summaryrefslogtreecommitdiff
path: root/servers/physics_3d/joints/slider_joint_3d_sw.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'servers/physics_3d/joints/slider_joint_3d_sw.cpp')
-rw-r--r--servers/physics_3d/joints/slider_joint_3d_sw.cpp443
1 files changed, 443 insertions, 0 deletions
diff --git a/servers/physics_3d/joints/slider_joint_3d_sw.cpp b/servers/physics_3d/joints/slider_joint_3d_sw.cpp
new file mode 100644
index 0000000000..01336e2d7c
--- /dev/null
+++ b/servers/physics_3d/joints/slider_joint_3d_sw.cpp
@@ -0,0 +1,443 @@
+/*************************************************************************/
+/* slider_joint_sw.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+/*
+Adapted to Godot from the Bullet library.
+*/
+
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+/*
+Added by Roman Ponomarev (rponom@gmail.com)
+April 04, 2008
+
+*/
+
+#include "slider_joint_3d_sw.h"
+
+//-----------------------------------------------------------------------------
+
+static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) {
+ real_t coeff_1 = Math_PI / 4.0f;
+ real_t coeff_2 = 3.0f * coeff_1;
+ real_t abs_y = Math::abs(y);
+ real_t angle;
+ if (x >= 0.0f) {
+ real_t r = (x - abs_y) / (x + abs_y);
+ angle = coeff_1 - coeff_1 * r;
+ } else {
+ real_t r = (x + abs_y) / (abs_y - x);
+ angle = coeff_2 - coeff_1 * r;
+ }
+ return (y < 0.0f) ? -angle : angle;
+}
+
+void SliderJoint3DSW::initParams() {
+ m_lowerLinLimit = real_t(1.0);
+ m_upperLinLimit = real_t(-1.0);
+ m_lowerAngLimit = real_t(0.);
+ m_upperAngLimit = real_t(0.);
+ m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingDirLin = real_t(0.);
+ m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingDirAng = real_t(0.);
+ m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING;
+
+ m_poweredLinMotor = false;
+ m_targetLinMotorVelocity = real_t(0.);
+ m_maxLinMotorForce = real_t(0.);
+ m_accumulatedLinMotorImpulse = real_t(0.0);
+
+ m_poweredAngMotor = false;
+ m_targetAngMotorVelocity = real_t(0.);
+ m_maxAngMotorForce = real_t(0.);
+ m_accumulatedAngMotorImpulse = real_t(0.0);
+
+} // SliderJointSW::initParams()
+
+//-----------------------------------------------------------------------------
+
+//-----------------------------------------------------------------------------
+
+SliderJoint3DSW::SliderJoint3DSW(Body3DSW *rbA, Body3DSW *rbB, const Transform &frameInA, const Transform &frameInB) :
+ Joint3DSW(_arr, 2),
+ m_frameInA(frameInA),
+ m_frameInB(frameInB) {
+
+ A = rbA;
+ B = rbB;
+
+ A->add_constraint(this, 0);
+ B->add_constraint(this, 1);
+
+ initParams();
+} // SliderJointSW::SliderJointSW()
+
+//-----------------------------------------------------------------------------
+
+bool SliderJoint3DSW::setup(real_t p_step) {
+
+ //calculate transforms
+ m_calculatedTransformA = A->get_transform() * m_frameInA;
+ m_calculatedTransformB = B->get_transform() * m_frameInB;
+ m_realPivotAInW = m_calculatedTransformA.origin;
+ m_realPivotBInW = m_calculatedTransformB.origin;
+ m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X
+ m_delta = m_realPivotBInW - m_realPivotAInW;
+ m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
+ m_relPosA = m_projPivotInW - A->get_transform().origin;
+ m_relPosB = m_realPivotBInW - B->get_transform().origin;
+ Vector3 normalWorld;
+ int i;
+ //linear part
+ for (i = 0; i < 3; i++) {
+ normalWorld = m_calculatedTransformA.basis.get_axis(i);
+ memnew_placement(&m_jacLin[i], JacobianEntry3DSW(
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ m_relPosA - A->get_center_of_mass(),
+ m_relPosB - B->get_center_of_mass(),
+ normalWorld,
+ A->get_inv_inertia(),
+ A->get_inv_mass(),
+ B->get_inv_inertia(),
+ B->get_inv_mass()));
+ m_jacLinDiagABInv[i] = real_t(1.) / m_jacLin[i].getDiagonal();
+ m_depth[i] = m_delta.dot(normalWorld);
+ }
+ testLinLimits();
+ // angular part
+ for (i = 0; i < 3; i++) {
+ normalWorld = m_calculatedTransformA.basis.get_axis(i);
