summaryrefslogtreecommitdiff
path: root/scene/resources/mesh.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'scene/resources/mesh.cpp')
-rw-r--r--scene/resources/mesh.cpp362
1 files changed, 299 insertions, 63 deletions
diff --git a/scene/resources/mesh.cpp b/scene/resources/mesh.cpp
index 51b4e1fbd8..ab1873ffe9 100644
--- a/scene/resources/mesh.cpp
+++ b/scene/resources/mesh.cpp
@@ -5,8 +5,8 @@
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
-/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
@@ -40,6 +40,122 @@
Mesh::ConvexDecompositionFunc Mesh::convex_decomposition_function = nullptr;
+int Mesh::get_surface_count() const {
+ int ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_get_surface_count, ret)) {
+ return ret;
+ }
+ return 0;
+}
+
+int Mesh::surface_get_array_len(int p_idx) const {
+ int ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_surface_get_array_len, p_idx, ret)) {
+ return ret;
+ }
+ return 0;
+}
+
+int Mesh::surface_get_array_index_len(int p_idx) const {
+ int ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_surface_get_array_index_len, p_idx, ret)) {
+ return ret;
+ }
+ return 0;
+}
+
+Array Mesh::surface_get_arrays(int p_surface) const {
+ Array ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_surface_get_arrays, p_surface, ret)) {
+ return ret;
+ }
+ return Array();
+}
+
+Array Mesh::surface_get_blend_shape_arrays(int p_surface) const {
+ Array ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_surface_get_blend_shape_arrays, p_surface, ret)) {
+ return ret;
+ }
+
+ return Array();
+}
+
+Dictionary Mesh::surface_get_lods(int p_surface) const {
+ Dictionary ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_surface_get_lods, p_surface, ret)) {
+ return ret;
+ }
+
+ return Dictionary();
+}
+
+uint32_t Mesh::surface_get_format(int p_idx) const {
+ uint32_t ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_surface_get_format, p_idx, ret)) {
+ return ret;
+ }
+
+ return 0;
+}
+
+Mesh::PrimitiveType Mesh::surface_get_primitive_type(int p_idx) const {
+ uint32_t ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_surface_get_primitive_type, p_idx, ret)) {
+ return (Mesh::PrimitiveType)ret;
+ }
+
+ return PRIMITIVE_MAX;
+}
+
+void Mesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
+ if (GDVIRTUAL_REQUIRED_CALL(_surface_set_material, p_idx, p_material)) {
+ return;
+ }
+}
+
+Ref<Material> Mesh::surface_get_material(int p_idx) const {
+ Ref<Material> ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_surface_get_material, p_idx, ret)) {
+ return ret;
+ }
+
+ return Ref<Material>();
+}
+
+int Mesh::get_blend_shape_count() const {
+ int ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_get_blend_shape_count, ret)) {
+ return ret;
+ }
+
+ return 0;
+}
+
+StringName Mesh::get_blend_shape_name(int p_index) const {
+ StringName ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_get_blend_shape_name, p_index, ret)) {
+ return ret;
+ }
+
+ return StringName();
+}
+
+void Mesh::set_blend_shape_name(int p_index, const StringName &p_name) {
+ if (GDVIRTUAL_REQUIRED_CALL(_set_blend_shape_name, p_index, p_name)) {
+ return;
+ }
+}
+
+AABB Mesh::get_aabb() const {
+ AABB ret;
+ if (GDVIRTUAL_REQUIRED_CALL(_get_aabb, ret)) {
+ return ret;
+ }
+
+ return AABB();
