summaryrefslogtreecommitdiff
path: root/thirdparty/zstd/compress/zstdmt_compress.c
blob: 38fbb907685b480cb6777c8e23b199b576eadfae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
/*
 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */


/* ======   Compiler specifics   ====== */
#if defined(_MSC_VER)
#  pragma warning(disable : 4204)   /* disable: C4204: non-constant aggregate initializer */
#endif


/* ======   Constants   ====== */
#define ZSTDMT_OVERLAPLOG_DEFAULT 0


/* ======   Dependencies   ====== */
#include <string.h>      /* memcpy, memset */
#include <limits.h>      /* INT_MAX, UINT_MAX */
#include "mem.h"         /* MEM_STATIC */
#include "pool.h"        /* threadpool */
#include "threading.h"   /* mutex */
#include "zstd_compress_internal.h"  /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
#include "zstd_ldm.h"
#include "zstdmt_compress.h"

/* Guards code to support resizing the SeqPool.
 * We will want to resize the SeqPool to save memory in the future.
 * Until then, comment the code out since it is unused.
 */
#define ZSTD_RESIZE_SEQPOOL 0

/* ======   Debug   ====== */
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
    && !defined(_MSC_VER) \
    && !defined(__MINGW32__)

#  include <stdio.h>
#  include <unistd.h>
#  include <sys/times.h>

#  define DEBUG_PRINTHEX(l,p,n) {            \
    unsigned debug_u;                        \
    for (debug_u=0; debug_u<(n); debug_u++)  \
        RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
    RAWLOG(l, " \n");                        \
}

static unsigned long long GetCurrentClockTimeMicroseconds(void)
{
   static clock_t _ticksPerSecond = 0;
   if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);

   {   struct tms junk; clock_t newTicks = (clock_t) times(&junk);
       return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
}  }

#define MUTEX_WAIT_TIME_DLEVEL 6
#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) {          \
    if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) {   \
        unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
        ZSTD_pthread_mutex_lock(mutex);           \
        {   unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
            unsigned long long const elapsedTime = (afterTime-beforeTime); \
            if (elapsedTime > 1000) {  /* or whatever threshold you like; I'm using 1 millisecond here */ \
                DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
                   elapsedTime, #mutex);          \
        }   }                                     \
    } else {                                      \
        ZSTD_pthread_mutex_lock(mutex);           \
    }                                             \
}

#else

#  define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
#  define DEBUG_PRINTHEX(l,p,n) {}

#endif


/* =====   Buffer Pool   ===== */
/* a single Buffer Pool can be invoked from multiple threads in parallel */

typedef struct buffer_s {
    void* start;
    size_t capacity;
} buffer_t;

static const buffer_t g_nullBuffer = { NULL, 0 };

typedef struct ZSTDMT_bufferPool_s {
    ZSTD_pthread_mutex_t poolMutex;
    size_t bufferSize;
    unsigned totalBuffers;
    unsigned nbBuffers;
    ZSTD_customMem cMem;
    buffer_t bTable[1];   /* variable size */
} ZSTDMT_bufferPool;

static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem)
{
    unsigned const maxNbBuffers = 2*nbWorkers + 3;
    ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_calloc(
        sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
    if (bufPool==NULL) return NULL;
    if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
        ZSTD_free(bufPool, cMem);
        return NULL;
    }
    bufPool->bufferSize = 64 KB;
    bufPool->totalBuffers = maxNbBuffers;
    bufPool->nbBuffers = 0;
    bufPool->cMem = cMem;
    return bufPool;
}

static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
{
    unsigned u;
    DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
    if (!bufPool) return;   /* compatibility with free on NULL */
    for (u=0; u<bufPool->totalBuffers; u++) {
        DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
        ZSTD_free(bufPool->bTable[u].start, bufPool->cMem);
    }
    ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
    ZSTD_free(bufPool, bufPool->cMem);
}

/* only works at initialization, not during compression */
static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
{
    size_t const poolSize = sizeof(*bufPool)
                          + (bufPool->totalBuffers - 1) * sizeof(buffer_t);
    unsigned u;
    size_t totalBufferSize = 0;
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
    for (u=0; u<bufPool->totalBuffers; u++)
        totalBufferSize += bufPool->bTable[u].capacity;
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);

    return poolSize + totalBufferSize;
}

/* ZSTDMT_setBufferSize() :
 * all future buffers provided by this buffer pool will have _at least_ this size
 * note : it's better for all buffers to have same size,
 * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
{
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
    DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
    bufPool->bufferSize = bSize;
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
}


static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers)
{
    unsigned const maxNbBuffers = 2*nbWorkers + 3;
    if (srcBufPool==NULL) return NULL;
    if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
        return srcBufPool;
    /* need a larger buffer pool */
    {   ZSTD_customMem const cMem = srcBufPool->cMem;
        size_t const bSize = srcBufPool->bufferSize;   /* forward parameters */
        ZSTDMT_bufferPool* newBufPool;
        ZSTDMT_freeBufferPool(srcBufPool);
        newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
        if (newBufPool==NULL) return newBufPool;
        ZSTDMT_setBufferSize(newBufPool, bSize);
        return newBufPool;
    }
}

/** ZSTDMT_getBuffer() :
 *  assumption : bufPool must be valid
 * @return : a buffer, with start pointer and size
 *  note: allocation may fail, in this case, start==NULL and size==0 */
static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
{
    size_t const bSize = bufPool->bufferSize;
    DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
    if (bufPool->nbBuffers) {   /* try to use an existing buffer */
        buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
        size_t const availBufferSize = buf.capacity;
        bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
        if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
            /* large enough, but not too much */
            DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
                        bufPool->nbBuffers, (U32)buf.capacity);
            ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
            return buf;
        }
        /* size conditions not respected : scratch this buffer, create new one */
        DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
        ZSTD_free(buf.start, bufPool->cMem);
    }
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
    /* create new buffer */
    DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
    {   buffer_t buffer;
        void* const start = ZSTD_malloc(bSize, bufPool->cMem);
        buffer.start = start;   /* note : start can be NULL if malloc fails ! */
        buffer.capacity = (start==NULL) ? 0 : bSize;
        if (start==NULL) {
            DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
        } else {
            DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
        }
        return buffer;
    }
}

#if ZSTD_RESIZE_SEQPOOL
/** ZSTDMT_resizeBuffer() :
 * assumption : bufPool must be valid
 * @return : a buffer that is at least the buffer pool buffer size.
 *           If a reallocation happens, the data in the input buffer is copied.
 */
static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
{
    size_t const bSize = bufPool->bufferSize;
    if (buffer.capacity < bSize) {
        void* const start = ZSTD_malloc(bSize, bufPool->cMem);
        buffer_t newBuffer;
        newBuffer.start = start;
        newBuffer.capacity = start == NULL ? 0 : bSize;
        if (start != NULL) {
            assert(newBuffer.capacity >= buffer.capacity);
            memcpy(newBuffer.start, buffer.start, buffer.capacity);
            DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
            return newBuffer;
        }
        DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
    }
    return buffer;
}
#endif

