summaryrefslogtreecommitdiff
path: root/core/math/basis.h
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/basis.h')
-rw-r--r--core/math/basis.h62
1 files changed, 25 insertions, 37 deletions
diff --git a/core/math/basis.h b/core/math/basis.h
index 0261cf67c6..56f6227313 100644
--- a/core/math/basis.h
+++ b/core/math/basis.h
@@ -5,8 +5,8 @@
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
-/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
@@ -36,14 +36,16 @@
class Basis {
public:
- Vector3 elements[3];
+ Vector3 elements[3] = {
+ Vector3(1, 0, 0),
+ Vector3(0, 1, 0),
+ Vector3(0, 0, 1)
+ };
_FORCE_INLINE_ const Vector3 &operator[](int axis) const {
-
return elements[axis];
}
_FORCE_INLINE_ Vector3 &operator[](int axis) {
-
return elements[axis];
}
@@ -90,9 +92,22 @@ public:
Vector3 get_euler_xyz() const;
void set_euler_xyz(const Vector3 &p_euler);
+
+ Vector3 get_euler_xzy() const;
+ void set_euler_xzy(const Vector3 &p_euler);
+
+ Vector3 get_euler_yzx() const;
+ void set_euler_yzx(const Vector3 &p_euler);
+
Vector3 get_euler_yxz() const;
void set_euler_yxz(const Vector3 &p_euler);
+ Vector3 get_euler_zxy() const;
+ void set_euler_zxy(const Vector3 &p_euler);
+
+ Vector3 get_euler_zyx() const;
+ void set_euler_zyx(const Vector3 &p_euler);
+
Quat get_quat() const;
void set_quat(const Quat &p_quat);
@@ -131,9 +146,6 @@ public:
}
bool is_equal_approx(const Basis &p_basis) const;
- // TODO: Break compatibility in 4.0 by getting rid of this so that it's only an instance method. See also TODO in variant_call.cpp
- bool is_equal_approx(const Basis &a, const Basis &b) const { return a.is_equal_approx(b); }
- bool is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon = UNIT_EPSILON) const;
bool operator==(const Basis &p_matrix) const;
bool operator!=(const Basis &p_matrix) const;
@@ -158,14 +170,14 @@ public:
bool is_diagonal() const;
bool is_rotation() const;
- Basis slerp(const Basis &target, const real_t &t) const;
+ Basis slerp(const Basis &p_to, const real_t &p_weight) const;
+ void rotate_sh(real_t *p_values);
operator String() const;
/* create / set */
_FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
-
elements[0][0] = xx;
elements[0][1] = xy;
elements[0][2] = xz;
@@ -177,18 +189,15 @@ public:
elements[2][2] = zz;
}
_FORCE_INLINE_ void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
-
set_axis(0, p_x);
set_axis(1, p_y);
set_axis(2, p_z);
}
_FORCE_INLINE_ Vector3 get_column(int i) const {
-
return Vector3(elements[0][i], elements[1][i], elements[2][i]);
}
_FORCE_INLINE_ Vector3 get_row(int i) const {
-
return Vector3(elements[i][0], elements[i][1], elements[i][2]);
}
_FORCE_INLINE_ Vector3 get_main_diagonal() const {
@@ -220,14 +229,15 @@ public:
elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
}
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
-
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
}
void orthonormalize();
Basis orthonormalized() const;
+#ifdef MATH_CHECKS
bool is_symmetric() const;
+#endif
Basis diagonalize();
operator Quat() const { return get_quat(); }
@@ -247,22 +257,10 @@ public:
elements[2] = row2;
}
- _FORCE_INLINE_ Basis() {
-
- elements[0][0] = 1;
- elements[0][1] = 0;
- elements[0][2] = 0;
- elements[1][0] = 0;
- elements[1][1] = 1;
- elements[1][2] = 0;
- elements[2][0] = 0;
- elements[2][1] = 0;
- elements[2][2] = 1;
- }
+ _FORCE_INLINE_ Basis() {}
};
_FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
-
set(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
@@ -270,7 +268,6 @@ _FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
}
_FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
-
return Basis(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
@@ -278,49 +275,42 @@ _FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
}
_FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
-
elements[0] += p_matrix.elements[0];
elements[1] += p_matrix.elements[1];
elements[2] += p_matrix.elements[2];
}
_FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
-
Basis ret(*this);
ret += p_matrix;
return ret;
}
_FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
-
elements[0] -= p_matrix.elements[0];
elements[1] -= p_matrix.elements[1];
elements[2] -= p_matrix.elements[2];
}
_FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
-
Basis ret(*this);
ret -= p_matrix;
return ret;
}
_FORCE_INLINE_ void Basis::operator*=(real_t p_val) {
-
elements[0] *= p_val;
elements[1] *= p_val;
elements[2] *= p_val;
}
_FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const {
-
Basis ret(*this);
ret *= p_val;
return ret;
}
Vector3 Basis::xform(const Vector3 &p_vector) const {
-
return Vector3(
elements[0].dot(p_vector),
elements[1].dot(p_vector),
@@ -328,7 +318,6 @@ Vector3 Basis::xform(const Vector3 &p_vector) const {
}
Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
-
return Vector3(
(elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z),
(elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z),
@@ -336,7 +325,6 @@ Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
}
real_t Basis::determinant() const {
-
return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) -
elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) +
elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]);