO_HALOING_REDUCTION_AMOUNT); } -#endif + weight *= p_weight_mod; + r_obscurance_sum += obscurance * weight; + r_weight_sum += weight; +} + +void SSAOTap(const int p_quality_level, inout float r_obscurance_sum, inout float r_weight_sum, const int p_tap_index, const mat2 p_rot_scale, const vec3 p_pix_center_pos, vec3 p_pixel_normal, const vec2 p_normalized_screen_pos, const float p_mip_offset, const float p_fallof_sq, float p_weight_mod, vec2 p_norm_xy, float p_norm_xy_length) { + vec2 sample_offset; + float sample_pow_2_len; + + // patterns + { + vec4 new_sample = sample_pattern[p_tap_index]; + sample_offset = new_sample.xy * p_rot_scale; + sample_pow_2_len = new_sample.w; // precalculated, same as: sample_pow_2_len = log2( length( new_sample.xy ) ); + p_weight_mod *= new_sample.z; + } + + // snap to pixel center (more correct obscurance math, avoids artifacts) + sample_offset = round(sample_offset); + + // calculate MIP based on the sample distance from the centre, similar to as described + // in http://graphics.cs.williams.edu/papers/SAOHPG12/. + float mip_level = (p_quality_level < SSAO_DEPTH_MIPS_ENABLE_AT_QUALITY_PRESET) ? (0) : (sample_pow_2_len + p_mip_offset); + + vec2 sampling_uv = sample_offset * params.half_screen_pixel_size + p_normalized_screen_pos; + + SSAO_tap_inner(p_quality_level, r_obscurance_sum, r_weight_sum, sampling_uv, mip_level, p_pix_center_pos, p_pixel_normal, p_fallof_sq, p_weight_mod); + + // for the second tap, just use the mirrored offset + vec2 sample_offset_mirrored_uv = -sample_offset; - // Offset to pixel center - P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z); + // tilt the second set of samples so that the disk is effectively rotated by the normal + // effective at removing one set of artifacts, but too expensive for lower quality settings + if (p_quality_level >= SSAO_TILT_SAMPLES_ENABLE_AT_QUALITY_PRESET) { + float dot_norm = dot(sample_offset_mirrored_uv, p_norm_xy); + sample_offset_mirrored_uv -= dot_norm * p_norm_xy_length * p_norm_xy; + sample_offset_mirrored_uv = round(sample_offset_mirrored_uv); + } + + // snap to pixel center (more correct obscurance math, avoids artifacts) + vec2 sampling_mirrored_uv = sample_offset_mirrored_uv * params.half_screen_pixel_size + p_normalized_screen_pos; - return P; + SSAO_tap_inner(p_quality_level, r_obscurance_sum, r_weight_sum, sampling_mirrored_uv, mip_level, p_pix_center_pos, p_pixel_normal, p_fallof_sq, p_weight_mod); } -/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds - to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius +// this function is designed to only work with half/half depth at the moment - there's a couple of hardcoded paths that expect pixel/texel size, so it will not work for full res +void generate_SSAO_shadows_internal(out float r_shadow_term, out vec4 r_edges, out float r_weight, const vec2 p_pos, int p_quality_level, bool p_adaptive_base) { + vec2 pos_rounded = trunc(p_pos); + uvec2 upos = uvec2(pos_rounded); + + const int number_of_taps = (p_adaptive_base) ? (SSAO_ADAPTIVE_TAP_BASE_COUNT) : (num_taps[p_quality_level]); + float pix_z, pix_left_z, pix_top_z, pix_right_z, pix_bottom_z; + + vec4 valuesUL = textureGather(source_depth_mipmaps, vec3(pos_rounded * params.half_screen_pixel_size, params.pass)); // g_ViewspaceDepthSource.GatherRed(g_PointMirrorSampler, pos_rounded * params.half_screen_pixel_size); + vec4 valuesBR = textureGather(source_depth_mipmaps, vec3((pos_rounded + vec2(1.0)) * params.half_screen_pixel_size, params.pass)); // g_ViewspaceDepthSource.GatherRed(g_PointMirrorSampler, pos_rounded * params.half_screen_pixel_size, ivec2(1, 1)); + + // get this pixel's viewspace depth + pix_z = valuesUL.y; + + // get left right top bottom neighbouring pixels for edge detection (gets compiled out on quality_level == 0) + pix_left_z = valuesUL.x; + pix_top_z = valuesUL.z; + pix_right_z = valuesBR.z; + pix_bottom_z = valuesBR.x; - Note that units of H() in the HPG12 paper are meters, not - unitless. The whole falloff/sampling function is therefore - unitless. In this implementation, we factor out (9 / radius). + vec2 normalized_screen_pos = pos_rounded * params.half_screen_pixel_size + params.half_screen_pixel_size_x025; + vec3 pix_center_pos = NDC_to_view_space(normalized_screen_pos, pix_z); - Four versions of the falloff function are implemented below -*/ -float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) { - // Offset on the unit disk, spun for this pixel - float ssR; - vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR); - ssR *= ssDiskRadius; + // Load this pixel's viewspace normal + uvec2 full_res_coord = upos * 2 * params.size_multiplier + params.pass_coord_offset.xy; + vec3 pixel_normal = load_normal(ivec2(full_res_coord)); - ivec2 ssP = ivec2(ssR * unitOffset) + ssC; + //const vec2 pixel_size_at_center = pix_center_pos.z * params.NDC_to_view_mul * params.half_screen_pixel_size; // optimized approximation of: + vec2 pixel_size_at_center = NDC_to_view_space(normalized_screen_pos.xy + params.half_screen_pixel_size * 0.5, pix_center_pos.z).xy - pix_center_pos.xy; - if (any(lessThan(ssP, ivec2(0))) || any(greaterThanEqual(ssP, params.screen_size))) { - return 0.0; + float pixel_lookup_radius; + float fallof_sq; + + // calculate effect radius and fit our screen sampling pattern inside it + float viewspace_radius; + calculate_radius_parameters(length(pix_center_pos), pixel_size_at_center, pixel_lookup_radius, viewspace_radius, fallof_sq); + + // calculate samples rotation/scaling + mat2 rot_scale_matrix; + uint pseudo_random_index; + + { + vec4 rotation_scale; + // reduce effect radius near the screen edges slightly; ideally, one would render a larger depth buffer (5% on each side) instead + if (!p_adaptive_base && (p_quality_level >= SSAO_REDUCE_RADIUS_NEAR_SCREEN_BORDER_ENABLE_AT_QUALITY_PRESET)) { + float