/* store buffer for later re-use, up to pool capacity */
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
{
    DEBUGLOG(5, "ZSTDMT_releaseBuffer");
    if (buf.start == NULL) return;   /* compatible with release on NULL */
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
    if (bufPool->nbBuffers < bufPool->totalBuffers) {
        bufPool->bTable[bufPool->nbBuffers++] = buf;  /* stored for later use */
        DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
                    (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
        ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
        return;
    }
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
    /* Reached bufferPool capacity (should not happen) */
    DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
    ZSTD_free(buf.start, bufPool->cMem);
}


/* =====   Seq Pool Wrapper   ====== */

static rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0};

typedef ZSTDMT_bufferPool ZSTDMT_seqPool;

static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
{
    return ZSTDMT_sizeof_bufferPool(seqPool);
}

static rawSeqStore_t bufferToSeq(buffer_t buffer)
{
    rawSeqStore_t seq = {NULL, 0, 0, 0};
    seq.seq = (rawSeq*)buffer.start;
    seq.capacity = buffer.capacity / sizeof(rawSeq);
    return seq;
}

static buffer_t seqToBuffer(rawSeqStore_t seq)
{
    buffer_t buffer;
    buffer.start = seq.seq;
    buffer.capacity = seq.capacity * sizeof(rawSeq);
    return buffer;
}

static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
{
    if (seqPool->bufferSize == 0) {
        return kNullRawSeqStore;
    }
    return bufferToSeq(ZSTDMT_getBuffer(seqPool));
}

#if ZSTD_RESIZE_SEQPOOL
static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
{
  return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
}
#endif

static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
{
  ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
}

static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
{
  ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
}

static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
{
    ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
    if (seqPool == NULL) return NULL;
    ZSTDMT_setNbSeq(seqPool, 0);
    return seqPool;
}

static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
{
    ZSTDMT_freeBufferPool(seqPool);
}

static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
{
    return ZSTDMT_expandBufferPool(pool, nbWorkers);
}


/* =====   CCtx Pool   ===== */
/* a single CCtx Pool can be invoked from multiple threads in parallel */

typedef struct {
    ZSTD_pthread_mutex_t poolMutex;
    int totalCCtx;
    int availCCtx;
    ZSTD_customMem cMem;
    ZSTD_CCtx* cctx[1];   /* variable size */
} ZSTDMT_CCtxPool;

/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
{
    int cid;
    for (cid=0; cid<pool->totalCCtx; cid++)
        ZSTD_freeCCtx(pool->cctx[cid]);  /* note : compatible with free on NULL */
    ZSTD_pthread_mutex_destroy(&pool->poolMutex);
    ZSTD_free(pool, pool->cMem);
}

/* ZSTDMT_createCCtxPool() :
 * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
                                              ZSTD_customMem cMem)
{
    ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_calloc(
        sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
    assert(nbWorkers > 0);
    if (!cctxPool) return NULL;
    if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
        ZSTD_free(cctxPool, cMem);
        return NULL;
    }
    cctxPool->cMem = cMem;
    cctxPool->totalCCtx = nbWorkers;
    cctxPool->availCCtx = 1;   /* at least one cctx for single-thread mode */
    cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
    if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
    DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
    return cctxPool;
}

static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
                                              int nbWorkers)
{
    if (srcPool==NULL) return NULL;
    if (nbWorkers <= srcPool->totalCCtx) return srcPool;   /* good enough */
    /* need a larger cctx pool */
    {   ZSTD_customMem const cMem = srcPool->cMem;
        ZSTDMT_freeCCtxPool(srcPool);
        return ZSTDMT_createCCtxPool(nbWorkers, cMem);
    }
}

/* only works during initialization phase, not during compression */
static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
{
    ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
    {   unsigned const nbWorkers = cctxPool->totalCCtx;
        size_t const poolSize = sizeof(*cctxPool)
                                + (nbWorkers-1) * sizeof(ZSTD_CCtx*);
        unsigned u;
        size_t totalCCtxSize = 0;
        for (u=0; u<nbWorkers; u++) {
            totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
        }
        ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
        assert(nbWorkers > 0);
        return poolSize + totalCCtxSize;
    }
}

static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
{
    DEBUGLOG(5, "ZSTDMT_getCCtx");
    ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
    if (cctxPool->availCCtx) {
        cctxPool->availCCtx--;
        {   ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
            ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
            return cctx;
    }   }
    ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
    DEBUGLOG(5, "create one more CCtx");
    return ZSTD_createCCtx_advanced(cctxPool->cMem);   /* note : can be NULL, when creation fails ! */
}

static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
{
    if (cctx==NULL) return;   /* compatibility with release on NULL */
    ZSTD_pthread_mutex_lock(&pool->poolMutex);
    if (pool->availCCtx < pool->totalCCtx)
        pool->cctx[pool->availCCtx++] = cctx;
    else {
        /* pool overflow : should not happen, since totalCCtx==nbWorkers */
        DEBUGLOG(4, "CCtx pool overflow : free cctx");
        ZSTD_freeCCtx(cctx);
    }
    ZSTD_pthread_mutex_unlock(&pool->poolMutex);
}

/* ====   Serial State   ==== */

typedef struct {
    void const* start;
    size_t size;
} range_t;

typedef struct {
    /* All variables in the struct are protected by mutex. */
    ZSTD_pthread_mutex_t mutex;
    ZSTD_pthread_cond_t cond;
    ZSTD_CCtx_params params;
    ldmState_t ldmState;
    XXH64_state_t xxhState;
    unsigned nextJobID;
    /* Protects ldmWindow.
     * Must be acquired after the main mutex when acquiring both.
     */
    ZSTD_pthread_mutex_t ldmWindowMutex;
    ZSTD_pthread_cond_t ldmWindowCond;  /* Signaled when ldmWindow is updated */
    ZSTD_window_t ldmWindow;  /* A thread-safe copy of ldmState.window */
} serialState_t;

static int ZSTDMT_serialState_reset(serialState_t* serialState, ZSTDMT_seqPool* seqPool, ZSTD_CCtx_params params, size_t jobSize)
{
    /* Adjust parameters */
    if (params.ldmParams.enableLdm) {
        DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
        ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
        assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
        assert(params.ldmParams.hashRateLog < 32);
        serialState->ldmState.hashPower =
                ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength);
    } else {
        memset(&params.ldmParams, 0, sizeof(params.ldmParams));
    }
    serialState->nextJobID = 0;
    if (params.fParams.checksumFlag)
        XXH64_reset(&serialState->xxhState, 0);
    if (params.ldmParams.enableLdm) {
        ZSTD_customMem cMem = params.customMem;
        unsigned const hashLog = params.ldmParams.hashLog;
        size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
        unsigned const bucketLog =
            params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
        size_t const bucketSize = (size_t)1 << bucketLog;
        unsigned const prevBucketLog =
            serialState->params.ldmParams.hashLog -
            serialState->params.ldmParams.bucketSizeLog;
        /* Size the seq pool tables */
        ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
        /* Reset the window */
        ZSTD_window_clear(&serialState->ldmState.window);
        serialState->ldmWindow = serialState->ldmState.window;
        /* Resize tables and output space if necessary. */
        if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
            ZSTD_free(serialState->ldmState.hashTable, cMem);
            serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_malloc(hashSize, cMem);
        }
        if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
            ZSTD_free(serialState->ldmState.bucketOffsets, cMem);
            serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_malloc(bucketSize, cMem);
        }
        if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
            return 1;
        /* Zero the tables */
        memset(serialState->ldmState.hashTable, 0, hashSize);
        memset(serialState->ldmState.bucketOffsets, 0, bucketSize);
    }
    serialState->params = params;
    serialState->params.jobSize = (U32)jobSize;
    return 0;
}