+ memnew_placement(&m_jacAng[i], JacobianEntry3DSW(
+ normalWorld,
+ A->get_principal_inertia_axes().transposed(),
+ B->get_principal_inertia_axes().transposed(),
+ A->get_inv_inertia(),
+ B->get_inv_inertia()));
+ }
+ testAngLimits();
+ Vector3 axisA = m_calculatedTransformA.basis.get_axis(0);
+ m_kAngle = real_t(1.0) / (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA));
+ // clear accumulator for motors
+ m_accumulatedLinMotorImpulse = real_t(0.0);
+ m_accumulatedAngMotorImpulse = real_t(0.0);
+
+ return true;
+} // SliderJointSW::buildJacobianInt()
+
+//-----------------------------------------------------------------------------
+
+void SliderJoint3DSW::solve(real_t p_step) {
+
+ int i;
+ // linear
+ Vector3 velA = A->get_velocity_in_local_point(m_relPosA);
+ Vector3 velB = B->get_velocity_in_local_point(m_relPosB);
+ Vector3 vel = velA - velB;
+ for (i = 0; i < 3; i++) {
+ const Vector3 &normal = m_jacLin[i].m_linearJointAxis;
+ real_t rel_vel = normal.dot(vel);
+ // calculate positional error
+ real_t depth = m_depth[i];
+ // get parameters
+ real_t softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin);
+ real_t restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin);
+ real_t damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin);
+ // calcutate and apply impulse
+ real_t normalImpulse = softness * (restitution * depth / p_step - damping * rel_vel) * m_jacLinDiagABInv[i];
+ Vector3 impulse_vector = normal * normalImpulse;
+ A->apply_impulse(m_relPosA, impulse_vector);
+ B->apply_impulse(m_relPosB, -impulse_vector);
+ if (m_poweredLinMotor && (!i)) { // apply linear motor
+ if (m_accumulatedLinMotorImpulse < m_maxLinMotorForce) {
+ real_t desiredMotorVel = m_targetLinMotorVelocity;
+ real_t motor_relvel = desiredMotorVel + rel_vel;
+ normalImpulse = -motor_relvel * m_jacLinDiagABInv[i];
+ // clamp accumulated impulse
+ real_t new_acc = m_accumulatedLinMotorImpulse + Math::abs(normalImpulse);
+ if (new_acc > m_maxLinMotorForce) {
+ new_acc = m_maxLinMotorForce;
+ }
+ real_t del = new_acc - m_accumulatedLinMotorImpulse;
+ if (normalImpulse < real_t(0.0)) {
+ normalImpulse = -del;
+ } else {
+ normalImpulse = del;
+ }
+ m_accumulatedLinMotorImpulse = new_acc;
+ // apply clamped impulse
+ impulse_vector = normal * normalImpulse;
+ A->apply_impulse(m_relPosA, impulse_vector);
+ B->apply_impulse(m_relPosB, -impulse_vector);
+ }
+ }
+ }
+ // angular
+ // get axes in world space
+ Vector3 axisA = m_calculatedTransformA.basis.get_axis(0);
+ Vector3 axisB = m_calculatedTransformB.basis.get_axis(0);
+
+ const Vector3 &angVelA = A->get_angular_velocity();
+ const Vector3 &angVelB = B->get_angular_velocity();
+
+ Vector3 angVelAroundAxisA = axisA * axisA.dot(angVelA);
+ Vector3 angVelAroundAxisB = axisB * axisB.dot(angVelB);
+
+ Vector3 angAorthog = angVelA - angVelAroundAxisA;
+ Vector3 angBorthog = angVelB - angVelAroundAxisB;
+ Vector3 velrelOrthog = angAorthog - angBorthog;
+ //solve orthogonal angular velocity correction
+ real_t len = velrelOrthog.length();
+ if (len > real_t(0.00001)) {
+ Vector3 normal = velrelOrthog.normalized();
+ real_t denom = A->compute_angular_impulse_denominator(normal) + B->compute_angular_impulse_denominator(normal);
+ velrelOrthog *= (real_t(1.) / denom) * m_dampingOrthoAng * m_softnessOrthoAng;
+ }
+ //solve angular positional correction
+ Vector3 angularError = axisA.cross(axisB) * (real_t(1.) / p_step);
+ real_t len2 = angularError.length();
+ if (len2 > real_t(0.00001)) {
+ Vector3 normal2 = angularError.normalized();
+ real_t denom2 = A->compute_angular_impulse_denominator(normal2) + B->compute_angular_impulse_denominator(normal2);
+ angularError *= (real_t(1.) / denom2) * m_restitutionOrthoAng * m_softnessOrthoAng;
+ }
+ // apply impulse
+ A->apply_torque_impulse(-velrelOrthog + angularError);
+ B->apply_torque_impulse(velrelOrthog - angularError);
+ real_t impulseMag;
