diff options
Diffstat (limited to 'servers/physics_3d/joints/slider_joint_3d_sw.cpp')
-rw-r--r-- | servers/physics_3d/joints/slider_joint_3d_sw.cpp | 443 |
1 files changed, 443 insertions, 0 deletions
diff --git a/servers/physics_3d/joints/slider_joint_3d_sw.cpp b/servers/physics_3d/joints/slider_joint_3d_sw.cpp new file mode 100644 index 0000000000..01336e2d7c --- /dev/null +++ b/servers/physics_3d/joints/slider_joint_3d_sw.cpp @@ -0,0 +1,443 @@ +/*************************************************************************/ +/* slider_joint_sw.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +/* +Adapted to Godot from the Bullet library. +*/ + +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +/* +Added by Roman Ponomarev (rponom@gmail.com) +April 04, 2008 + +*/ + +#include "slider_joint_3d_sw.h" + +//----------------------------------------------------------------------------- + +static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) { + real_t coeff_1 = Math_PI / 4.0f; + real_t coeff_2 = 3.0f * coeff_1; + real_t abs_y = Math::abs(y); + real_t angle; + if (x >= 0.0f) { + real_t r = (x - abs_y) / (x + abs_y); + angle = coeff_1 - coeff_1 * r; + } else { + real_t r = (x + abs_y) / (abs_y - x); + angle = coeff_2 - coeff_1 * r; + } + return (y < 0.0f) ? -angle : angle; +} + +void SliderJoint3DSW::initParams() { + m_lowerLinLimit = real_t(1.0); + m_upperLinLimit = real_t(-1.0); + m_lowerAngLimit = real_t(0.); + m_upperAngLimit = real_t(0.); + m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingDirLin = real_t(0.); + m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingDirAng = real_t(0.); + m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING; + m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING; + m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING; + m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; + m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; + m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING; + + m_poweredLinMotor = false; + m_targetLinMotorVelocity = real_t(0.); + m_maxLinMotorForce = real_t(0.); + m_accumulatedLinMotorImpulse = real_t(0.0); + + m_poweredAngMotor = false; + m_targetAngMotorVelocity = real_t(0.); + m_maxAngMotorForce = real_t(0.); + m_accumulatedAngMotorImpulse = real_t(0.0); + +} // SliderJointSW::initParams() + +//----------------------------------------------------------------------------- + +//----------------------------------------------------------------------------- + +SliderJoint3DSW::SliderJoint3DSW(Body3DSW *rbA, Body3DSW *rbB, const Transform &frameInA, const Transform &frameInB) : + Joint3DSW(_arr, 2), + m_frameInA(frameInA), + m_frameInB(frameInB) { + + A = rbA; + B = rbB; + + A->add_constraint(this, 0); + B->add_constraint(this, 1); + + initParams(); +} // SliderJointSW::SliderJointSW() + +//----------------------------------------------------------------------------- + +bool SliderJoint3DSW::setup(real_t p_step) { + + //calculate transforms + m_calculatedTransformA = A->get_transform() * m_frameInA; + m_calculatedTransformB = B->get_transform() * m_frameInB; + m_realPivotAInW = m_calculatedTransformA.origin; + m_realPivotBInW = m_calculatedTransformB.origin; + m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X + m_delta = m_realPivotBInW - m_realPivotAInW; + m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; + m_relPosA = m_projPivotInW - A->get_transform().origin; + m_relPosB = m_realPivotBInW - B->get_transform().origin; + Vector3 normalWorld; + int i; + //linear part + for (i = 0; i < 3; i++) { + normalWorld = m_calculatedTransformA.basis.get_axis(i); + memnew_placement(&m_jacLin[i], JacobianEntry3DSW( + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + m_relPosA - A->get_center_of_mass(), + m_relPosB - B->get_center_of_mass(), + normalWorld, + A->get_inv_inertia(), + A->get_inv_mass(), + B->get_inv_inertia(), + B->get_inv_mass())); + m_jacLinDiagABInv[i] = real_t(1.) / m_jacLin[i].getDiagonal(); + m_depth[i] = m_delta.dot(normalWorld); + } + testLinLimits(); + // angular part + for (i = 0; i < 3; i++) { + normalWorld = m_calculatedTransformA.basis.get_axis(i); + memnew_placement(&m_jacAng[i], JacobianEntry3DSW( + normalWorld, + A->get_principal_inertia_axes().transposed(), + B->get_principal_inertia_axes().transposed(), + A->get_inv_inertia(), + B->get_inv_inertia())); + } + testAngLimits(); + Vector3 axisA = m_calculatedTransformA.basis.get_axis(0); + m_kAngle = real_t(1.0) / (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA)); + // clear accumulator for motors + m_accumulatedLinMotorImpulse = real_t(0.0); + m_accumulatedAngMotorImpulse = real_t(0.0); + + return true; +} // SliderJointSW::buildJacobianInt() + +//----------------------------------------------------------------------------- + +void SliderJoint3DSW::solve(real_t p_step) { + + int i; + // linear + Vector3 velA = A->get_velocity_in_local_point(m_relPosA); + Vector3 velB = B->get_velocity_in_local_point(m_relPosB); + Vector3 vel = velA - velB; + for (i = 0; i < 3; i++) { + const Vector3 &normal = m_jacLin[i].m_linearJointAxis; + real_t rel_vel = normal.dot(vel); + // calculate positional error + real_t depth = m_depth[i]; + // get parameters + real_t softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin); + real_t restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin); + real_t damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin); + // calcutate and apply impulse + real_t normalImpulse = softness * (restitution * depth / p_step - damping * rel_vel) * m_jacLinDiagABInv[i]; + Vector3 impulse_vector = normal * normalImpulse; + A->apply_impulse(m_relPosA, impulse_vector); + B->apply_impulse(m_relPosB, -impulse_vector); + if (m_poweredLinMotor && (!i)) { // apply linear motor + if (m_accumulatedLinMotorImpulse < m_maxLinMotorForce) { + real_t desiredMotorVel = m_targetLinMotorVelocity; + real_t motor_relvel = desiredMotorVel + rel_vel; + normalImpulse = -motor_relvel * m_jacLinDiagABInv[i]; + // clamp accumulated impulse + real_t new_acc = m_accumulatedLinMotorImpulse + Math::abs(normalImpulse); + if (new_acc > m_maxLinMotorForce) { + new_acc = m_maxLinMotorForce; + } + real_t del = new_acc - m_accumulatedLinMotorImpulse; + if (normalImpulse < real_t(0.0)) { + normalImpulse = -del; + } else { + normalImpulse = del; + } + m_accumulatedLinMotorImpulse = new_acc; + // apply clamped impulse + impulse_vector = normal * normalImpulse; + A->apply_impulse(m_relPosA, impulse_vector); + B->apply_impulse(m_relPosB, -impulse_vector); + } + } + } + // angular + // get axes in world space + Vector3 axisA = m_calculatedTransformA.basis.get_axis(0); + Vector3 axisB = m_calculatedTransformB.basis.get_axis(0); + + const Vector3 &angVelA = A->get_angular_velocity(); + const Vector3 &angVelB = B->get_angular_velocity(); + + Vector3 angVelAroundAxisA = axisA * axisA.dot(angVelA); + Vector3 angVelAroundAxisB = axisB * axisB.dot(angVelB); + + Vector3 angAorthog = angVelA - angVelAroundAxisA; + Vector3 angBorthog = angVelB - angVelAroundAxisB; + Vector3 velrelOrthog = angAorthog - angBorthog; + //solve orthogonal angular velocity correction + real_t len = velrelOrthog.length(); + if (len > real_t(0.00001)) { + Vector3 normal = velrelOrthog.normalized(); + real_t denom = A->compute_angular_impulse_denominator(normal) + B->compute_angular_impulse_denominator(normal); + velrelOrthog *= (real_t(1.) / denom) * m_dampingOrthoAng * m_softnessOrthoAng; + } + //solve angular positional correction + Vector3 angularError = axisA.cross(axisB) * (real_t(1.) / p_step); + real_t len2 = angularError.length(); + if (len2 > real_t(0.00001)) { + Vector3 normal2 = angularError.normalized(); + real_t denom2 = A->compute_angular_impulse_denominator(normal2) + B->compute_angular_impulse_denominator(normal2); + angularError *= (real_t(1.) / denom2) * m_restitutionOrthoAng * m_softnessOrthoAng; + } + // apply impulse + A->apply_torque_impulse(-velrelOrthog + angularError); + B->apply_torque_impulse(velrelOrthog - angularError); + real_t impulseMag; + //solve angular limits + if (m_solveAngLim) { + impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / p_step; + impulseMag *= m_kAngle * m_softnessLimAng; + } else { + impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / p_step; + impulseMag *= m_kAngle * m_softnessDirAng; + } + Vector3 impulse = axisA * impulseMag; + A->apply_torque_impulse(impulse); + B->apply_torque_impulse(-impulse); + //apply angular motor + if (m_poweredAngMotor) { + if (m_accumulatedAngMotorImpulse < m_maxAngMotorForce) { + Vector3 velrel = angVelAroundAxisA - angVelAroundAxisB; + real_t projRelVel = velrel.dot(axisA); + + real_t desiredMotorVel = m_targetAngMotorVelocity; + real_t motor_relvel = desiredMotorVel - projRelVel; + + real_t angImpulse = m_kAngle * motor_relvel; + // clamp accumulated impulse + real_t new_acc = m_accumulatedAngMotorImpulse + Math::abs(angImpulse); + if (new_acc > m_maxAngMotorForce) { + new_acc = m_maxAngMotorForce; + } + real_t del = new_acc - m_accumulatedAngMotorImpulse; + if (angImpulse < real_t(0.0)) { + angImpulse = -del; + } else { + angImpulse = del; + } + m_accumulatedAngMotorImpulse = new_acc; + // apply clamped impulse + Vector3 motorImp = angImpulse * axisA; + A->apply_torque_impulse(motorImp); + B->apply_torque_impulse(-motorImp); + } + } +} // SliderJointSW::solveConstraint() + +//----------------------------------------------------------------------------- + +//----------------------------------------------------------------------------- + +void SliderJoint3DSW::calculateTransforms(void) { + m_calculatedTransformA = A->get_transform() * m_frameInA; + m_calculatedTransformB = B->get_transform() * m_frameInB; + m_realPivotAInW = m_calculatedTransformA.origin; + m_realPivotBInW = m_calculatedTransformB.origin; + m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X + m_delta = m_realPivotBInW - m_realPivotAInW; + m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; + Vector3 normalWorld; + int i; + //linear part + for (i = 0; i < 3; i++) { + normalWorld = m_calculatedTransformA.basis.get_axis(i); + m_depth[i] = m_delta.dot(normalWorld); + } +} // SliderJointSW::calculateTransforms() + +//----------------------------------------------------------------------------- + +void SliderJoint3DSW::testLinLimits(void) { + m_solveLinLim = false; + m_linPos = m_depth[0]; + if (m_lowerLinLimit <= m_upperLinLimit) { + if (m_depth[0] > m_upperLinLimit) { + m_depth[0] -= m_upperLinLimit; + m_solveLinLim = true; + } else if (m_depth[0] < m_lowerLinLimit) { + m_depth[0] -= m_lowerLinLimit; + m_solveLinLim = true; + } else { + m_depth[0] = real_t(0.); + } + } else { + m_depth[0] = real_t(0.); + } +} // SliderJointSW::testLinLimits() + +//----------------------------------------------------------------------------- + +void SliderJoint3DSW::testAngLimits(void) { + m_angDepth = real_t(0.); + m_solveAngLim = false; + if (m_lowerAngLimit <= m_upperAngLimit) { + const Vector3 axisA0 = m_calculatedTransformA.basis.get_axis(1); + const Vector3 axisA1 = m_calculatedTransformA.basis.get_axis(2); + const Vector3 axisB0 = m_calculatedTransformB.basis.get_axis(1); + real_t rot = atan2fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); + if (rot < m_lowerAngLimit) { + m_angDepth = rot - m_lowerAngLimit; + m_solveAngLim = true; + } else if (rot > m_upperAngLimit) { + m_angDepth = rot - m_upperAngLimit; + m_solveAngLim = true; + } + } +} // SliderJointSW::testAngLimits() + +//----------------------------------------------------------------------------- + +Vector3 SliderJoint3DSW::getAncorInA(void) { + Vector3 ancorInA; + ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * real_t(0.5) * m_sliderAxis; + ancorInA = A->get_transform().inverse().xform(ancorInA); + return ancorInA; +} // SliderJointSW::getAncorInA() + +//----------------------------------------------------------------------------- + +Vector3 SliderJoint3DSW::getAncorInB(void) { + Vector3 ancorInB; + ancorInB = m_frameInB.origin; + return ancorInB; +} // SliderJointSW::getAncorInB(); + +void SliderJoint3DSW::set_param(PhysicsServer3D::SliderJointParam p_param, real_t p_value) { + + switch (p_param) { + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: m_upperLinLimit = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: m_lowerLinLimit = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: m_softnessLimLin = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: m_restitutionLimLin = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: m_dampingLimLin = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: m_softnessDirLin = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: m_restitutionDirLin = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: m_dampingDirLin = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoLin = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoLin = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: m_dampingOrthoLin = p_value; break; + + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: m_upperAngLimit = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: m_lowerAngLimit = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: m_softnessLimAng = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: m_restitutionLimAng = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: m_dampingLimAng = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: m_softnessDirAng = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: m_restitutionDirAng = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: m_dampingDirAng = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoAng = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoAng = p_value; break; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: m_dampingOrthoAng = p_value; break; + + case PhysicsServer3D::SLIDER_JOINT_MAX: break; // Can't happen, but silences warning + } +} + +real_t SliderJoint3DSW::get_param(PhysicsServer3D::SliderJointParam p_param) const { + + switch (p_param) { + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: return m_upperLinLimit; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: return m_lowerLinLimit; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: return m_softnessLimLin; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: return m_restitutionLimLin; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: return m_dampingLimLin; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: return m_softnessDirLin; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: return m_restitutionDirLin; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: return m_dampingDirLin; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoLin; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoLin; + case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: return m_dampingOrthoLin; + + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: return m_upperAngLimit; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: return m_lowerAngLimit; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: return m_softnessLimAng; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: return m_restitutionLimAng; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: return m_dampingLimAng; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: return m_softnessDirAng; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: return m_restitutionDirAng; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: return m_dampingDirAng; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoAng; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoAng; + case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: return m_dampingOrthoAng; + + case PhysicsServer3D::SLIDER_JOINT_MAX: break; // Can't happen, but silences warning + } + + return 0; +} |