summaryrefslogtreecommitdiff
path: root/core/math/basis.h
diff options
context:
space:
mode:
Diffstat (limited to 'core/math/basis.h')
-rw-r--r--core/math/basis.h345
1 files changed, 345 insertions, 0 deletions
diff --git a/core/math/basis.h b/core/math/basis.h
new file mode 100644
index 0000000000..75037c2c52
--- /dev/null
+++ b/core/math/basis.h
@@ -0,0 +1,345 @@
+/*************************************************************************/
+/* basis.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+// Circular dependency between Vector3 and Basis :/
+#include "core/math/vector3.h"
+
+#ifndef BASIS_H
+#define BASIS_H
+
+#include "core/math/quat.h"
+
+/**
+ @author Juan Linietsky <reduzio@gmail.com>
+*/
+
+class Basis {
+public:
+ Vector3 elements[3];
+
+ _FORCE_INLINE_ const Vector3 &operator[](int axis) const {
+
+ return elements[axis];
+ }
+ _FORCE_INLINE_ Vector3 &operator[](int axis) {
+
+ return elements[axis];
+ }
+
+ void invert();
+ void transpose();
+
+ Basis inverse() const;
+ Basis transposed() const;
+
+ _FORCE_INLINE_ real_t determinant() const;
+
+ void from_z(const Vector3 &p_z);
+
+ _FORCE_INLINE_ Vector3 get_axis(int p_axis) const {
+ // get actual basis axis (elements is transposed for performance)
+ return Vector3(elements[0][p_axis], elements[1][p_axis], elements[2][p_axis]);
+ }
+ _FORCE_INLINE_ void set_axis(int p_axis, const Vector3 &p_value) {
+ // get actual basis axis (elements is transposed for performance)
+ elements[0][p_axis] = p_value.x;
+ elements[1][p_axis] = p_value.y;
+ elements[2][p_axis] = p_value.z;
+ }
+
+ void rotate(const Vector3 &p_axis, real_t p_phi);
+ Basis rotated(const Vector3 &p_axis, real_t p_phi) const;
+
+ void rotate_local(const Vector3 &p_axis, real_t p_phi);
+ Basis rotated_local(const Vector3 &p_axis, real_t p_phi) const;
+
+ void rotate(const Vector3 &p_euler);
+ Basis rotated(const Vector3 &p_euler) const;
+
+ void rotate(const Quat &p_quat);
+ Basis rotated(const Quat &p_quat) const;
+
+ Vector3 get_rotation_euler() const;
+ void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
+ void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
+ Quat get_rotation_quat() const;
+ Vector3 get_rotation() const { return get_rotation_euler(); };
+
+ Vector3 rotref_posscale_decomposition(Basis &rotref) const;
+
+ Vector3 get_euler_xyz() const;
+ void set_euler_xyz(const Vector3 &p_euler);
+ Vector3 get_euler_yxz() const;
+ void set_euler_yxz(const Vector3 &p_euler);
+
+ Quat get_quat() const;
+ void set_quat(const Quat &p_quat);
+
+ Vector3 get_euler() const { return get_euler_yxz(); }
+ void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
+
+ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
+ void set_axis_angle(const Vector3 &p_axis, real_t p_phi);
+
+ void scale(const Vector3 &p_scale);
+ Basis scaled(const Vector3 &p_scale) const;
+
+ void scale_local(const Vector3 &p_scale);
+ Basis scaled_local(const Vector3 &p_scale) const;
+
+ Vector3 get_scale() const;
+ Vector3 get_scale_abs() const;
+ Vector3 get_scale_local() const;
+
+ void set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale);
+ void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale);
+ void set_quat_scale(const Quat &p_quat, const Vector3 &p_scale);
+
+ // transposed dot products
+ _FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
+ return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
+ }
+ _FORCE_INLINE_ real_t tdoty(const Vector3 &v) const {
+ return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
+ }
+ _FORCE_INLINE_ real_t tdotz(const Vector3 &v) const {
+ return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
+ }
+
+ bool is_equal_approx(const Basis &a, const Basis &b, real_t p_epsilon = CMP_EPSILON) const;
+ bool is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon = UNIT_EPSILON) const;
+
+ bool operator==(const Basis &p_matrix) const;
+ bool operator!=(const Basis &p_matrix) const;
+
+ _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
+ _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
+ _FORCE_INLINE_ void operator*=(const Basis &p_matrix);
+ _FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
+ _FORCE_INLINE_ void operator+=(const Basis &p_matrix);
+ _FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
+ _FORCE_INLINE_ void operator-=(const Basis &p_matrix);
+ _FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
+ _FORCE_INLINE_ void operator*=(real_t p_val);
+ _FORCE_INLINE_ Basis operator*(real_t p_val) const;
+
+ int get_orthogonal_index() const;
+ void set_orthogonal_index(int p_index);
+
+ void set_diagonal(const Vector3 p_diag);
+
+ bool is_orthogonal() const;
+ bool is_diagonal() const;
+ bool is_rotation() const;
+
+ Basis slerp(const Basis &target, const real_t &t) const;
+
+ operator String() const;
+