near_screen_border = min(min(normalized_screen_pos.x, 1.0 - normalized_screen_pos.x), min(normalized_screen_pos.y, 1.0 - normalized_screen_pos.y)); + near_screen_border = clamp(10.0 * near_screen_border + 0.6, 0.0, 1.0); + pixel_lookup_radius *= near_screen_border; + } + + // load & update pseudo-random rotation matrix + pseudo_random_index = uint(pos_rounded.y * 2 + pos_rounded.x) % 5; + rotation_scale = constants.rotation_matrices[params.pass * 5 + pseudo_random_index]; + rot_scale_matrix = mat2(rotation_scale.x * pixel_lookup_radius, rotation_scale.y * pixel_lookup_radius, rotation_scale.z * pixel_lookup_radius, rotation_scale.w * pixel_lookup_radius); } - // The occluding point in camera space - vec3 Q = getOffsetPosition(ssP, ssR); + // the main obscurance & sample weight storage + float obscurance_sum = 0.0; + float weight_sum = 0.0; - vec3 v = Q - C; + // edge mask for between this and left/right/top/bottom neighbour pixels - not used in quality level 0 so initialize to "no edge" (1 is no edge, 0 is edge) + vec4 edgesLRTB = vec4(1.0, 1.0, 1.0, 1.0); - float vv = dot(v, v); - float vn = dot(v, n_C); + // Move center pixel slightly towards camera to avoid imprecision artifacts due to using of 16bit depth buffer; a lot smaller offsets needed when using 32bit floats + pix_center_pos *= 0.9992; - const float epsilon = 0.01; - float radius2 = p_radius * p_radius; + if (!p_adaptive_base && (p_quality_level >= SSAO_DEPTH_BASED_EDGES_ENABLE_AT_QUALITY_PRESET)) { + edgesLRTB = calculate_edges(pix_z, pix_left_z, pix_right_z, pix_top_z, pix_bottom_z); + } - // A: From the HPG12 paper - // Note large epsilon to avoid overdarkening within cracks - //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6; + // adds a more high definition sharp effect, which gets blurred out (reuses left/right/top/bottom samples that we used for edge detection) + if (!p_adaptive_base && (p_quality_level >= SSAO_DETAIL_AO_ENABLE_AT_QUALITY_PRESET)) { + // disable in case of quality level 4 (reference) + if (p_quality_level != 4) { + //approximate neighbouring pixels positions (actually just deltas or "positions - pix_center_pos" ) + vec3 normalized_viewspace_dir = vec3(pix_center_pos.xy / pix_center_pos.zz, 1.0); + vec3 pixel_left_delta = vec3(-pixel_size_at_center.x, 0.0, 0.0) + normalized_viewspace_dir * (pix_left_z - pix_center_pos.z); + vec3 pixel_right_delta = vec3(+pixel_size_at_center.x, 0.0, 0.0) + normalized_viewspace_dir * (pix_right_z - pix_center_pos.z); + vec3 pixel_top_delta = vec3(0.0, -pixel_size_at_center.y, 0.0) + normalized_viewspace_dir * (pix_top_z - pix_center_pos.z); + vec3 pixel_bottom_delta = vec3(0.0, +pixel_size_at_center.y, 0.0) + normalized_viewspace_dir * (pix_bottom_z - pix_center_pos.z); + + const float range_reduction = 4.0f; // this is to avoid various artifacts + const float modified_fallof_sq = range_reduction * fallof_sq; + + vec4 additional_obscurance; + additional_obscurance.x = calculate_pixel_obscurance(pixel_normal, pixel_left_delta, modified_fallof_sq); + additional_obscurance.y = calculate_pixel_obscurance(pixel_normal, pixel_right_delta, modified_fallof_sq); + additional_obscurance.z = calculate_pixel_obscurance(pixel_normal, pixel_top_delta, modified_fallof_sq); + additional_obscurance.w = calculate_pixel_obscurance(pixel_normal, pixel_bottom_delta, modified_fallof_sq); + + obscurance_sum += params.detail_intensity * dot(additional_obscurance, edgesLRTB); + } + } - // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended] - float f = max(radius2 - vv, 0.0); - return f * f * f * max((vn - params.bias) / (epsilon + vv), 0.0); + // Sharp normals also create edges - but this adds to the cost as well + if (!p_adaptive_base && (p_quality_level >= SSAO_NORMAL_BASED_EDGES_ENABLE_AT_QUALITY_PRESET)) { + vec3 neighbour_normal_left = load_normal(ivec2(full_res_coord), ivec2(-2, 0)); + vec3 neighbour_normal_right = load_normal(ivec2(full_res_coord), ivec2(2, 0)); + vec3 neighbour_normal_top = load_normal(ivec2(full_res_coord), ivec2(0, -2)); + vec3 neighbour_normal_bottom = load_normal(ivec2(full_res_coord), ivec2(0, 2)); - // C: Medium contrast (which looks better at high radii), no division. Note that the - // contribution still falls off with radius^2, but we've adjusted the rate in a way that is - // more computationally efficient and happens to be aesthetically pleasing. - // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0); + const float dot_threshold = SSAO_NORMAL_BASED_EDGES_DOT_THRESHOLD; - // D: Low contrast, no division operation - // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0); -} + vec4 normal_edgesLRTB; + normal_edgesLRTB.x = clamp((dot(pixel_normal, neighbour_normal_left) + dot_threshold), 0.0, 1.0); + normal_edgesLRTB.y = clamp((dot(pixel_normal, neighbour_normal_right) + dot_threshold), 0.0, 1.0); + normal_edgesLRTB.z = clamp((dot(pixel_normal, neighbour_normal_top) + dot_threshold), 0.0, 1.0); + normal_edgesLRTB.w = clamp((dot(pixel_normal, neighbour_normal_bottom) + dot_threshold), 0.0, 1.0); -void main() { - // Pixel being shaded - ivec2 ssC = ivec2(gl_GlobalInvocationID.xy); - if (any(greaterThanEqual(ssC, params.screen_size))) { //too large, do nothing - return; + edgesLRTB *= normal_edgesLRTB; } - // World space point being shaded - vec3 C = getPosition(ssC); + const float global_mip_offset = SSAO_DEPTH_MIPS_GLOBAL_OFFSET; + float mip_offset = (p_quality_level < SSAO_DEPTH_MIPS_ENABLE_AT_QUALITY_PRESET) ? (0) : (log2(pixel_lookup_radius) + global_mip_offset); -#ifdef USE_HALF_SIZE - vec3 n_C = texelFetch(source_normal, ssC << 1, 0).xyz * 2.0 - 1.0; -#else - vec3 n_C = texelFetch(source_normal, ssC, 0).xyz * 2.0 - 1.0; + // Used to tilt the second set of samples so that the disk is effectively rotated by the normal + // effective at removing one set of artifacts, but too expensive for lower quality