static int ZSTDMT_serialState_init(serialState_t* serialState)
{
    int initError = 0;
    memset(serialState, 0, sizeof(*serialState));
    initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
    initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
    initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
    initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
    return initError;
}

static void ZSTDMT_serialState_free(serialState_t* serialState)
{
    ZSTD_customMem cMem = serialState->params.customMem;
    ZSTD_pthread_mutex_destroy(&serialState->mutex);
    ZSTD_pthread_cond_destroy(&serialState->cond);
    ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
    ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
    ZSTD_free(serialState->ldmState.hashTable, cMem);
    ZSTD_free(serialState->ldmState.bucketOffsets, cMem);
}

static void ZSTDMT_serialState_update(serialState_t* serialState,
                                      ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
                                      range_t src, unsigned jobID)
{
    /* Wait for our turn */
    ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
    while (serialState->nextJobID < jobID) {
        DEBUGLOG(5, "wait for serialState->cond");
        ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
    }
    /* A future job may error and skip our job */
    if (serialState->nextJobID == jobID) {
        /* It is now our turn, do any processing necessary */
        if (serialState->params.ldmParams.enableLdm) {
            size_t error;
            assert(seqStore.seq != NULL && seqStore.pos == 0 &&
                   seqStore.size == 0 && seqStore.capacity > 0);
            assert(src.size <= serialState->params.jobSize);
            ZSTD_window_update(&serialState->ldmState.window, src.start, src.size);
            error = ZSTD_ldm_generateSequences(
                &serialState->ldmState, &seqStore,
                &serialState->params.ldmParams, src.start, src.size);
            /* We provide a large enough buffer to never fail. */
            assert(!ZSTD_isError(error)); (void)error;
            /* Update ldmWindow to match the ldmState.window and signal the main
             * thread if it is waiting for a buffer.
             */
            ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
            serialState->ldmWindow = serialState->ldmState.window;
            ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
            ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
        }
        if (serialState->params.fParams.checksumFlag && src.size > 0)
            XXH64_update(&serialState->xxhState, src.start, src.size);
    }
    /* Now it is the next jobs turn */
    serialState->nextJobID++;
    ZSTD_pthread_cond_broadcast(&serialState->cond);
    ZSTD_pthread_mutex_unlock(&serialState->mutex);

    if (seqStore.size > 0) {
        size_t const err = ZSTD_referenceExternalSequences(
            jobCCtx, seqStore.seq, seqStore.size);
        assert(serialState->params.ldmParams.enableLdm);
        assert(!ZSTD_isError(err));
        (void)err;
    }
}

static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
                                              unsigned jobID, size_t cSize)
{
    ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
    if (serialState->nextJobID <= jobID) {
        assert(ZSTD_isError(cSize)); (void)cSize;
        DEBUGLOG(5, "Skipping past job %u because of error", jobID);
        serialState->nextJobID = jobID + 1;
        ZSTD_pthread_cond_broadcast(&serialState->cond);

        ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
        ZSTD_window_clear(&serialState->ldmWindow);
        ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
        ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
    }
    ZSTD_pthread_mutex_unlock(&serialState->mutex);

}


/* ------------------------------------------ */
/* =====          Worker thread         ===== */
/* ------------------------------------------ */

static const range_t kNullRange = { NULL, 0 };

typedef struct {
    size_t   consumed;                   /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
    size_t   cSize;                      /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
    ZSTD_pthread_mutex_t job_mutex;      /* Thread-safe - used by mtctx and worker */
    ZSTD_pthread_cond_t job_cond;        /* Thread-safe - used by mtctx and worker */
    ZSTDMT_CCtxPool* cctxPool;           /* Thread-safe - used by mtctx and (all) workers */
    ZSTDMT_bufferPool* bufPool;          /* Thread-safe - used by mtctx and (all) workers */
    ZSTDMT_seqPool* seqPool;             /* Thread-safe - used by mtctx and (all) workers */
    serialState_t* serial;               /* Thread-safe - used by mtctx and (all) workers */
    buffer_t dstBuff;                    /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
    range_t prefix;                      /* set by mtctx, then read by worker & mtctx => no barrier */
    range_t src;                         /* set by mtctx, then read by worker & mtctx => no barrier */
    unsigned jobID;                      /* set by mtctx, then read by worker => no barrier */
    unsigned firstJob;                   /* set by mtctx, then read by worker => no barrier */
    unsigned lastJob;                    /* set by mtctx, then read by worker => no barrier */
    ZSTD_CCtx_params params;             /* set by mtctx, then read by worker => no barrier */
    const ZSTD_CDict* cdict;             /* set by mtctx, then read by worker => no barrier */
    unsigned long long fullFrameSize;    /* set by mtctx, then read by worker => no barrier */
    size_t   dstFlushed;                 /* used only by mtctx */
    unsigned frameChecksumNeeded;        /* used only by mtctx */
} ZSTDMT_jobDescription;

#define JOB_ERROR(e) {                          \
    ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);   \
    job->cSize = e;                             \
    ZSTD_pthread_mutex_unlock(&job->job_mutex); \
    goto _endJob;                               \
}

/* ZSTDMT_compressionJob() is a POOL_function type */
static void ZSTDMT_compressionJob(void* jobDescription)
{
    ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
    ZSTD_CCtx_params jobParams = job->params;   /* do not modify job->params ! copy it, modify the copy */
    ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
    rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
    buffer_t dstBuff = job->dstBuff;
    size_t lastCBlockSize = 0;

    /* resources */
    if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
    if (dstBuff.start == NULL) {   /* streaming job : doesn't provide a dstBuffer */
        dstBuff = ZSTDMT_getBuffer(job->bufPool);
        if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
        job->dstBuff = dstBuff;   /* this value can be read in ZSTDMT_flush, when it copies the whole job */
    }
    if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL)
        JOB_ERROR(ERROR(memory_allocation));

    /* Don't compute the checksum for chunks, since we compute it externally,
     * but write it in the header.
     */
    if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
    /* Don't run LDM for the chunks, since we handle it externally */
    jobParams.ldmParams.enableLdm = 0;


    /* init */
    if (job->cdict) {
        size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, jobParams, job->fullFrameSize);
        assert(job->firstJob);  /* only allowed for first job */
        if (ZSTD_isError(initError)) JOB_ERROR(initError);
    } else {  /* srcStart points at reloaded section */
        U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
        {   size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
            if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
        }
        {   size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
                                        job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
                                        ZSTD_dtlm_fast,
                                        NULL, /*cdict*/
                                        jobParams, pledgedSrcSize);
            if (ZSTD_isError(initError)) JOB_ERROR(initError);
    }   }

    /* Perform serial step as early as possible, but after CCtx initialization */
    ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);

    if (!job->firstJob) {  /* flush and overwrite frame header when it's not first job */
        size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
        if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
        DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
        ZSTD_invalidateRepCodes(cctx);
    }