+ /* create / set */
+
+ _FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
+
+ elements[0][0] = xx;
+ elements[0][1] = xy;
+ elements[0][2] = xz;
+ elements[1][0] = yx;
+ elements[1][1] = yy;
+ elements[1][2] = yz;
+ elements[2][0] = zx;
+ elements[2][1] = zy;
+ elements[2][2] = zz;
+ }
+ _FORCE_INLINE_ void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
+
+ set_axis(0, p_x);
+ set_axis(1, p_y);
+ set_axis(2, p_z);
+ }
+ _FORCE_INLINE_ Vector3 get_column(int i) const {
+
+ return Vector3(elements[0][i], elements[1][i], elements[2][i]);
+ }
+
+ _FORCE_INLINE_ Vector3 get_row(int i) const {
+
+ return Vector3(elements[i][0], elements[i][1], elements[i][2]);
+ }
+ _FORCE_INLINE_ Vector3 get_main_diagonal() const {
+ return Vector3(elements[0][0], elements[1][1], elements[2][2]);
+ }
+
+ _FORCE_INLINE_ void set_row(int i, const Vector3 &p_row) {
+ elements[i][0] = p_row.x;
+ elements[i][1] = p_row.y;
+ elements[i][2] = p_row.z;
+ }
+
+ _FORCE_INLINE_ void set_zero() {
+ elements[0].zero();
+ elements[1].zero();
+ elements[2].zero();
+ }
+
+ _FORCE_INLINE_ Basis transpose_xform(const Basis &m) const {
+ return Basis(
+ elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
+ elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
+ elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
+ elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
+ elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
+ elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
+ elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
+ elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
+ elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
+ }
+ Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
+
+ set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
+ }
+
+ void orthonormalize();
+ Basis orthonormalized() const;
+
+ bool is_symmetric() const;
+ Basis diagonalize();
+
+ operator Quat() const { return get_quat(); }
+
+ Basis(const Quat &p_quat) { set_quat(p_quat); };
+ Basis(const Quat &p_quat, const Vector3 &p_scale) { set_quat_scale(p_quat, p_scale); }
+
+ Basis(const Vector3 &p_euler) { set_euler(p_euler); }
+ Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); }
+
+ Basis(const Vector3 &p_axis, real_t p_phi) { set_axis_angle(p_axis, p_phi); }
+ Basis(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_phi, p_scale); }
+
+ _FORCE_INLINE_ Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) {
+ elements[0] = row0;
+ elements[1] = row1;
+ elements[2] = row2;
+ }
+
+ _FORCE_INLINE_ Basis() {
+
+ elements[0][0] = 1;
+ elements[0][1] = 0;
+ elements[0][2] = 0;
+ elements[1][0] = 0;
+ elements[1][1] = 1;
+ elements[1][2] = 0;
+ elements[2][0] = 0;
+ elements[2][1] = 0;
+ elements[2][2] = 1;
+ }
+};
+
+_FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
+
+ set(
+ p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
+ p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
+ p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
+}
+
+_FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
+
+ return Basis(
+ p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
+ p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
+ p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
+}
+
+_FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
+
+ elements[0] += p_matrix.elements[0];
+ elements[1] += p_matrix.elements[1];
+ elements[2] += p_matrix.elements[2];
+}
+
+_FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
+
+ Basis ret(*this);
+ ret += p_matrix;
+ return ret;
+}
+
+_FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
+
+ elements[0] -= p_matrix.elements[0];
+ elements[1] -= p_matrix.elements[1];
+ elements[2] -= p_matrix.elements[2];
+}
+
+_FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
+
+ Basis ret(*this);
+ ret -= p_matrix;
+ return ret;
+}
+
+_FORCE_INLINE_ void Basis::operator*=(real_t p_val) {
+
+ elements[0] *= p_val;
+ elements[1] *= p_val;
+ elements[2] *= p_val;
+}
+
+_FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const {
+
+ Basis ret(*this);
+ ret *= p_val;
+ return ret;
+}
+
+Vector3 Basis::xform(const Vector3 &p_vector) const {
+
+ return Vector3(
+ elements[0].dot(p_vector),
+ elements[1].dot(p_vector),
+ elements[2].dot(p_vector));
+}
+
+Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
+
+ return Vector3(
+ (elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z),
+ (elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z),
+ (elements[0][2] * p_vector.x) + (elements[1][2] * p_vector.y) + (elements[2][2] * p_vector.z));
+}
+
+real_t Basis::determinant() const {
+
+ return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) -
+ elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) +
+ elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]);
+}
+#endif // BASIS_H