+}
+
Ref<TriangleMesh> Mesh::generate_triangle_mesh() const {
if (triangle_mesh.is_valid()) {
return triangle_mesh;
@@ -339,7 +455,7 @@ Ref<Mesh> Mesh::create_outline(float p_margin) const {
has_indices = true;
}
- Map<Vector3, Vector3> normal_accum;
+ HashMap<Vector3, Vector3> normal_accum;
//fill normals with triangle normals
for (int i = 0; i < vc; i += 3) {
@@ -358,13 +474,13 @@ Ref<Mesh> Mesh::create_outline(float p_margin) const {
Vector3 n = Plane(t[0], t[1], t[2]).normal;
for (int j = 0; j < 3; j++) {
- Map<Vector3, Vector3>::Element *E = normal_accum.find(t[j]);
+ HashMap<Vector3, Vector3>::Iterator E = normal_accum.find(t[j]);
if (!E) {
normal_accum[t[j]] = n;
} else {
- float d = n.dot(E->get());
+ float d = n.dot(E->value);
if (d < 1.0) {
- E->get() += n * (1.0 - d);
+ E->value += n * (1.0 - d);
}
//E->get()+=n;
}
@@ -383,10 +499,10 @@ Ref<Mesh> Mesh::create_outline(float p_margin) const {
for (int i = 0; i < vc2; i++) {
Vector3 t = r[i];
- Map<Vector3, Vector3>::Element *E = normal_accum.find(t);
+ HashMap<Vector3, Vector3>::Iterator E = normal_accum.find(t);
ERR_CONTINUE(!E);
- t += E->get() * p_margin;
+ t += E->value * p_margin;
r[i] = t;
}
@@ -502,6 +618,21 @@ void Mesh::_bind_methods() {
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED);
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE);
+
+ GDVIRTUAL_BIND(_get_surface_count)
+ GDVIRTUAL_BIND(_surface_get_array_len, "index")
+ GDVIRTUAL_BIND(_surface_get_array_index_len, "index")
+ GDVIRTUAL_BIND(_surface_get_arrays, "index")
+ GDVIRTUAL_BIND(_surface_get_blend_shape_arrays, "index")
+ GDVIRTUAL_BIND(_surface_get_lods, "index")
+ GDVIRTUAL_BIND(_surface_get_format, "index")
+ GDVIRTUAL_BIND(_surface_get_primitive_type, "index")
+ GDVIRTUAL_BIND(_surface_set_material, "index", "material")
+ GDVIRTUAL_BIND(_surface_get_material, "index")
+ GDVIRTUAL_BIND(_get_blend_shape_count)
+ GDVIRTUAL_BIND(_get_blend_shape_name, "index")
+ GDVIRTUAL_BIND(_set_blend_shape_name, "index", "name")
+ GDVIRTUAL_BIND(_get_aabb)
}
void Mesh::clear_cache() const {
@@ -596,7 +727,7 @@ enum OldArrayFormat {
OLD_ARRAY_FLAG_USE_2D_VERTICES = OLD_ARRAY_COMPRESS_INDEX << 1,
OLD_ARRAY_FLAG_USE_16_BIT_BONES = OLD_ARRAY_COMPRESS_INDEX << 2,
OLD_ARRAY_FLAG_USE_DYNAMIC_UPDATE = OLD_ARRAY_COMPRESS_INDEX << 3,
-
+ OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION = OLD_ARRAY_COMPRESS_INDEX << 4,
};
#ifndef DISABLE_DEPRECATED
@@ -626,6 +757,27 @@ static Mesh::PrimitiveType _old_primitives[7] = {
};
#endif // DISABLE_DEPRECATED
+// Convert Octahedron-mapped normalized vector back to Cartesian
+// Assumes normalized format (elements of v within range [-1, 1])
+Vector3 _oct_to_norm(const Vector2 v) {
+ Vector3 res(v.x, v.y, 1 - (Math::absf(v.x) + Math::absf(v.y)));
+ float t = MAX(-res.z, 0.0f);
+ res.x += t * -SIGN(res.x);
+ res.y += t * -SIGN(res.y);
+ return res.normalized();
+}
+
+// Convert Octahedron-mapped normalized tangent vector back to Cartesian
+// out_sign provides the direction for the original cartesian tangent
+// Assumes normalized format (elements of v within range [-1, 1])
+Vector3 _oct_to_tangent(const Vector2 v, float *out_sign) {
+ Vector2 v_decompressed = v;
+ v_decompressed.y = Math::absf(v_decompressed.y) * 2 - 1;
+ Vector3 res = _oct_to_norm(v_decompressed);