    /* compress */
    {   size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
        int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
        const BYTE* ip = (const BYTE*) job->src.start;
        BYTE* const ostart = (BYTE*)dstBuff.start;
        BYTE* op = ostart;
        BYTE* oend = op + dstBuff.capacity;
        int chunkNb;
        if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize);   /* check overflow */
        DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
        assert(job->cSize == 0);
        for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
            size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
            if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
            ip += chunkSize;
            op += cSize; assert(op < oend);
            /* stats */
            ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
            job->cSize += cSize;
            job->consumed = chunkSize * chunkNb;
            DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
                        (U32)cSize, (U32)job->cSize);
            ZSTD_pthread_cond_signal(&job->job_cond);   /* warns some more data is ready to be flushed */
            ZSTD_pthread_mutex_unlock(&job->job_mutex);
        }
        /* last block */
        assert(chunkSize > 0);
        assert((chunkSize & (chunkSize - 1)) == 0);  /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
        if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
            size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
            size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
            size_t const cSize = (job->lastJob) ?
                 ZSTD_compressEnd     (cctx, op, oend-op, ip, lastBlockSize) :
                 ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
            if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
            lastCBlockSize = cSize;
    }   }

_endJob:
    ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
    if (job->prefix.size > 0)
        DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
    DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
    /* release resources */
    ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
    ZSTDMT_releaseCCtx(job->cctxPool, cctx);
    /* report */
    ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
    if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
    job->cSize += lastCBlockSize;
    job->consumed = job->src.size;  /* when job->consumed == job->src.size , compression job is presumed completed */
    ZSTD_pthread_cond_signal(&job->job_cond);
    ZSTD_pthread_mutex_unlock(&job->job_mutex);
}


/* ------------------------------------------ */
/* =====   Multi-threaded compression   ===== */
/* ------------------------------------------ */

typedef struct {
    range_t prefix;         /* read-only non-owned prefix buffer */
    buffer_t buffer;
    size_t filled;
} inBuff_t;

typedef struct {
  BYTE* buffer;     /* The round input buffer. All jobs get references
                     * to pieces of the buffer. ZSTDMT_tryGetInputRange()
                     * handles handing out job input buffers, and makes
                     * sure it doesn't overlap with any pieces still in use.
                     */
  size_t capacity;  /* The capacity of buffer. */
  size_t pos;       /* The position of the current inBuff in the round
                     * buffer. Updated past the end if the inBuff once
                     * the inBuff is sent to the worker thread.
                     * pos <= capacity.
                     */
} roundBuff_t;

static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};

#define RSYNC_LENGTH 32

typedef struct {
  U64 hash;
  U64 hitMask;
  U64 primePower;
} rsyncState_t;

struct ZSTDMT_CCtx_s {
    POOL_ctx* factory;
    ZSTDMT_jobDescription* jobs;
    ZSTDMT_bufferPool* bufPool;
    ZSTDMT_CCtxPool* cctxPool;
    ZSTDMT_seqPool* seqPool;
    ZSTD_CCtx_params params;
    size_t targetSectionSize;
    size_t targetPrefixSize;
    int jobReady;        /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
    inBuff_t inBuff;
    roundBuff_t roundBuff;
    serialState_t serial;
    rsyncState_t rsync;
    unsigned singleBlockingThread;
    unsigned jobIDMask;
    unsigned doneJobID;
    unsigned nextJobID;
    unsigned frameEnded;
    unsigned allJobsCompleted;
    unsigned long long frameContentSize;
    unsigned long long consumed;
    unsigned long long produced;
    ZSTD_customMem cMem;
    ZSTD_CDict* cdictLocal;
    const ZSTD_CDict* cdict;
};

static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
{
    U32 jobNb;
    if (jobTable == NULL) return;
    for (jobNb=0; jobNb<nbJobs; jobNb++) {
        ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
        ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
    }
    ZSTD_free(jobTable, cMem);
}

/* ZSTDMT_allocJobsTable()
 * allocate and init a job table.
 * update *nbJobsPtr to next power of 2 value, as size of table */
static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
{
    U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
    U32 const nbJobs = 1 << nbJobsLog2;
    U32 jobNb;
    ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
                ZSTD_calloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
    int initError = 0;
    if (jobTable==NULL) return NULL;
    *nbJobsPtr = nbJobs;
    for (jobNb=0; jobNb<nbJobs; jobNb++) {
        initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
        initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
    }
    if (initError != 0) {
        ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
        return NULL;
    }
    return jobTable;
}

static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
    U32 nbJobs = nbWorkers + 2;
    if (nbJobs > mtctx->jobIDMask+1) {  /* need more job capacity */
        ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
        mtctx->jobIDMask = 0;
        mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
        if (mtctx->jobs==NULL) return ERROR(memory_allocation);
        assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0));  /* ensure nbJobs is a power of 2 */
        mtctx->jobIDMask = nbJobs - 1;
    }
    return 0;
}


/* ZSTDMT_CCtxParam_setNbWorkers():
 * Internal use only */
size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
{
    return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
}

MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem)
{
    ZSTDMT_CCtx* mtctx;
    U32 nbJobs = nbWorkers + 2;
    int initError;
    DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);

    if (nbWorkers < 1) return NULL;
    nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
    if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
        /* invalid custom allocator */
        return NULL;

    mtctx = (ZSTDMT_CCtx*) ZSTD_calloc(sizeof(ZSTDMT_CCtx), cMem);
    if (!mtctx) return NULL;
    ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
    mtctx->cMem = cMem;
    mtctx->allJobsCompleted = 1;
    mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
    mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
    assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0);  /* ensure nbJobs is a power of 2 */
    mtctx->jobIDMask = nbJobs - 1;
    mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
    mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
    mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
    initError = ZSTDMT_serialState_init(&mtctx->serial);
    mtctx->roundBuff = kNullRoundBuff;
    if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
        ZSTDMT_freeCCtx(mtctx);
        return NULL;
    }
    DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
    return mtctx;
}

ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem)
{
#ifdef ZSTD_MULTITHREAD
    return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem);
#else
    (void)nbWorkers;
    (void)cMem;
    return NULL;
#endif
}

ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers)
{
    return ZSTDMT_createCCtx_advanced(nbWorkers, ZSTD_defaultCMem);
}


/* ZSTDMT_releaseAllJobResources() :
 * note : ensure all workers are killed first ! */
static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
{
    unsigned jobID;
    DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
    for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
        DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
        ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
        mtctx->jobs[jobID].dstBuff = g_nullBuffer;
        mtctx->jobs[jobID].cSize = 0;
    }
    memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription));
    mtctx->inBuff.buffer = g_nullBuffer;
    mtctx->inBuff.filled = 0;
    mtctx->allJobsCompleted = 1;
}

static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
{
    DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
    while (mtctx->doneJobID < mtctx->nextJobID) {
        unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
        ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
        while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
            DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID);   /* we want to block when waiting for data to flush */
            ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
        }
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
        mtctx->doneJobID++;
    }
}

size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
{
    if (mtctx==NULL) return 0;   /* compatible with free on NULL */
    POOL_free(mtctx->factory);   /* stop and free worker threads */
    ZSTDMT_releaseAllJobResources(mtctx);  /* release job resources into pools first */
    ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
    ZSTDMT_freeBufferPool(mtctx->bufPool);
    ZSTDMT_freeCCtxPool(mtctx->cctxPool);
    ZSTDMT_freeSeqPool(mtctx->seqPool);
    ZSTDMT_serialState_free(&mtctx->serial);
    ZSTD_freeCDict(mtctx->cdictLocal);
    if (mtctx->roundBuff.buffer)
        ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem);
    ZSTD_free(mtctx, mtctx->cMem);
    return 0;
}

size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
{
    if (mtctx == NULL) return 0;   /* supports sizeof NULL */
    return sizeof(*mtctx)
            + POOL_sizeof(mtctx->factory)
            + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
            + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
            + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
            + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
            + ZSTD_sizeof_CDict(mtctx->cdictLocal)
            + mtctx->roundBuff.capacity;
}

