diff options
Diffstat (limited to 'core/math/basis.h')
-rw-r--r-- | core/math/basis.h | 62 |
1 files changed, 25 insertions, 37 deletions
diff --git a/core/math/basis.h b/core/math/basis.h index 0261cf67c6..56f6227313 100644 --- a/core/math/basis.h +++ b/core/math/basis.h @@ -5,8 +5,8 @@ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ @@ -36,14 +36,16 @@ class Basis { public: - Vector3 elements[3]; + Vector3 elements[3] = { + Vector3(1, 0, 0), + Vector3(0, 1, 0), + Vector3(0, 0, 1) + }; _FORCE_INLINE_ const Vector3 &operator[](int axis) const { - return elements[axis]; } _FORCE_INLINE_ Vector3 &operator[](int axis) { - return elements[axis]; } @@ -90,9 +92,22 @@ public: Vector3 get_euler_xyz() const; void set_euler_xyz(const Vector3 &p_euler); + + Vector3 get_euler_xzy() const; + void set_euler_xzy(const Vector3 &p_euler); + + Vector3 get_euler_yzx() const; + void set_euler_yzx(const Vector3 &p_euler); + Vector3 get_euler_yxz() const; void set_euler_yxz(const Vector3 &p_euler); + Vector3 get_euler_zxy() const; + void set_euler_zxy(const Vector3 &p_euler); + + Vector3 get_euler_zyx() const; + void set_euler_zyx(const Vector3 &p_euler); + Quat get_quat() const; void set_quat(const Quat &p_quat); @@ -131,9 +146,6 @@ public: } bool is_equal_approx(const Basis &p_basis) const; - // TODO: Break compatibility in 4.0 by getting rid of this so that it's only an instance method. See also TODO in variant_call.cpp - bool is_equal_approx(const Basis &a, const Basis &b) const { return a.is_equal_approx(b); } - bool is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon = UNIT_EPSILON) const; bool operator==(const Basis &p_matrix) const; bool operator!=(const Basis &p_matrix) const; @@ -158,14 +170,14 @@ public: bool is_diagonal() const; bool is_rotation() const; - Basis slerp(const Basis &target, const real_t &t) const; + Basis slerp(const Basis &p_to, const real_t &p_weight) const; + void rotate_sh(real_t *p_values); operator String() const; /* create / set */ _FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { - elements[0][0] = xx; elements[0][1] = xy; elements[0][2] = xz; @@ -177,18 +189,15 @@ public: elements[2][2] = zz; } _FORCE_INLINE_ void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) { - set_axis(0, p_x); set_axis(1, p_y); set_axis(2, p_z); } _FORCE_INLINE_ Vector3 get_column(int i) const { - return Vector3(elements[0][i], elements[1][i], elements[2][i]); } _FORCE_INLINE_ Vector3 get_row(int i) const { - return Vector3(elements[i][0], elements[i][1], elements[i][2]); } _FORCE_INLINE_ Vector3 get_main_diagonal() const { @@ -220,14 +229,15 @@ public: elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z); } Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { - set(xx, xy, xz, yx, yy, yz, zx, zy, zz); } void orthonormalize(); Basis orthonormalized() const; +#ifdef MATH_CHECKS bool is_symmetric() const; +#endif Basis diagonalize(); operator Quat() const { return get_quat(); } @@ -247,22 +257,10 @@ public: elements[2] = row2; } - _FORCE_INLINE_ Basis() { - - elements[0][0] = 1; - elements[0][1] = 0; - elements[0][2] = 0; - elements[1][0] = 0; - elements[1][1] = 1; - elements[1][2] = 0; - elements[2][0] = 0; - elements[2][1] = 0; - elements[2][2] = 1; - } + _FORCE_INLINE_ Basis() {} }; _FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) { - set( p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), @@ -270,7 +268,6 @@ _FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) { } _FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const { - return Basis( p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), @@ -278,49 +275,42 @@ _FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const { } _FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) { - elements[0] += p_matrix.elements[0]; elements[1] += p_matrix.elements[1]; elements[2] += p_matrix.elements[2]; } _FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const { - Basis ret(*this); ret += p_matrix; return ret; } _FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) { - elements[0] -= p_matrix.elements[0]; elements[1] -= p_matrix.elements[1]; elements[2] -= p_matrix.elements[2]; } _FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const { - Basis ret(*this); ret -= p_matrix; return ret; } _FORCE_INLINE_ void Basis::operator*=(real_t p_val) { - elements[0] *= p_val; elements[1] *= p_val; elements[2] *= p_val; } _FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const { - Basis ret(*this); ret *= p_val; return ret; } Vector3 Basis::xform(const Vector3 &p_vector) const { - return Vector3( elements[0].dot(p_vector), elements[1].dot(p_vector), @@ -328,7 +318,6 @@ Vector3 Basis::xform(const Vector3 &p_vector) const { } Vector3 Basis::xform_inv(const Vector3 &p_vector) const { - return Vector3( (elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z), (elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z), @@ -336,7 +325,6 @@ Vector3 Basis::xform_inv(const Vector3 &p_vector) const { } real_t Basis::determinant() const { - return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) - elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) + elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]); |