+ *out_sign = SIGN(v[1]);
+ return res;
+}
+
void _fix_array_compatibility(const Vector<uint8_t> &p_src, uint32_t p_old_format, uint32_t p_new_format, uint32_t p_elements, Vector<uint8_t> &vertex_data, Vector<uint8_t> &attribute_data, Vector<uint8_t> &skin_data) {
uint32_t dst_vertex_stride;
uint32_t dst_attribute_stride;
@@ -692,66 +844,133 @@ void _fix_array_compatibility(const Vector<uint8_t> &p_src, uint32_t p_old_forma
}
} break;
case OLD_ARRAY_NORMAL: {
- if (p_old_format & OLD_ARRAY_COMPRESS_NORMAL) {
- const float multiplier = 1.f / 127.f * 1023.0f;
+ if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
+ if ((p_old_format & OLD_ARRAY_COMPRESS_NORMAL) && (p_old_format & OLD_ARRAY_FORMAT_TANGENT) && (p_old_format & OLD_ARRAY_COMPRESS_TANGENT)) {
+ for (uint32_t i = 0; i < p_elements; i++) {
+ const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
+ uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
+ const Vector2 src_vec(src[0] / 127.0f, src[1] / 127.0f);
+
+ const Vector3 res = _oct_to_norm(src_vec) * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
+ *dst = 0;
+ *dst |= CLAMP(int(res.x * 1023.0f), 0, 1023);
+ *dst |= CLAMP(int(res.y * 1023.0f), 0, 1023) << 10;
+ *dst |= CLAMP(int(res.z * 1023.0f), 0, 1023) << 20;
+ }
+ src_offset += sizeof(int8_t) * 2;
+ } else {
+ for (uint32_t i = 0; i < p_elements; i++) {
+ const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
+ uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
+ const Vector2 src_vec(src[0] / 32767.0f, src[1] / 32767.0f);
+
+ const Vector3 res = _oct_to_norm(src_vec) * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
+ *dst = 0;
+ *dst |= CLAMP(int(res.x * 1023.0f), 0, 1023);
+ *dst |= CLAMP(int(res.y * 1023.0f), 0, 1023) << 10;
+ *dst |= CLAMP(int(res.z * 1023.0f), 0, 1023) << 20;
+ }
+ src_offset += sizeof(int16_t) * 2;
+ }
+ } else { // No Octahedral compression
+ if (p_old_format & OLD_ARRAY_COMPRESS_NORMAL) {
+ const float multiplier = 1.f / 127.f * 1023.0f;
- for (uint32_t i = 0; i < p_elements; i++) {
- const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
- uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
+ for (uint32_t i = 0; i < p_elements; i++) {
+ const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
+ uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
- *dst = 0;
- *dst |= CLAMP(int(src[0] * multiplier), 0, 1023);
- *dst |= CLAMP(int(src[1] * multiplier), 0, 1023) << 10;
- *dst |= CLAMP(int(src[2] * multiplier), 0, 1023) << 20;
- }
- src_offset += sizeof(uint32_t);
- } else {
- for (uint32_t i = 0; i < p_elements; i++) {
- const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
- uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
+ *dst = 0;
+ *dst |= CLAMP(int(src[0] * multiplier), 0, 1023);
+ *dst |= CLAMP(int(src[1] * multiplier), 0, 1023) << 10;
+ *dst |= CLAMP(int(src[2] * multiplier), 0, 1023) << 20;
+ }
+ src_offset += sizeof(uint32_t);
+ } else {
+ for (uint32_t i = 0; i < p_elements; i++) {
+ const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
+ uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
- *dst = 0;
- *dst |= CLAMP(int(src[0] * 1023.0), 0, 1023);
- *dst |= CLAMP(int(src[1] * 1023.0), 0, 1023) << 10;
- *dst |= CLAMP(int(src[2] * 1023.0), 0, 1023) << 20;