/* Internal only */
size_t
ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params,
                                   ZSTDMT_parameter parameter,
                                   int value)
{
    DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter");
    switch(parameter)
    {
    case ZSTDMT_p_jobSize :
        DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter : set jobSize to %i", value);
        return ZSTD_CCtxParams_setParameter(params, ZSTD_c_jobSize, value);
    case ZSTDMT_p_overlapLog :
        DEBUGLOG(4, "ZSTDMT_p_overlapLog : %i", value);
        return ZSTD_CCtxParams_setParameter(params, ZSTD_c_overlapLog, value);
    case ZSTDMT_p_rsyncable :
        DEBUGLOG(4, "ZSTD_p_rsyncable : %i", value);
        return ZSTD_CCtxParams_setParameter(params, ZSTD_c_rsyncable, value);
    default :
        return ERROR(parameter_unsupported);
    }
}

size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int value)
{
    DEBUGLOG(4, "ZSTDMT_setMTCtxParameter");
    return ZSTDMT_CCtxParam_setMTCtxParameter(&mtctx->params, parameter, value);
}

size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int* value)
{
    switch (parameter) {
    case ZSTDMT_p_jobSize:
        return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_jobSize, value);
    case ZSTDMT_p_overlapLog:
        return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_overlapLog, value);
    case ZSTDMT_p_rsyncable:
        return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_rsyncable, value);
    default:
        return ERROR(parameter_unsupported);
    }
}

/* Sets parameters relevant to the compression job,
 * initializing others to default values. */
static ZSTD_CCtx_params ZSTDMT_initJobCCtxParams(ZSTD_CCtx_params const params)
{
    ZSTD_CCtx_params jobParams = params;
    /* Clear parameters related to multithreading */
    jobParams.forceWindow = 0;
    jobParams.nbWorkers = 0;
    jobParams.jobSize = 0;
    jobParams.overlapLog = 0;
    jobParams.rsyncable = 0;
    memset(&jobParams.ldmParams, 0, sizeof(ldmParams_t));
    memset(&jobParams.customMem, 0, sizeof(ZSTD_customMem));
    return jobParams;
}


/* ZSTDMT_resize() :
 * @return : error code if fails, 0 on success */
static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
{
    if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
    FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) );
    mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers);
    if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
    mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
    if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
    mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
    if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
    ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
    return 0;
}


/*! ZSTDMT_updateCParams_whileCompressing() :
 *  Updates a selected set of compression parameters, remaining compatible with currently active frame.
 *  New parameters will be applied to next compression job. */
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
{
    U32 const saved_wlog = mtctx->params.cParams.windowLog;   /* Do not modify windowLog while compressing */
    int const compressionLevel = cctxParams->compressionLevel;
    DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
                compressionLevel);
    mtctx->params.compressionLevel = compressionLevel;
    {   ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, 0, 0);
        cParams.windowLog = saved_wlog;
        mtctx->params.cParams = cParams;
    }
}

/* ZSTDMT_getFrameProgression():
 * tells how much data has been consumed (input) and produced (output) for current frame.
 * able to count progression inside worker threads.
 * Note : mutex will be acquired during statistics collection inside workers. */
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
{
    ZSTD_frameProgression fps;
    DEBUGLOG(5, "ZSTDMT_getFrameProgression");
    fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
    fps.consumed = mtctx->consumed;
    fps.produced = fps.flushed = mtctx->produced;
    fps.currentJobID = mtctx->nextJobID;
    fps.nbActiveWorkers = 0;
    {   unsigned jobNb;
        unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
        DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
                    mtctx->doneJobID, lastJobNb, mtctx->jobReady)
        for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
            unsigned const wJobID = jobNb & mtctx->jobIDMask;
            ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
            ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
            {   size_t const cResult = jobPtr->cSize;
                size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
                size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
                assert(flushed <= produced);
                fps.ingested += jobPtr->src.size;
                fps.consumed += jobPtr->consumed;
                fps.produced += produced;
                fps.flushed  += flushed;
                fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
            }
            ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
        }
    }
    return fps;
}


size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
{
    size_t toFlush;
    unsigned const jobID = mtctx->doneJobID;
    assert(jobID <= mtctx->nextJobID);
    if (jobID == mtctx->nextJobID) return 0;   /* no active job => nothing to flush */

    /* look into oldest non-fully-flushed job */
    {   unsigned const wJobID = jobID & mtctx->jobIDMask;
        ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
        ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
        {   size_t const cResult = jobPtr->cSize;
            size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
            size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
            assert(flushed <= produced);
            toFlush = produced - flushed;
            if (toFlush==0 && (jobPtr->consumed >= jobPtr->src.size)) {
                /* doneJobID is not-fully-flushed, but toFlush==0 : doneJobID should be compressing some more data */
                assert(jobPtr->consumed < jobPtr->src.size);
            }
        }
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
    }

    return toFlush;
}


/* ------------------------------------------ */
/* =====   Multi-threaded compression   ===== */
/* ------------------------------------------ */

static unsigned ZSTDMT_computeTargetJobLog(ZSTD_CCtx_params const params)
{
    if (params.ldmParams.enableLdm)
        /* In Long Range Mode, the windowLog is typically oversized.
         * In which case, it's preferable to determine the jobSize
         * based on chainLog instead. */
        return MAX(21, params.cParams.chainLog + 4);
    return MAX(20, params.cParams.windowLog + 2);
}

static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
{
    switch(strat)
    {
        case ZSTD_btultra2:
            return 9;
        case ZSTD_btultra:
        case ZSTD_btopt:
            return 8;
        case ZSTD_btlazy2:
        case ZSTD_lazy2:
            return 7;
        case ZSTD_lazy:
        case ZSTD_greedy:
        case ZSTD_dfast:
        case ZSTD_fast:
        default:;
    }
    return 6;
}

static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
{
    assert(0 <= ovlog && ovlog <= 9);
    if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
    return ovlog;
}

static size_t ZSTDMT_computeOverlapSize(ZSTD_CCtx_params const params)
{
    int const overlapRLog = 9 - ZSTDMT_overlapLog(params.overlapLog, params.cParams.strategy);
    int ovLog = (overlapRLog >= 8) ? 0 : (params.cParams.windowLog - overlapRLog);
    assert(0 <= overlapRLog && overlapRLog <= 8);
    if (params.ldmParams.enableLdm) {
        /* In Long Range Mode, the windowLog is typically oversized.
         * In which case, it's preferable to determine the jobSize
         * based on chainLog instead.
         * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
        ovLog = MIN(params.cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
                - overlapRLog;
    }
    assert(0 <= ovLog && ovLog <= 30);
    DEBUGLOG(4, "overlapLog : %i", params.overlapLog);
    DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
    return (ovLog==0) ? 0 : (size_t)1 << ovLog;
}

static unsigned
ZSTDMT_computeNbJobs(ZSTD_CCtx_params params, size_t srcSize, unsigned nbWorkers)
{
    assert(nbWorkers>0);
    {   size_t const jobSizeTarget = (size_t)1 << ZSTDMT_computeTargetJobLog(params);
        size_t const jobMaxSize = jobSizeTarget << 2;
        size_t const passSizeMax = jobMaxSize * nbWorkers;
        unsigned const multiplier = (unsigned)(srcSize / passSizeMax) + 1;
        unsigned const nbJobsLarge = multiplier * nbWorkers;
        unsigned const nbJobsMax = (unsigned)(srcSize / jobSizeTarget) + 1;
        unsigned const nbJobsSmall = MIN(nbJobsMax, nbWorkers);
        return (multiplier>1) ? nbJobsLarge : nbJobsSmall;
}   }