+ //solve angular limits
+ if (m_solveAngLim) {
+ impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / p_step;
+ impulseMag *= m_kAngle * m_softnessLimAng;
+ } else {
+ impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / p_step;
+ impulseMag *= m_kAngle * m_softnessDirAng;
+ }
+ Vector3 impulse = axisA * impulseMag;
+ A->apply_torque_impulse(impulse);
+ B->apply_torque_impulse(-impulse);
+ //apply angular motor
+ if (m_poweredAngMotor) {
+ if (m_accumulatedAngMotorImpulse < m_maxAngMotorForce) {
+ Vector3 velrel = angVelAroundAxisA - angVelAroundAxisB;
+ real_t projRelVel = velrel.dot(axisA);
+
+ real_t desiredMotorVel = m_targetAngMotorVelocity;
+ real_t motor_relvel = desiredMotorVel - projRelVel;
+
+ real_t angImpulse = m_kAngle * motor_relvel;
+ // clamp accumulated impulse
+ real_t new_acc = m_accumulatedAngMotorImpulse + Math::abs(angImpulse);
+ if (new_acc > m_maxAngMotorForce) {
+ new_acc = m_maxAngMotorForce;
+ }
+ real_t del = new_acc - m_accumulatedAngMotorImpulse;
+ if (angImpulse < real_t(0.0)) {
+ angImpulse = -del;
+ } else {
+ angImpulse = del;
+ }
+ m_accumulatedAngMotorImpulse = new_acc;
+ // apply clamped impulse
+ Vector3 motorImp = angImpulse * axisA;
+ A->apply_torque_impulse(motorImp);
+ B->apply_torque_impulse(-motorImp);
+ }
+ }
+} // SliderJointSW::solveConstraint()
+
+//-----------------------------------------------------------------------------
+
+//-----------------------------------------------------------------------------
+
+void SliderJoint3DSW::calculateTransforms(void) {
+ m_calculatedTransformA = A->get_transform() * m_frameInA;
+ m_calculatedTransformB = B->get_transform() * m_frameInB;
+ m_realPivotAInW = m_calculatedTransformA.origin;
+ m_realPivotBInW = m_calculatedTransformB.origin;
+ m_sliderAxis = m_calculatedTransformA.basis.get_axis(0); // along X
+ m_delta = m_realPivotBInW - m_realPivotAInW;
+ m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
+ Vector3 normalWorld;
+ int i;
+ //linear part
+ for (i = 0; i < 3; i++) {
+ normalWorld = m_calculatedTransformA.basis.get_axis(i);
+ m_depth[i] = m_delta.dot(normalWorld);
+ }
+} // SliderJointSW::calculateTransforms()
+
+//-----------------------------------------------------------------------------
+
+void SliderJoint3DSW::testLinLimits(void) {
+ m_solveLinLim = false;
+ m_linPos = m_depth[0];
+ if (m_lowerLinLimit <= m_upperLinLimit) {
+ if (m_depth[0] > m_upperLinLimit) {
+ m_depth[0] -= m_upperLinLimit;
+ m_solveLinLim = true;
+ } else if (m_depth[0] < m_lowerLinLimit) {
+ m_depth[0] -= m_lowerLinLimit;
+ m_solveLinLim = true;
+ } else {
+ m_depth[0] = real_t(0.);
+ }
+ } else {
+ m_depth[0] = real_t(0.);
+ }
+} // SliderJointSW::testLinLimits()
+
+//-----------------------------------------------------------------------------
+
+void SliderJoint3DSW::testAngLimits(void) {
+ m_angDepth = real_t(0.);
+ m_solveAngLim = false;
+ if (m_lowerAngLimit <= m_upperAngLimit) {
+ const Vector3 axisA0 = m_calculatedTransformA.basis.get_axis(1);
+ const Vector3 axisA1 = m_calculatedTransformA.basis.get_axis(2);
+ const Vector3 axisB0 = m_calculatedTransformB.basis.get_axis(1);
+ real_t rot = atan2fast(axisB0.dot(axisA1), axisB0.dot(axisA0));
+ if (rot < m_lowerAngLimit) {
+ m_angDepth = rot - m_lowerAngLimit;
+ m_solveAngLim = true;
+ } else if (rot > m_upperAngLimit) {
+ m_angDepth = rot - m_upperAngLimit;
+ m_solveAngLim = true;
+ }
+ }
+} // SliderJointSW::testAngLimits()
+
+//-----------------------------------------------------------------------------
+
+Vector3 SliderJoint3DSW::getAncorInA(void) {
+ Vector3 ancorInA;
+ ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * real_t(0.5) * m_sliderAxis;
+ ancorInA = A->get_transform().inverse().xform(ancorInA);
+ return ancorInA;
+} // SliderJointSW::getAncorInA()
+
+//-----------------------------------------------------------------------------
+
+Vector3 SliderJoint3DSW::getAncorInB(void) {