+ *dst = 0;
+ *dst |= CLAMP(int(src[0] * 1023.0), 0, 1023);
+ *dst |= CLAMP(int(src[1] * 1023.0), 0, 1023) << 10;
+ *dst |= CLAMP(int(src[2] * 1023.0), 0, 1023) << 20;
+ }
+ src_offset += sizeof(float) * 3;
}
- src_offset += sizeof(float) * 3;
}
} break;
case OLD_ARRAY_TANGENT: {
- if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) {
- const float multiplier = 1.f / 127.f * 1023.0f;
-
- for (uint32_t i = 0; i < p_elements; i++) {
- const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
- uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
-
- *dst = 0;
- *dst |= CLAMP(int(src[0] * multiplier), 0, 1023);
- *dst |= CLAMP(int(src[1] * multiplier), 0, 1023) << 10;
- *dst |= CLAMP(int(src[2] * multiplier), 0, 1023) << 20;
- if (src[3] > 0) {
- *dst |= 3 << 30;
+ if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
+ if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) { // int8
+ for (uint32_t i = 0; i < p_elements; i++) {
+ const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
+ uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
+ const Vector2 src_vec(src[0] / 127.0f, src[1] / 127.0f);
+ float out_sign;
+ const Vector3 res = _oct_to_tangent(src_vec, &out_sign) * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
+
+ *dst = 0;
+ *dst |= CLAMP(int(res.x * 1023.0), 0, 1023);
+ *dst |= CLAMP(int(res.y * 1023.0), 0, 1023) << 10;
+ *dst |= CLAMP(int(res.z * 1023.0), 0, 1023) << 20;
+ if (out_sign > 0) {
+ *dst |= 3 << 30;
+ }
+ }
+ src_offset += sizeof(int8_t) * 2;
+ } else { // int16
+ for (uint32_t i = 0; i < p_elements; i++) {
+ const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
+ uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
+ const Vector2 src_vec(src[0] / 32767.0f, src[1] / 32767.0f);
+ float out_sign;
+ Vector3 res = _oct_to_tangent(src_vec, &out_sign) * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
+
+ *dst = 0;
+ *dst |= CLAMP(int(res.x * 1023.0), 0, 1023);
+ *dst |= CLAMP(int(res.y * 1023.0), 0, 1023) << 10;
+ *dst |= CLAMP(int(res.z * 1023.0), 0, 1023) << 20;
+ if (out_sign > 0) {
+ *dst |= 3 << 30;
+ }
}
+ src_offset += sizeof(int16_t) * 2;
}
- src_offset += sizeof(uint32_t);
- } else {
- for (uint32_t i = 0; i < p_elements; i++) {
- const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
- uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
-
- *dst = 0;
- *dst |= CLAMP(int(src[0] * 1023.0), 0, 1023);
- *dst |= CLAMP(int(src[1] * 1023.0), 0, 1023) << 10;
- *dst |= CLAMP(int(src[2] * 1023.0), 0, 1023) << 20;
- if (src[3] > 0) {
- *dst |= 3 << 30;
+ } else { // No Octahedral compression
+ if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) {
+ const float multiplier = 1.f / 127.f * 1023.0f;
+
+ for (uint32_t i = 0; i < p_elements; i++) {
+ const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
+ uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
+
+ *dst = 0;
+ *dst |= CLAMP(int(src[0] * multiplier), 0, 1023);
+ *dst |= CLAMP(int(src[1] * multiplier), 0, 1023) << 10;
+ *dst |= CLAMP(int(src[2] * multiplier), 0, 1023) << 20;
+ if (src[3] > 0) {
+ *dst |= 3 << 30;
+ }
}
+ src_offset += sizeof(uint32_t);
+ } else {
+ for (uint32_t i = 0; i < p_elements; i++) {
+ const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