/* ZSTDMT_compress_advanced_internal() :
 * This is a blocking function : it will only give back control to caller after finishing its compression job.
 */
static size_t ZSTDMT_compress_advanced_internal(
                ZSTDMT_CCtx* mtctx,
                void* dst, size_t dstCapacity,
          const void* src, size_t srcSize,
          const ZSTD_CDict* cdict,
                ZSTD_CCtx_params params)
{
    ZSTD_CCtx_params const jobParams = ZSTDMT_initJobCCtxParams(params);
    size_t const overlapSize = ZSTDMT_computeOverlapSize(params);
    unsigned const nbJobs = ZSTDMT_computeNbJobs(params, srcSize, params.nbWorkers);
    size_t const proposedJobSize = (srcSize + (nbJobs-1)) / nbJobs;
    size_t const avgJobSize = (((proposedJobSize-1) & 0x1FFFF) < 0x7FFF) ? proposedJobSize + 0xFFFF : proposedJobSize;   /* avoid too small last block */
    const char* const srcStart = (const char*)src;
    size_t remainingSrcSize = srcSize;
    unsigned const compressWithinDst = (dstCapacity >= ZSTD_compressBound(srcSize)) ? nbJobs : (unsigned)(dstCapacity / ZSTD_compressBound(avgJobSize));  /* presumes avgJobSize >= 256 KB, which should be the case */
    size_t frameStartPos = 0, dstBufferPos = 0;
    assert(jobParams.nbWorkers == 0);
    assert(mtctx->cctxPool->totalCCtx == params.nbWorkers);

    params.jobSize = (U32)avgJobSize;
    DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: nbJobs=%2u (rawSize=%u bytes; fixedSize=%u) ",
                nbJobs, (U32)proposedJobSize, (U32)avgJobSize);

    if ((nbJobs==1) | (params.nbWorkers<=1)) {   /* fallback to single-thread mode : this is a blocking invocation anyway */
        ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0];
        DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: fallback to single-thread mode");
        if (cdict) return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, jobParams.fParams);
        return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, NULL, 0, jobParams);
    }

    assert(avgJobSize >= 256 KB);  /* condition for ZSTD_compressBound(A) + ZSTD_compressBound(B) <= ZSTD_compressBound(A+B), required to compress directly into Dst (no additional buffer) */
    ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(avgJobSize) );
    if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, avgJobSize))
        return ERROR(memory_allocation);

    FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbJobs) );  /* only expands if necessary */

    {   unsigned u;
        for (u=0; u<nbJobs; u++) {
            size_t const jobSize = MIN(remainingSrcSize, avgJobSize);
            size_t const dstBufferCapacity = ZSTD_compressBound(jobSize);
            buffer_t const dstAsBuffer = { (char*)dst + dstBufferPos, dstBufferCapacity };
            buffer_t const dstBuffer = u < compressWithinDst ? dstAsBuffer : g_nullBuffer;
            size_t dictSize = u ? overlapSize : 0;

            mtctx->jobs[u].prefix.start = srcStart + frameStartPos - dictSize;
            mtctx->jobs[u].prefix.size = dictSize;
            mtctx->jobs[u].src.start = srcStart + frameStartPos;
            mtctx->jobs[u].src.size = jobSize; assert(jobSize > 0);  /* avoid job.src.size == 0 */
            mtctx->jobs[u].consumed = 0;
            mtctx->jobs[u].cSize = 0;
            mtctx->jobs[u].cdict = (u==0) ? cdict : NULL;
            mtctx->jobs[u].fullFrameSize = srcSize;
            mtctx->jobs[u].params = jobParams;
            /* do not calculate checksum within sections, but write it in header for first section */
            mtctx->jobs[u].dstBuff = dstBuffer;
            mtctx->jobs[u].cctxPool = mtctx->cctxPool;
            mtctx->jobs[u].bufPool = mtctx->bufPool;
            mtctx->jobs[u].seqPool = mtctx->seqPool;
            mtctx->jobs[u].serial = &mtctx->serial;
            mtctx->jobs[u].jobID = u;
            mtctx->jobs[u].firstJob = (u==0);
            mtctx->jobs[u].lastJob = (u==nbJobs-1);

            DEBUGLOG(5, "ZSTDMT_compress_advanced_internal: posting job %u  (%u bytes)", u, (U32)jobSize);
            DEBUG_PRINTHEX(6, mtctx->jobs[u].prefix.start, 12);
            POOL_add(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[u]);

            frameStartPos += jobSize;
            dstBufferPos += dstBufferCapacity;
            remainingSrcSize -= jobSize;
    }   }

    /* collect result */
    {   size_t error = 0, dstPos = 0;
        unsigned jobID;
        for (jobID=0; jobID<nbJobs; jobID++) {
            DEBUGLOG(5, "waiting for job %u ", jobID);
            ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
            while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
                DEBUGLOG(5, "waiting for jobCompleted signal from job %u", jobID);
                ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
            }
            ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
            DEBUGLOG(5, "ready to write job %u ", jobID);

            {   size_t const cSize = mtctx->jobs[jobID].cSize;
                if (ZSTD_isError(cSize)) error = cSize;
                if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall);
                if (jobID) {   /* note : job 0 is written directly at dst, which is correct position */
                    if (!error)
                        memmove((char*)dst + dstPos, mtctx->jobs[jobID].dstBuff.start, cSize);  /* may overlap when job compressed within dst */
                    if (jobID >= compressWithinDst) {  /* job compressed into its own buffer, which must be released */
                        DEBUGLOG(5, "releasing buffer %u>=%u", jobID, compressWithinDst);
                        ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
                }   }
                mtctx->jobs[jobID].dstBuff = g_nullBuffer;
                mtctx->jobs[jobID].cSize = 0;
                dstPos += cSize ;
            }
        }  /* for (jobID=0; jobID<nbJobs; jobID++) */

        DEBUGLOG(4, "checksumFlag : %u ", params.fParams.checksumFlag);
        if (params.fParams.checksumFlag) {
            U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
            if (dstPos + 4 > dstCapacity) {
                error = ERROR(dstSize_tooSmall);
            } else {
                DEBUGLOG(4, "writing checksum : %08X \n", checksum);
                MEM_writeLE32((char*)dst + dstPos, checksum);
                dstPos += 4;
        }   }

        if (!error) DEBUGLOG(4, "compressed size : %u  ", (U32)dstPos);
        return error ? error : dstPos;
    }
}

size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
                                void* dst, size_t dstCapacity,
                          const void* src, size_t srcSize,
                          const ZSTD_CDict* cdict,
                                ZSTD_parameters params,
                                int overlapLog)
{
    ZSTD_CCtx_params cctxParams = mtctx->params;
    cctxParams.cParams = params.cParams;
    cctxParams.fParams = params.fParams;
    assert(ZSTD_OVERLAPLOG_MIN <= overlapLog && overlapLog <= ZSTD_OVERLAPLOG_MAX);
    cctxParams.overlapLog = overlapLog;
    return ZSTDMT_compress_advanced_internal(mtctx,
                                             dst, dstCapacity,
                                             src, srcSize,
                                             cdict, cctxParams);
}


size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
                           void* dst, size_t dstCapacity,
                     const void* src, size_t srcSize,
                           int compressionLevel)
{
    ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0);
    int const overlapLog = ZSTDMT_overlapLog_default(params.cParams.strategy);
    params.fParams.contentSizeFlag = 1;
    return ZSTDMT_compress_advanced(mtctx, dst, dstCapacity, src, srcSize, NULL, params, overlapLog);
}