settings + vec2 norm_xy = vec2(pixel_normal.x, pixel_normal.y); + float norm_xy_length = length(norm_xy); + norm_xy /= vec2(norm_xy_length, -norm_xy_length); + norm_xy_length *= SSAO_TILT_SAMPLES_AMOUNT; + + // standard, non-adaptive approach + if ((p_quality_level != 3) || p_adaptive_base) { + for (int i = 0; i < number_of_taps; i++) { + SSAOTap(p_quality_level, obscurance_sum, weight_sum, i, rot_scale_matrix, pix_center_pos, pixel_normal, normalized_screen_pos, mip_offset, fallof_sq, 1.0, norm_xy, norm_xy_length); + } + } +#ifdef ADAPTIVE + else { + // add new ones if needed + vec2 full_res_uv = normalized_screen_pos + params.pass_uv_offset.xy; + float importance = textureLod(source_importance, full_res_uv, 0.0).x; + + // this is to normalize SSAO_DETAIL_AO_AMOUNT across all pixel regardless of importance + obscurance_sum *= (SSAO_ADAPTIVE_TAP_BASE_COUNT / float(SSAO_MAX_TAPS)) + (importance * SSAO_ADAPTIVE_TAP_FLEXIBLE_COUNT / float(SSAO_MAX_TAPS)); + + // load existing base values + vec2 base_values = imageLoad(source_ssao, ivec3(upos, params.pass)).xy; + weight_sum += base_values.y * float(SSAO_ADAPTIVE_TAP_BASE_COUNT * 4.0); + obscurance_sum += (base_values.x) * weight_sum; + + // increase importance around edges + float edge_count = dot(1.0 - edgesLRTB, vec4(1.0, 1.0, 1.0, 1.0)); + + float avg_total_importance = float(counter.sum) * params.load_counter_avg_div; + + float importance_limiter = clamp(params.adaptive_sample_limit / avg_total_importance, 0.0, 1.0); + importance *= importance_limiter; + + float additional_sample_count = SSAO_ADAPTIVE_TAP_FLEXIBLE_COUNT * importance; + + const float blend_range = 3.0; + const float blend_range_inv = 1.0 / blend_range; + + additional_sample_count += 0.5; + uint additional_samples = uint(additional_sample_count); + uint additional_samples_to = min(SSAO_MAX_TAPS, additional_samples + SSAO_ADAPTIVE_TAP_BASE_COUNT); + + for (uint i = SSAO_ADAPTIVE_TAP_BASE_COUNT; i < additional_samples_to; i++) { + additional_sample_count -= 1.0f; + float weight_mod = clamp(additional_sample_count * blend_range_inv, 0.0, 1.0); + SSAOTap(p_quality_level, obscurance_sum, weight_sum, int(i), rot_scale_matrix, pix_center_pos, pixel_normal, normalized_screen_pos, mip_offset, fallof_sq, weight_mod, norm_xy, norm_xy_length); + } + } #endif - n_C = normalize(n_C); - n_C.y = -n_C.y; //because this code reads flipped - // Hash function used in the HPG12 AlchemyAO paper - float randomPatternRotationAngle = mod(float((3 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 10), TWO_PI); + // early out for adaptive base - just output weight (used for the next pass) + if (p_adaptive_base) { + float obscurance = obscurance_sum / weight_sum; + + r_shadow_term = obscurance; + r_edges = vec4(0.0); + r_weight = weight_sum; + return; + } + + // calculate weighted average + float obscurance = obscurance_sum / weight_sum; - // Reconstruct normals from positions. These will lead to 1-pixel black lines - // at depth discontinuities, however the blur will wipe those out so they are not visible - // in the final image. + // calculate fadeout (1 close, gradient, 0 far) + float fade_out = clamp(pix_center_pos.z * params.fade_out_mul + params.fade_out_add, 0.0, 1.0); - // Choose the screen-space sample radius - // proportional to the projected area of the sphere + // Reduce the SSAO shadowing if we're on the edge to remove artifacts on edges (we don't care for the lower quality one) + if (!p_adaptive_base && (p_quality_level >= SSAO_DEPTH_BASED_EDGES_ENABLE_AT_QUALITY_PRESET)) { + // when there's more than 2 opposite edges, start fading out the occlusion to reduce aliasing artifacts + float edge_fadeout_factor = clamp((1.0 - edgesLRTB.x - edgesLRTB.y) * 0.35, 0.0, 1.0) + clamp((1.0 - edgesLRTB.z - edgesLRTB.w) * 0.35, 0.0, 1.0); - float ssDiskRadius = -params.proj_scale * params.radius; - if (!params.orthogonal) { - ssDiskRadius = -params.proj_scale * params.radius / C.z; + fade_out *= clamp(1.0 - edge_fadeout_factor, 0.0, 1.0); } - float sum = 0.0; - for (int i = 0; i < NUM_SAMPLES; ++i) { - sum += sampleAO(ssC, C, n_C, ssDiskRadius, params.radius, i, randomPatternRotationAngle); + + // same as a bove, but a lot more conservative version + // fade_out *= clamp( dot( edgesLRTB, vec4( 0.9, 0.9, 0.9, 0.9 ) ) - 2.6 , 0.0, 1.0); + + // strength + obscurance = params.intensity * obscurance; + + // clamp + obscurance = min(obscurance, params.shadow_clamp); + + // fadeout + obscurance *= fade_out; + + // conceptually switch to occlusion with the meaning being visibility (grows with visibility, occlusion == 1 implies full visibility), + // to be in line with what is more commonly used. + float occlusion = 1.0 - obscurance; + + // modify the gradient + // note: this cannot be moved to a later pass because of loss of precision after storing in the render target + occlusion = pow(clamp(occlusion, 0.0, 1.0), params.shadow_power); + + // outputs! + r_shadow_term = occlusion; // Our final 'occlusion' term (0 means fully occluded, 1 means fully lit) + r_edges = edgesLRTB; // These are used to prevent blurring across edges, 1 means no edge, 0 means edge, 0.5 means half way there, etc. + r_weight = weight_sum; +} + +void main() { + float out_shadow_term; + float out_weight; + vec4 out_edges; + ivec2 ssC = ivec2(gl_GlobalInvocationID.xy); + if (any(greaterThanEqual(ssC, params.screen_size))) { //too large, do nothing + return; } - float A = max(0.0, 1.0 - sum * params.intensity_div_r6 * (5.0 / float(NUM_SAMPLES))); + vec2 uv = vec2(gl_GlobalInvocationID) + vec2(0.5); +#ifdef SSAO_BASE + generate_SSAO_shadows_internal(out_shadow_term, out_edges, out_weight, uv, params.quality, true); + + imageStore(dest_image, ivec2(gl_GlobalInvocationID.xy), vec4(out_shadow_term, out_weight / (float(SSAO_ADAPTIVE_TAP_BASE_COUNT) * 4.0), 0.0, 0.0)); +#else + generate_SSAO_shadows_internal(out_shadow_term, out_edges, out_weight, uv, params.quality, false); // pass in quality levels + if (params.quality == 0) { + out_edges = vec4(1.0); + } - imageStore(dest_image, ssC, vec4(A)); + imageStore(dest_image, ivec2(gl_GlobalInvocationID.xy), vec4(out_shadow_term, pack_edges(out_edges), 0.0, 0.0)); +#endif } diff --git a/servers/rendering/renderer_rd/shaders/ssao_blur.glsl b/servers/rendering/renderer_rd/shaders/ssao_blur.glsl index 3e63e3cb59..510a777048 100644 --- a/servers/rendering/renderer_rd/shaders/ssao_blur.glsl +++ b/servers/rendering/renderer_rd/shaders/ssao_blur.glsl @@ -1,3 +1,22 @@ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Copyright (c) 2016, Intel Corporation +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated +// documentation files (the "Software"), to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to +// permit persons to whom the Software is furnished to do so, subject to the following conditions: +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of +// the Software. +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// File changes (yyyy-mm-dd) +// 2016-09-07: filip.strugar@intel.com: first commit +// 2020-12-05: clayjohn: convert to Vulkan and Godot +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + #[compute] #version 450 @@ -7,147 +26,129 @@ VERSION_DEFINES layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; layout(set = 0, binding = 0) uniform sampler2D source_ssao; -layout(set = 1, binding = 0) uniform sampler2D source_depth; -#ifdef MODE_UPSCALE -layout(set = 2, binding = 0) uniform sampler2D source_depth_mipmaps; -#endif -layout(r8, set = 3, binding = 0) uniform restrict writeonly image2D dest_image; - -////////////////////////////////////////////////////////////////////////////////////////////// -// Tunable Parameters: +layout(rg8, set = 1, binding = 0) uniform restrict writeonly image2D dest_image; layout(push_constant, binding = 1, std430) uniform Params { - float edge_sharpness; /** Increase to make depth edges crisper. Decrease to reduce flicker. */ - int filter_scale; - float z_far; - float z_near; - bool orthogonal; - uint pad0; - uint pad1; - uint pad2; - ivec2 axis; /** (1, 0) or (0, 1) */ - ivec2 screen_size; + float edge_sharpness; + float pad; + vec2 half_screen_pixel_size; } params; -/** Filter radius in pixels. This will be multiplied by SCALE. */ -#define R (4) +vec4 unpack_edges(float p_packed_val) { + uint packed_val = uint(p_packed_val * 255.5); + vec4 edgesLRTB; + edgesLRTB.x = float((packed_val >> 6) & 0x03) / 3.0; + edgesLRTB.y = float((packed_val >> 4) & 0x03) / 3.0; + edgesLRTB.z = float((packed_val >> 2) & 0x03) / 3.0; + edgesLRTB.w = float((packed_val >> 0) & 0x03) / 3.0; + + return clamp(edgesLRTB + params.edge_sharpness, 0.0, 1.0); +} + +void add_sample(float p_ssao_value, float p_edge_value, inout float r_sum, inout float r_sum_weight) { + float weight = p_edge_value; + + r_sum += (weight * p_ssao_value); + r_sum_weight += weight; +} + +#ifdef MODE_WIDE +vec2 sample_blurred_wide(vec2 p_coord) { + vec2 vC = textureLodOffset(source_ssao, vec2(p_coord), 0.0, ivec2(0, 0)).xy; + vec2 vL = textureLodOffset(source_ssao, vec2(p_coord), 0.0, ivec2(-2, 0)).xy; + vec2 vT = textureLodOffset(source_ssao, vec2(p_coord), 0.0, ivec2(0, -2)).xy; + vec2 vR = textureLodOffset(source_ssao, vec2(p_coord), 0.0, ivec2(2, 0)).xy; + vec2 vB = textureLodOffset(source_ssao, vec2(p_coord), 0.0, ivec2(0, 2)).xy; + + float packed_edges = vC.y; + vec4 edgesLRTB = unpack_edges(packed_edges); + edgesLRTB.x *= unpack_edges(vL.y).y; + edgesLRTB.z *= unpack_edges(vT.y).w; + edgesLRTB.y *= unpack_edges(vR.y).x; + edgesLRTB.w *= unpack_edges(vB.y).z; + + float ssao_value = vC.x; + float ssao_valueL = vL.x; + float ssao_valueT = vT.x; + float ssao_valueR = vR.x; + float ssao_valueB = vB.x; + + float sum_weight = 0.8f; + float sum = ssao_value * sum_weight; + + add_sample(ssao_valueL, edgesLRTB.x, sum, sum_weight); + add_sample(ssao_valueR, edgesLRTB.y, sum, sum_weight); + add_sample(ssao_valueT, edgesLRTB.z, sum, sum_weight); + add_sample(ssao_valueB, edgesLRTB.w, sum, sum_weight); + + float ssao_avg = sum / sum_weight; + + ssao_value = ssao_avg; + + return vec2(ssao_value, packed_edges); +} +#endif + +#ifdef MODE_SMART +vec2 sample_blurred(vec3 p_pos, vec2 p_coord) { + float packed_edges = texelFetch(source_ssao, ivec2(p_pos.xy), 0).y; + vec4 edgesLRTB = unpack_edges(packed_edges); + + vec4 valuesUL = textureGather(source_ssao, vec2(p_coord - params.half_screen_pixel_size * 0.5)); + vec4 valuesBR = textureGather(source_ssao, vec2(p_coord + params.half_screen_pixel_size * 0.5)); + + float ssao_value = valuesUL.y; + float ssao_valueL = valuesUL.x; + float ssao_valueT = valuesUL.z; + float ssao_valueR = valuesBR.z; + float ssao_valueB = valuesBR.x; + + float sum_weight = 0.5; + float sum = ssao_value * sum_weight; + + add_sample(ssao_valueL, edgesLRTB.x, sum, sum_weight); + add_sample(ssao_valueR, edgesLRTB.y, sum, sum_weight); + + add_sample(ssao_valueT, edgesLRTB.z, sum, sum_weight); + add_sample(ssao_valueB, edgesLRTB.w, sum, sum_weight); -////////////////////////////////////////////////////////////////////////////////////////////// + float ssao_avg = sum / sum_weight; -// Gaussian coefficients -const float gaussian[R + 1] = - //float[](0.356642, 0.239400, 0.072410, 0.009869); - //float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0 - float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0 -//float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0 + ssao_value = ssao_avg; + + return vec2(ssao_value, packed_edges); +} +#endif void main() { // Pixel being shaded ivec2 ssC = ivec2(gl_GlobalInvocationID.xy); - if (any(greaterThanEqual(ssC, params.screen_size))) { //too large, do nothing - return; - } - -#ifdef MODE_UPSCALE - - //closest one should be the same pixel, but check