+ Vector3 ancorInB;
+ ancorInB = m_frameInB.origin;
+ return ancorInB;
+} // SliderJointSW::getAncorInB();
+
+void SliderJoint3DSW::set_param(PhysicsServer3D::SliderJointParam p_param, real_t p_value) {
+
+ switch (p_param) {
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: m_upperLinLimit = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: m_lowerLinLimit = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: m_softnessLimLin = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: m_restitutionLimLin = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: m_dampingLimLin = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: m_softnessDirLin = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: m_restitutionDirLin = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: m_dampingDirLin = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoLin = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoLin = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: m_dampingOrthoLin = p_value; break;
+
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: m_upperAngLimit = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: m_lowerAngLimit = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: m_softnessLimAng = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: m_restitutionLimAng = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: m_dampingLimAng = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: m_softnessDirAng = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: m_restitutionDirAng = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: m_dampingDirAng = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: m_softnessOrthoAng = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: m_restitutionOrthoAng = p_value; break;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: m_dampingOrthoAng = p_value; break;
+
+ case PhysicsServer3D::SLIDER_JOINT_MAX: break; // Can't happen, but silences warning
+ }
+}
+
+real_t SliderJoint3DSW::get_param(PhysicsServer3D::SliderJointParam p_param) const {
+
+ switch (p_param) {
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_UPPER: return m_upperLinLimit;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_LOWER: return m_lowerLinLimit;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: return m_softnessLimLin;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: return m_restitutionLimLin;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: return m_dampingLimLin;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: return m_softnessDirLin;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: return m_restitutionDirLin;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: return m_dampingDirLin;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoLin;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoLin;
+ case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: return m_dampingOrthoLin;
+
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: return m_upperAngLimit;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: return m_lowerAngLimit;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: return m_softnessLimAng;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: return m_restitutionLimAng;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: return m_dampingLimAng;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: return m_softnessDirAng;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: return m_restitutionDirAng;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: return m_dampingDirAng;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: return m_softnessOrthoAng;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: return m_restitutionOrthoAng;
+ case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: return m_dampingOrthoAng;
+
+ case PhysicsServer3D::SLIDER_JOINT_MAX: break; // Can't happen, but silences warning
+ }
+
+ return 0;
+}