/* ====================================== */
/* =======      Streaming API     ======= */
/* ====================================== */

size_t ZSTDMT_initCStream_internal(
        ZSTDMT_CCtx* mtctx,
        const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
        const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
        unsigned long long pledgedSrcSize)
{
    DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
                (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);

    /* params supposed partially fully validated at this point */
    assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
    assert(!((dict) && (cdict)));  /* either dict or cdict, not both */

    /* init */
    if (params.nbWorkers != mtctx->params.nbWorkers)
        FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) );

    if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
    if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = ZSTDMT_JOBSIZE_MAX;

    mtctx->singleBlockingThread = (pledgedSrcSize <= ZSTDMT_JOBSIZE_MIN);  /* do not trigger multi-threading when srcSize is too small */
    if (mtctx->singleBlockingThread) {
        ZSTD_CCtx_params const singleThreadParams = ZSTDMT_initJobCCtxParams(params);
        DEBUGLOG(5, "ZSTDMT_initCStream_internal: switch to single blocking thread mode");
        assert(singleThreadParams.nbWorkers == 0);
        return ZSTD_initCStream_internal(mtctx->cctxPool->cctx[0],
                                         dict, dictSize, cdict,
                                         singleThreadParams, pledgedSrcSize);
    }

    DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);

    if (mtctx->allJobsCompleted == 0) {   /* previous compression not correctly finished */
        ZSTDMT_waitForAllJobsCompleted(mtctx);
        ZSTDMT_releaseAllJobResources(mtctx);
        mtctx->allJobsCompleted = 1;
    }

    mtctx->params = params;
    mtctx->frameContentSize = pledgedSrcSize;
    if (dict) {
        ZSTD_freeCDict(mtctx->cdictLocal);
        mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
                                                    ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
                                                    params.cParams, mtctx->cMem);
        mtctx->cdict = mtctx->cdictLocal;
        if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
    } else {
        ZSTD_freeCDict(mtctx->cdictLocal);
        mtctx->cdictLocal = NULL;
        mtctx->cdict = cdict;
    }

    mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(params);
    DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
    mtctx->targetSectionSize = params.jobSize;
    if (mtctx->targetSectionSize == 0) {
        mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(params);
    }
    if (params.rsyncable) {
        /* Aim for the targetsectionSize as the average job size. */
        U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20);
        U32 const rsyncBits = ZSTD_highbit32(jobSizeMB) + 20;
        assert(jobSizeMB >= 1);
        DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
        mtctx->rsync.hash = 0;
        mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
        mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
    }
    if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize;  /* job size must be >= overlap size */
    DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
    DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
    ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
    {
        /* If ldm is enabled we need windowSize space. */
        size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0;
        /* Two buffers of slack, plus extra space for the overlap
         * This is the minimum slack that LDM works with. One extra because
         * flush might waste up to targetSectionSize-1 bytes. Another extra
         * for the overlap (if > 0), then one to fill which doesn't overlap
         * with the LDM window.
         */
        size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
        size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
        /* Compute the total size, and always have enough slack */
        size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
        size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
        size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
        if (mtctx->roundBuff.capacity < capacity) {
            if (mtctx->roundBuff.buffer)
                ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem);
            mtctx->roundBuff.buffer = (BYTE*)ZSTD_malloc(capacity, mtctx->cMem);
            if (mtctx->roundBuff.buffer == NULL) {
                mtctx->roundBuff.capacity = 0;
                return ERROR(memory_allocation);
            }
            mtctx->roundBuff.capacity = capacity;
        }
    }
    DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
    mtctx->roundBuff.pos = 0;
    mtctx->inBuff.buffer = g_nullBuffer;
    mtctx->inBuff.filled = 0;
    mtctx->inBuff.prefix = kNullRange;
    mtctx->doneJobID = 0;
    mtctx->nextJobID = 0;
    mtctx->frameEnded = 0;
    mtctx->allJobsCompleted = 0;
    mtctx->consumed = 0;
    mtctx->produced = 0;
    if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize))
        return ERROR(memory_allocation);
    return 0;
}

size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
                             const void* dict, size_t dictSize,
                                   ZSTD_parameters params,
                                   unsigned long long pledgedSrcSize)
{
    ZSTD_CCtx_params cctxParams = mtctx->params;  /* retrieve sticky params */
    DEBUGLOG(4, "ZSTDMT_initCStream_advanced (pledgedSrcSize=%u)", (U32)pledgedSrcSize);
    cctxParams.cParams = params.cParams;
    cctxParams.fParams = params.fParams;
    return ZSTDMT_initCStream_internal(mtctx, dict, dictSize, ZSTD_dct_auto, NULL,
                                       cctxParams, pledgedSrcSize);
}

size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
                               const ZSTD_CDict* cdict,
                                     ZSTD_frameParameters fParams,
                                     unsigned long long pledgedSrcSize)
{
    ZSTD_CCtx_params cctxParams = mtctx->params;
    if (cdict==NULL) return ERROR(dictionary_wrong);   /* method incompatible with NULL cdict */
    cctxParams.cParams = ZSTD_getCParamsFromCDict(cdict);
    cctxParams.fParams = fParams;
    return ZSTDMT_initCStream_internal(mtctx, NULL, 0 /*dictSize*/, ZSTD_dct_auto, cdict,
                                       cctxParams, pledgedSrcSize);
}


/* ZSTDMT_resetCStream() :
 * pledgedSrcSize can be zero == unknown (for the time being)
 * prefer using ZSTD_CONTENTSIZE_UNKNOWN,
 * as `0` might mean "empty" in the future */
size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize)
{
    if (!pledgedSrcSize) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
    return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, 0, mtctx->params,
                                       pledgedSrcSize);
}

size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel) {
    ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0);
    ZSTD_CCtx_params cctxParams = mtctx->params;   /* retrieve sticky params */
    DEBUGLOG(4, "ZSTDMT_initCStream (cLevel=%i)", compressionLevel);
    cctxParams.cParams = params.cParams;
    cctxParams.fParams = params.fParams;
    return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN);
}