nearby just in case - float depth = texelFetch(source_depth, ssC, 0).r; - - depth = depth * 2.0 - 1.0; - if (params.orthogonal) { - depth = ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; - } else { - depth = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - depth * (params.z_far - params.z_near)); - } - - vec2 pixel_size = 1.0 / vec2(params.screen_size); - vec2 closest_uv = vec2(ssC) * pixel_size + pixel_size * 0.5; - vec2 from_uv = closest_uv; - vec2 ps2 = pixel_size; // * 2.0; - - float closest_depth = abs(textureLod(source_depth_mipmaps, closest_uv, 0.0).r - depth); - - vec2 offsets[4] = vec2[](vec2(ps2.x, 0), vec2(-ps2.x, 0), vec2(0, ps2.y), vec2(0, -ps2.y)); - for (int i = 0; i < 4; i++) { - vec2 neighbour = from_uv + offsets[i]; - float neighbour_depth = abs(textureLod(source_depth_mipmaps, neighbour, 0.0).r - depth); - if (neighbour_depth < closest_depth) { - closest_uv = neighbour; - closest_depth = neighbour_depth; - } - } - - float visibility = textureLod(source_ssao, closest_uv, 0.0).r; - imageStore(dest_image, ssC, vec4(visibility)); -#else - float depth = texelFetch(source_depth, ssC, 0).r; +#ifdef MODE_NON_SMART -#ifdef MODE_FULL_SIZE - depth = depth * 2.0 - 1.0; + vec2 halfPixel = params.half_screen_pixel_size * 0.5f; - if (params.orthogonal) { - depth = ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; - } else { - depth = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - depth * (params.z_far - params.z_near)); - } + vec2 uv = (vec2(gl_GlobalInvocationID.xy) + vec2(0.5, 0.5)) * params.half_screen_pixel_size; -#endif - float depth_divide = 1.0 / params.z_far; - - //depth *= depth_divide; - - /* - if (depth > params.z_far * 0.999) { - discard; //skybox - } - */ - - float sum = texelFetch(source_ssao, ssC, 0).r; - - // Base weight for depth falloff. Increase this for more blurriness, - // decrease it for better edge discrimination - float BASE = gaussian[0]; - float totalWeight = BASE; - sum *= totalWeight; - - ivec2 clamp_limit = params.screen_size - ivec2(1); - - for (int r = -R; r <= R; ++r) { - // We already handled the zero case above. This loop should be unrolled and the static branch optimized out, - // so the IF statement has no runtime cost - if (r != 0) { - ivec2 ppos = ssC + params.axis * (r * params.filter_scale); - float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r; - ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit); - - float temp_depth = texelFetch(source_depth, rpos, 0).r; -#ifdef MODE_FULL_SIZE - temp_depth = temp_depth * 2.0 - 1.0; - if (params.orthogonal) { - temp_depth = ((temp_depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; - } else { - temp_depth = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - temp_depth * (params.z_far - params.z_near)); - } - //temp_depth *= depth_divide; -#endif - // spatial domain: offset gaussian tap - float weight = 0.3 + gaussian[abs(r)]; - //weight *= max(0.0, dot(temp_normal, normal)); + vec2 centre = textureLod(source_ssao, vec2(uv), 0.0).xy; - // range domain (the "bilateral" weight). As depth difference increases, decrease weight. - weight *= max(0.0, 1.0 - params.edge_sharpness * abs(temp_depth - depth)); + vec4 vals; + vals.x = textureLod(source_ssao, vec2(uv + vec2(-halfPixel.x * 3, -halfPixel.y)), 0.0).x; + vals.y = textureLod(source_ssao, vec2(uv + vec2(+halfPixel.x, -halfPixel.y * 3)), 0.0).x; + vals.z = textureLod(source_ssao, vec2(uv + vec2(-halfPixel.x, +halfPixel.y * 3)), 0.0).x; + vals.w = textureLod(source_ssao, vec2(uv + vec2(+halfPixel.x * 3, +halfPixel.y)), 0.0).x; - sum += value * weight; - totalWeight += weight; - } - } + vec2 sampled = vec2(dot(vals, vec4(0.2)) + centre.x * 0.2, centre.y); - const float epsilon = 0.0001; - float visibility = sum / (totalWeight + epsilon); +#else +#ifdef MODE_SMART + vec2 sampled = sample_blurred(vec3(gl_GlobalInvocationID), (vec2(gl_GlobalInvocationID.xy) + vec2(0.5, 0.5)) * params.half_screen_pixel_size); +#else // MODE_WIDE + vec2 sampled = sample_blurred_wide((vec2(gl_GlobalInvocationID.xy) + vec2(0.5, 0.5)) * params.half_screen_pixel_size); +#endif - imageStore(dest_image, ssC, vec4(visibility)); #endif + imageStore(dest_image, ivec2(ssC), vec4(sampled, 0.0, 0.0)); } diff --git a/servers/rendering/renderer_rd/shaders/ssao_downsample.glsl b/servers/rendering/renderer_rd/shaders/ssao_downsample.glsl new file mode 100644 index 0000000000..cb2d31f70d --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/ssao_downsample.glsl @@ -0,0 +1,206 @@ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Copyright (c) 2016, Intel Corporation +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated +// documentation files (the "Software"), to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to +// permit persons to whom the Software is furnished to do so, subject to the following conditions: +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of +// the Software. +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// File changes (yyyy-mm-dd) +// 2016-09-07: filip.strugar@intel.com: first commit +// 2020-12-05: clayjohn: convert to Vulkan and Godot +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +#[compute] + +#version 450 + +VERSION_DEFINES + +layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; + +layout(push_constant, binding = 1, std430) uniform Params { + vec2 pixel_size; + float z_far; + float z_near; + bool orthogonal; + float radius_sq; + uvec2 pad; +} +params; + +layout(set = 0, binding = 0) uniform sampler2D source_depth; + +layout(r16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_image0; //rename +#ifdef GENERATE_MIPS +layout(r16f, set = 2, binding = 0) uniform restrict writeonly image2DArray dest_image1; +layout(r16f, set = 2, binding = 1) uniform restrict writeonly image2DArray dest_image2; +layout(r16f, set = 2, binding = 2) uniform restrict writeonly