+ uint32_t *dst = (uint32_t *)&dst_vertex_ptr[i * dst_vertex_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
+
+ *dst = 0;
+ *dst |= CLAMP(int(src[0] * 1023.0), 0, 1023);
+ *dst |= CLAMP(int(src[1] * 1023.0), 0, 1023) << 10;
+ *dst |= CLAMP(int(src[2] * 1023.0), 0, 1023) << 20;
+ if (src[3] > 0) {
+ *dst |= 3 << 30;
+ }
+ }
+ src_offset += sizeof(float) * 4;
}
- src_offset += sizeof(float) * 4;
}
-
} break;
case OLD_ARRAY_COLOR: {
if (p_old_format & OLD_ARRAY_COMPRESS_COLOR) {
@@ -898,7 +1117,9 @@ bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) {
return false;
}
- WARN_DEPRECATED_MSG("Mesh uses old surface format, which is deprecated (and loads slower). Consider re-importing or re-saving the scene.");
+ WARN_DEPRECATED_MSG(vformat(
+ "Mesh uses old surface format, which is deprecated (and loads slower). Consider re-importing or re-saving the scene. Path: \"%s\"",
+ get_path()));
int idx = sname.get_slicec('/', 1).to_int();
String what = sname.get_slicec('/', 2);
@@ -994,9 +1215,9 @@ bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) {
}
//clear unused flags
- print_line("format pre: " + itos(old_format));
+ print_verbose("Mesh format pre-conversion: " + itos(old_format));
- print_line("format post: " + itos(new_format));
+ print_verbose("Mesh format post-conversion: " + itos(new_format));
ERR_FAIL_COND_V(!d.has("aabb"), false);
AABB aabb = d["aabb"];
@@ -1104,7 +1325,7 @@ Array ArrayMesh::_get_surfaces() const {
data["material"] = surfaces[i].material;
}
- if (surfaces[i].name != String()) {
+ if (!surfaces[i].name.is_empty()) {
data["name"] = surfaces[i].name;
}
@@ -1385,12 +1606,12 @@ void ArrayMesh::add_blend_shape(const StringName &p_name) {
StringName name = p_name;
- if (blend_shapes.find(name) != -1) {
+ if (blend_shapes.has(name)) {
int count = 2;
do {
name = String(p_name) + " " + itos(count);
count++;
- } while (blend_shapes.find(name) != -1);
+ } while (blend_shapes.has(name));
}
blend_shapes.push_back(name);
@@ -1594,6 +1815,7 @@ Error ArrayMesh::lightmap_unwrap(const Transform3D &p_base_transform, float p_te
Error ArrayMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache, bool p_generate_cache) {
ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
+ ERR_FAIL_COND_V_MSG(p_texel_size <= 0.0f, ERR_PARAMETER_RANGE_ERROR, "Texel size must be greater than 0.");
LocalVector<float> vertices;
LocalVector<float> normals;
@@ -1605,7 +1827,7 @@ Error ArrayMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, flo
// Keep only the scale
Basis basis = p_base_transform.get_basis();
- Vector3 scale = Vector3(basis.get_axis(0).length(), basis.get_axis(1).length(), basis.get_axis(2).length());
+ Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length());
Transform3D transform;
transform.scale(scale);
@@ -1870,3 +2092,17 @@ ArrayMesh::~ArrayMesh() {
RenderingServer::get_singleton()->free(mesh);
}
}
+///////////////
+
+void PlaceholderMesh::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_aabb", "aabb"), &PlaceholderMesh::set_aabb);
+ ADD_PROPERTY(PropertyInfo(Variant::AABB, "aabb", PROPERTY_HINT_NONE, ""), "set_aabb", "get_aabb");
+}
+
+PlaceholderMesh::PlaceholderMesh() {
+ rid = RS::get_singleton()->mesh_create();
+}
+
+PlaceholderMesh::~PlaceholderMesh() {
+ RS::get_singleton()->free(rid);
+}