image2DArray dest_image3; +#endif + +vec4 screen_space_to_view_space_depth(vec4 p_depth) { + if (params.orthogonal) { + vec4 depth = p_depth * 2.0 - 1.0; + return ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; + } + + float depth_linearize_mul = params.z_near; + float depth_linearize_add = params.z_far; + + // Optimised version of "-cameraClipNear / (cameraClipFar - projDepth * (cameraClipFar - cameraClipNear)) * cameraClipFar" + + // Set your depth_linearize_mul and depth_linearize_add to: + // depth_linearize_mul = ( cameraClipFar * cameraClipNear) / ( cameraClipFar - cameraClipNear ); + // depth_linearize_add = cameraClipFar / ( cameraClipFar - cameraClipNear ); + + return depth_linearize_mul / (depth_linearize_add - p_depth); +} + +float screen_space_to_view_space_depth(float p_depth) { + if (params.orthogonal) { + float depth = p_depth * 2.0 - 1.0; + return ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / (2.0 * params.z_far); + } + + float depth_linearize_mul = params.z_near; + float depth_linearize_add = params.z_far; + + return depth_linearize_mul / (depth_linearize_add - p_depth); +} + +#ifdef GENERATE_MIPS + +shared float depth_buffer[4][8][8]; + +float mip_smart_average(vec4 p_depths) { + float closest = min(min(p_depths.x, p_depths.y), min(p_depths.z, p_depths.w)); + float fallof_sq = -1.0f / params.radius_sq; + vec4 dists = p_depths - closest.xxxx; + vec4 weights = clamp(dists * dists * fallof_sq + 1.0, 0.0, 1.0); + return dot(weights, p_depths) / dot(weights, vec4(1.0, 1.0, 1.0, 1.0)); +} + +void prepare_depths_and_mips(vec4 p_samples, uvec2 p_output_coord, uvec2 p_gtid) { + p_samples = screen_space_to_view_space_depth(p_samples); + + depth_buffer[0][p_gtid.x][p_gtid.y] = p_samples.w; + depth_buffer[1][p_gtid.x][p_gtid.y] = p_samples.z; + depth_buffer[2][p_gtid.x][p_gtid.y] = p_samples.x; + depth_buffer[3][p_gtid.x][p_gtid.y] = p_samples.y; + + imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 0), vec4(p_samples.w)); + imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 1), vec4(p_samples.z)); + imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 2), vec4(p_samples.x)); + imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 3), vec4(p_samples.y)); + + uint depth_array_index = 2 * (p_gtid.y % 2) + (p_gtid.x % 2); + uvec2 depth_array_offset = ivec2(p_gtid.x % 2, p_gtid.y % 2); + ivec2 buffer_coord = ivec2(p_gtid) - ivec2(depth_array_offset); + + p_output_coord /= 2; + groupMemoryBarrier(); + barrier(); + + // if (still_alive) <-- all threads alive here + { + float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0]; + float sample_01 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 1]; + float sample_10 = depth_buffer[depth_array_index][buffer_coord.x + 1][buffer_coord.y + 0]; + float sample_11 = depth_buffer[depth_array_index][buffer_coord.x + 1][buffer_coord.y + 1]; + + float avg = mip_smart_average(vec4(sample_00, sample_01, sample_10, sample_11)); + imageStore(dest_image1, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(avg)); + depth_buffer[depth_array_index][buffer_coord.x][buffer_coord.y] = avg; + } + + bool still_alive = p_gtid.x % 4 == depth_array_offset.x && p_gtid.y % 4 == depth_array_offset.y; + + p_output_coord /= 2; + groupMemoryBarrier(); + barrier(); + + if (still_alive) { + float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0]; + float sample_01 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 2]; + float sample_10 = depth_buffer[depth_array_index][buffer_coord.x + 2][buffer_coord.y + 0]; + float sample_11 = depth_buffer[depth_array_index][buffer_coord.x + 2][buffer_coord.y + 2]; + + float avg = mip_smart_average(vec4(sample_00, sample_01, sample_10, sample_11)); + imageStore(dest_image2, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(avg)); + depth_buffer[depth_array_index][buffer_coord.x][buffer_coord.y] = avg; + } + + still_alive = p_gtid.x % 8 == depth_array_offset.x && depth_array_offset.y % 8 == depth_array_offset.y; + + p_output_coord /= 2; + groupMemoryBarrier(); + barrier(); + + if (still_alive) { + float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0]; + float sample_01 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 4]; + float sample_10 = depth_buffer[depth_array_index][buffer_coord.x + 4][buffer_coord.y + 0]; + float sample_11 = depth_buffer[depth_array_index][buffer_coord.x + 4][buffer_coord.y + 4]; + + float avg = mip_smart_average(vec4(sample_00, sample_01, sample_10, sample_11)); + imageStore(dest_image3, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(avg)); + } +} +#else +#ifndef USE_HALF_BUFFERS +void prepare_depths(vec4 p_samples, uvec2 p_tid) { + p_samples = screen_space_to_view_space_depth(p_samples); + + imageStore(dest_image0, ivec3(p_tid, 0), vec4(p_samples.w)); + imageStore(dest_image0, ivec3(p_tid, 1), vec4(p_samples.z)); + imageStore(dest_image0, ivec3(p_tid, 2), vec4(p_samples.x)); + imageStore(dest_image0, ivec3(p_tid, 3), vec4(p_samples.y)); +} +#endif +#endif + +void main() { +#ifdef USE_HALF_BUFFERS +#ifdef USE_HALF_SIZE + float sample_00 = texelFetch(source_depth, ivec2(4 * gl_GlobalInvocationID.x + 0, 4 * gl_GlobalInvocationID.y + 0), 0).x; + float sample_11 = texelFetch(source_depth, ivec2(4 * gl_GlobalInvocationID.x + 2, 4 * gl_GlobalInvocationID.y + 2), 0).x; +#else + float sample_00 = texelFetch(source_depth, ivec2(2 * gl_GlobalInvocationID.x + 0, 2 * gl_GlobalInvocationID.y + 0), 0).x; + float sample_11 = texelFetch(source_depth, ivec2(2 * gl_GlobalInvocationID.x + 1, 2 * gl_GlobalInvocationID.y + 1), 0).x; +#endif + sample_00 = screen_space_to_view_space_depth(sample_00); + sample_11 = screen_space_to_view_space_depth(sample_11); + + imageStore(dest_image0, ivec3(gl_GlobalInvocationID.xy, 0), vec4(sample_00)); + imageStore(dest_image0, ivec3(gl_GlobalInvocationID.xy, 3), vec4(sample_11)); +#else //!USE_HALF_BUFFERS +#ifdef USE_HALF_SIZE + ivec2 depth_buffer_coord = 4 * ivec2(gl_GlobalInvocationID.xy); + ivec2 output_coord = ivec2(gl_GlobalInvocationID); + + vec2 uv = (vec2(depth_buffer_coord) + 0.5f) * params.pixel_size; + vec4 samples; + samples.x = textureLodOffset(source_depth, uv, 0, ivec2(0, 2)).x; + samples.y = textureLodOffset(source_depth, uv, 0, ivec2(2, 2)).x; + samples.z = textureLodOffset(source_depth, uv, 0, ivec2(2, 0)).x; + samples.w = textureLodOffset(source_depth, uv, 0, ivec2(0, 0)).x; +#else + ivec2 depth_buffer_coord = 2 * ivec2(gl_GlobalInvocationID.xy); + ivec2 output_coord = ivec2(gl_GlobalInvocationID); + + vec2 uv = (vec2(depth_buffer_coord) + 0.5f) * params.pixel_size; + vec4 samples = textureGather(source_depth, uv); +#endif +#ifdef GENERATE_MIPS + prepare_depths_and_mips(samples, output_coord, gl_LocalInvocationID.xy); +#else + prepare_depths(samples, gl_GlobalInvocationID.xy); +#endif +#endif +} diff --git a/servers/rendering/renderer_rd/shaders/ssao_importance_map.glsl b/servers/rendering/renderer_rd/shaders/ssao_importance_map.glsl new file mode 100644 index 0000000000..6aa7624261 --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/ssao_importance_map.glsl @@ -0,0 +1,126 @@ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Copyright (c) 2016, Intel Corporation +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated +// documentation files (the "Software"), to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to +// permit persons to whom the Software is furnished to do so, subject to the following conditions: +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of +// the Software. +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// File changes (yyyy-mm-dd) +// 2016-09-07: filip.strugar@intel.com: first commit +// 2020-12-05: clayjohn: convert to Vulkan and Godot +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +#[compute] + +#version 450 + +VERSION_DEFINES + +layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; + +#ifdef GENERATE_MAP +layout(set = 0, binding = 0) uniform sampler2DArray source_ssao; +#else +layout(set = 0, binding = 0) uniform sampler2D source_importance; +#endif +layout(r8, set = 1, binding = 0) uniform restrict writeonly image2D dest_image; + +#ifdef PROCESS_MAPB +layout(set = 2, binding = 0, std430) buffer Counter { + uint sum; +} +counter; +#endif + +layout(push_constant, binding = 1, std430) uniform Params { + vec2 half_screen_pixel_size; + float intensity; + float power; +} +params; + +void main() { + // Pixel being shaded + ivec2 ssC = ivec2(gl_GlobalInvocationID.xy); + +#ifdef GENERATE_MAP + // importance map stuff + uvec2 base_position = ssC * 2; + + vec2 base_uv = (vec2(base_position) + vec2(0.5f, 0.5f)) * params.half_screen_pixel_size; + + float avg = 0.0; + float minV = 1.0; + float maxV = 0.0; + for (int i = 0; i < 4; i++) { + vec4 vals = textureGather(source_ssao, vec3(base_uv, i)); + + // apply the same modifications that would have been applied in the main shader + vals = params.intensity * vals; + + vals = 1 - vals; + + vals = pow(clamp(vals, 0.0, 1.0), vec4(params.power)); + + avg += dot(vec4(vals.x, vals.y, vals.z, vals.w), vec4(1.0 / 16.0, 1.0 / 16.0, 1.0 / 16.0, 1.0 / 16.0)); + + maxV = max(maxV, max(max(vals.x, vals.y), max(vals.z, vals.w))); + minV = min(minV, min(min(vals.x, vals.y), min(vals.z, vals.w))); + } + + float min_max_diff = maxV - minV; + + imageStore(dest_image, ssC, vec4(pow(clamp(min_max_diff * 2.0, 0.0, 1.0), 0.8))); +#endif + +#ifdef PROCESS_MAPA + vec2 uv = (vec2(ssC) + 0.5f) * params.half_screen_pixel_size * 2.0; + + float centre = textureLod(source_importance, uv, 0.0).x; + + vec2 half_pixel = params.half_screen_pixel_size; + + vec4 vals; + vals.x = textureLod(source_importance, uv + vec2(-half_pixel.x * 3, -half_pixel.y), 0.0).x; + vals.y = textureLod(source_importance, uv + vec2(+half_pixel.x, -half_pixel.y * 3), 0.0).x; + vals.z = textureLod(source_importance, uv + vec2(+half_pixel.x * 3, +half_pixel.y), 0.0).x; + vals.w = textureLod(source_importance, uv + vec2(-half_pixel.x, +half_pixel.y * 3), 0.0).x; + + float avg = dot(vals, vec4(0.25, 0.25, 0.25, 0.25)); + + imageStore(dest_image, ssC, vec4(avg)); +#endif + +#ifdef PROCESS_MAPB + vec2 uv = (vec2(ssC) + 0.5f) * params.half_screen_pixel_size * 2.0; + + float centre = textureLod(source_importance, uv, 0.0).x; + + vec2 half_pixel = params.half_screen_pixel_size; + + vec4 vals; + vals.x = textureLod(source_importance, uv + vec2(-half_pixel.x, -half_pixel.y * 3), 0.0).x; + vals.y = textureLod(source_importance, uv + vec2(+half_pixel.x * 3, -half_pixel.y), 0.0).x; + vals.z = textureLod(source_importance, uv + vec2(+half_pixel.x, +half_pixel.y * 3), 0.0).x; + vals.w = textureLod(source_importance, uv + vec2(-half_pixel.x * 3, +half_pixel.y), 0.0).x; + + float avg = dot(vals, vec4(0.25, 0.25, 0.25, 0.25)); + + imageStore(dest_image, ssC, vec4(avg)); + + // sum the average; to avoid overflowing we assume max AO resolution is not bigger than 16384x16384; so quarter res (used here) will be 4096x4096, which leaves us with 8 bits per pixel + uint sum = uint(clamp(avg, 0.0, 1.0) * 255.0 + 0.5); + + // save every 9th to avoid InterlockedAdd congestion - since we're blurring, this is good enough; compensated by multiplying load_counter_avg_div by 9 + if (((ssC.x % 3) + (ssC.y % 3)) == 0) { + atomicAdd(counter.sum, sum); + } +#endif +} diff --git a/servers/rendering/renderer_rd/shaders/ssao_interleave.glsl b/servers/rendering/renderer_rd/shaders/ssao_interleave.glsl new file mode 100644 index 0000000000..4fdf334aa5 --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/ssao_interleave.glsl @@ -0,0 +1,119 @@ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Copyright (c) 2016, Intel Corporation +// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated +// documentation files (the "Software"), to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to +// permit persons to whom the Software is furnished to do so, subject to the following conditions: +// The above copyright notice and this permission notice shall be included in all copies or substantial portions of +// the Software. +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// File changes (yyyy-mm-dd) +// 2016-09-07: filip.strugar@intel.com: first commit +// 2020-12-05: clayjohn: convert to Vulkan and Godot +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +#[compute] + +#version 450 + +VERSION_DEFINES + +layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; + +layout(rgba8, set = 0, binding = 0) uniform restrict writeonly image2D dest_image; +layout(set = 1, binding = 0) uniform sampler2DArray source_texture; + +layout(push_constant, binding = 1, std430) uniform Params { + float inv_sharpness; + uint size_modifier; + vec2 pixel_size; +} +params; + +vec4 unpack_edges(float p_packed_val) { + uint packed_val = uint(p_packed_val * 255.5); + vec4 edgesLRTB; + edgesLRTB.x = float((packed_val >> 6) & 0x03) / 3.0; + edgesLRTB.y = float((packed_val >> 4) & 0x03) / 3.0; + edgesLRTB.z = float((packed_val >> 2) & 0x03) / 3.0; + edgesLRTB.w = float((packed_val >> 0) & 0x03) / 3.0; + + return clamp(edgesLRTB + params.inv_sharpness, 0.0, 1.0); +} + +void main() { + ivec2 ssC = ivec2(gl_GlobalInvocationID.xy); + if (any(greaterThanEqual(ssC, ivec2(1.0 / params.pixel_size)))) { //too large, do nothing + return; + } + +#ifdef MODE_SMART + float ao; + uvec2 pix_pos = uvec2(gl_GlobalInvocationID.xy); + vec2 uv = (gl_GlobalInvocationID.xy + vec2(0.5)) * params.pixel_size; + + // calculate index in the four deinterleaved source array texture + int mx = int(pix_pos.x % 2); + int my = int(pix_pos.y % 2); + int index_center = mx + my * 2; // center index + int index_horizontal = (1 - mx) + my * 2; // neighbouring, horizontal + int index_vertical = mx + (1 - my) * 2; // neighbouring, vertical + int index_diagonal = (1 - mx) + (1 - my) * 2; // diagonal + + vec2 center_val = texelFetch(source_texture, ivec3(pix_pos / uvec2(params.size_modifier), index_center), 0).xy; + + ao = center_val.x; + + vec4 edgesLRTB = unpack_edges(center_val.y); + + // convert index shifts to sampling offsets + float fmx = float(mx); + float fmy = float(my); + + // in case of an edge, push sampling offsets away from the edge (towards pixel center) + float fmxe = (edgesLRTB.y - edgesLRTB.x); + float fmye = (edgesLRTB.w - edgesLRTB.z); + + // calculate final sampling offsets and sample using bilinear filter + vec2 uv_horizontal = (gl_GlobalInvocationID.xy + vec2(0.5) + vec2(fmx + fmxe - 0.5, 0.5 - fmy)) * params.pixel_size; + float ao_horizontal = textureLod(source_texture, vec3(uv_horizontal, index_horizontal), 0.0).x; + vec2 uv_vertical = (gl_GlobalInvocationID.xy + vec2(0.5) + vec2(0.5 - fmx, fmy - 0.5 + fmye)) * params.pixel_size; + float ao_vertical = textureLod(source_texture, vec3(uv_vertical, index_vertical), 0.0).x; + vec2 uv_diagonal = (gl_GlobalInvocationID.xy + vec2(0.5) + vec2(fmx - 0.5 + fmxe, fmy - 0.5 + fmye)) * params.pixel_size; + float ao_diagonal = textureLod(source_texture, vec3(uv_diagonal, index_diagonal), 0.0).x; + + // reduce weight for samples near edge - if the edge is on both sides, weight goes to 0 + vec4 blendWeights; + blendWeights.x = 1.0; + blendWeights.y = (edgesLRTB.x + edgesLRTB.y) * 0.5; + blendWeights.z = (edgesLRTB.z + edgesLRTB.w) * 0.5; + blendWeights.w = (blendWeights.y + blendWeights.z) * 0.5; + + // calculate weighted average + float blendWeightsSum = dot(blendWeights, vec4(1.0, 1.0, 1.0, 1.0)); + ao = dot(vec4(ao, ao_horizontal, ao_vertical, ao_diagonal), blendWeights) / blendWeightsSum; + + imageStore(dest_image, ivec2(gl_GlobalInvocationID.xy), vec4(ao)); +#else // !MODE_SMART + + vec2 uv = (gl_GlobalInvocationID.xy + vec2(0.5)) * params.pixel_size; +#ifdef MODE_HALF + float a = textureLod(source_texture, vec3(uv, 0), 0.0).x; + float d = textureLod(source_texture, vec3(uv, 3), 0.0).x; + float avg = (a + d) * 0.5; + +#else + float a = textureLod(source_texture, vec3(uv, 0), 0.0).x; + float b = textureLod(source_texture, vec3(uv, 1), 0.0).x; + float c = textureLod(source_texture, vec3(uv, 2), 0.0).x; + float d = textureLod(source_texture, vec3(uv, 3), 0.0).x; + float avg = (a + b + c + d) * 0.25; + +#endif + imageStore(dest_image, ivec2(gl_GlobalInvocationID.xy), vec4(avg)); +#endif +} diff --git a/servers/rendering/renderer_rd/shaders/ssao_minify.glsl b/servers/rendering/renderer_rd/shaders/ssao_minify.glsl deleted file mode 100644 index 263fca386f..0000000000 --- a/servers/rendering/renderer_rd/shaders/ssao_minify.glsl +++ /dev/null @@ -1,45 +0,0 @@ -#[compute] - -#version 450 - -VERSION_DEFINES - -layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; - -layout(push_constant, binding = 1, std430) uniform Params { - vec2 pixel_size; - float z_far; - float z_near; - ivec2 source_size; - bool orthogonal; - uint pad; -} -params; - -#ifdef MINIFY_START -layout(set = 0, binding = 0) uniform sampler2D source_texture; -#else -layout(r32f, set = 0, binding = 0) uniform restrict readonly image2D source_image; -#endif -layout(r32f, set = 1, binding = 0) uniform restrict writeonly image2D dest_image; - -void main() { - ivec2 pos = ivec2(gl_GlobalInvocationID.xy); - - if (any(greaterThan(pos, params.source_size >> 1))) { //too large, do nothing - return; - } - -#ifdef MINIFY_START - float depth = texelFetch(source_texture, pos << 1, 0).r * 2.0 - 1.0; - if (params.orthogonal) { - depth = ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; - } else { - depth = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - depth * (params.z_far - params.z_near)); - } -#else - float depth = imageLoad(source_image, pos << 1).r; -#endif - - imageStore(dest_image, pos, vec4(depth)); -} |