/* ZSTDMT_writeLastEmptyBlock()
 * Write a single empty block with an end-of-frame to finish a frame.
 * Job must be created from streaming variant.
 * This function is always successful if expected conditions are fulfilled.
 */
static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
{
    assert(job->lastJob == 1);
    assert(job->src.size == 0);   /* last job is empty -> will be simplified into a last empty block */
    assert(job->firstJob == 0);   /* cannot be first job, as it also needs to create frame header */
    assert(job->dstBuff.start == NULL);   /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
    job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
    if (job->dstBuff.start == NULL) {
      job->cSize = ERROR(memory_allocation);
      return;
    }
    assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize);   /* no buffer should ever be that small */
    job->src = kNullRange;
    job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
    assert(!ZSTD_isError(job->cSize));
    assert(job->consumed == 0);
}

static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
{
    unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
    int const endFrame = (endOp == ZSTD_e_end);

    if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
        DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
        assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
        return 0;
    }

    if (!mtctx->jobReady) {
        BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
        DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
                    mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
        mtctx->jobs[jobID].src.start = src;
        mtctx->jobs[jobID].src.size = srcSize;
        assert(mtctx->inBuff.filled >= srcSize);
        mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
        mtctx->jobs[jobID].consumed = 0;
        mtctx->jobs[jobID].cSize = 0;
        mtctx->jobs[jobID].params = mtctx->params;
        mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
        mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
        mtctx->jobs[jobID].dstBuff = g_nullBuffer;
        mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
        mtctx->jobs[jobID].bufPool = mtctx->bufPool;
        mtctx->jobs[jobID].seqPool = mtctx->seqPool;
        mtctx->jobs[jobID].serial = &mtctx->serial;
        mtctx->jobs[jobID].jobID = mtctx->nextJobID;
        mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
        mtctx->jobs[jobID].lastJob = endFrame;
        mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
        mtctx->jobs[jobID].dstFlushed = 0;

        /* Update the round buffer pos and clear the input buffer to be reset */
        mtctx->roundBuff.pos += srcSize;
        mtctx->inBuff.buffer = g_nullBuffer;
        mtctx->inBuff.filled = 0;
        /* Set the prefix */
        if (!endFrame) {
            size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
            mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
            mtctx->inBuff.prefix.size = newPrefixSize;
        } else {   /* endFrame==1 => no need for another input buffer */
            mtctx->inBuff.prefix = kNullRange;
            mtctx->frameEnded = endFrame;
            if (mtctx->nextJobID == 0) {
                /* single job exception : checksum is already calculated directly within worker thread */
                mtctx->params.fParams.checksumFlag = 0;
        }   }

        if ( (srcSize == 0)
          && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
            DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
            assert(endOp == ZSTD_e_end);  /* only possible case : need to end the frame with an empty last block */
            ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
            mtctx->nextJobID++;
            return 0;
        }
    }

    DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes  (end:%u, jobNb == %u (mod:%u))",
                mtctx->nextJobID,
                (U32)mtctx->jobs[jobID].src.size,
                mtctx->jobs[jobID].lastJob,
                mtctx->nextJobID,
                jobID);
    if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
        mtctx->nextJobID++;
        mtctx->jobReady = 0;
    } else {
        DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
        mtctx->jobReady = 1;
    }
    return 0;
}


/*! ZSTDMT_flushProduced() :
 *  flush whatever data has been produced but not yet flushed in current job.
 *  move to next job if current one is fully flushed.
 * `output` : `pos` will be updated with amount of data flushed .
 * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
 * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
{
    unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
    DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
                blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
    assert(output->size >= output->pos);

    ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
    if (  blockToFlush
      && (mtctx->doneJobID < mtctx->nextJobID) ) {
        assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
        while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) {  /* nothing to flush */
            if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
                DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
                            mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
                break;
            }
            DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
                        mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
            ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex);  /* block when nothing to flush but some to come */
    }   }

    /* try to flush something */
    {   size_t cSize = mtctx->jobs[wJobID].cSize;                  /* shared */
        size_t const srcConsumed = mtctx->jobs[wJobID].consumed;   /* shared */
        size_t const srcSize = mtctx->jobs[wJobID].src.size;       /* read-only, could be done after mutex lock, but no-declaration-after-statement */
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
        if (ZSTD_isError(cSize)) {
            DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
                        mtctx->doneJobID, ZSTD_getErrorName(cSize));
            ZSTDMT_waitForAllJobsCompleted(mtctx);
            ZSTDMT_releaseAllJobResources(mtctx);
            return cSize;
        }
        /* add frame checksum if necessary (can only happen once) */
        assert(srcConsumed <= srcSize);
        if ( (srcConsumed == srcSize)   /* job completed -> worker no longer active */
          && mtctx->jobs[wJobID].frameChecksumNeeded ) {
            U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
            DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
            MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
            cSize += 4;
            mtctx->jobs[wJobID].cSize += 4;  /* can write this shared value, as worker is no longer active */
            mtctx->jobs[wJobID].frameChecksumNeeded = 0;
        }

        if (cSize > 0) {   /* compression is ongoing or completed */
            size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
            DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
                        (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
            assert(mtctx->doneJobID < mtctx->nextJobID);
            assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
            assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
            memcpy((char*)output->dst + output->pos,
                   (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
                   toFlush);
            output->pos += toFlush;
            mtctx->jobs[wJobID].dstFlushed += toFlush;  /* can write : this value is only used by mtctx */

            if ( (srcConsumed == srcSize)    /* job is completed */
              && (mtctx->jobs[wJobID].dstFlushed == cSize) ) {   /* output buffer fully flushed => free this job position */
                DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
                        mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
                ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
                DEBUGLOG(5, "dstBuffer released");
                mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
                mtctx->jobs[wJobID].cSize = 0;   /* ensure this job slot is considered "not started" in future check */
                mtctx->consumed += srcSize;
                mtctx->produced += cSize;
                mtctx->doneJobID++;
        }   }

        /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
        if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
        if (srcSize > srcConsumed) return 1;   /* current job not completely compressed */
    }
    if (mtctx->doneJobID < mtctx->nextJobID) return 1;   /* some more jobs ongoing */
    if (mtctx->jobReady) return 1;      /* one job is ready to push, just not yet in the list */
    if (mtctx->inBuff.filled > 0) return 1;   /* input is not empty, and still needs to be converted into a job */
    mtctx->allJobsCompleted = mtctx->frameEnded;   /* all jobs are entirely flushed => if this one is last one, frame is completed */
    if (end == ZSTD_e_end) return !mtctx->frameEnded;  /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
    return 0;   /* internal buffers fully flushed */
}

/**
 * Returns the range of data used by the earliest job that is not yet complete.
 * If the data of the first job is broken up into two segments, we cover both
 * sections.
 */
static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
{
    unsigned const firstJobID = mtctx->doneJobID;
    unsigned const lastJobID = mtctx->nextJobID;
    unsigned jobID;

    for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
        unsigned const wJobID = jobID & mtctx->jobIDMask;
        size_t consumed;

        ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
        consumed = mtctx->jobs[wJobID].consumed;
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);

        if (consumed < mtctx->jobs[wJobID].src.size) {
            range_t range = mtctx->jobs[wJobID].prefix;
            if (range.size == 0) {
                /* Empty prefix */
                range = mtctx->jobs[wJobID].src;
            }
            /* Job source in multiple segments not supported yet */
            assert(range.start <= mtctx->jobs[wJobID].src.start);
            return range;
        }
    }
    return kNullRange;
}

/**
 * Returns non-zero iff buffer and range overlap.
 */
static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
{
    BYTE const* const bufferStart = (BYTE const*)buffer.start;
    BYTE const* const bufferEnd = bufferStart + buffer.capacity;
    BYTE const* const rangeStart = (BYTE const*)range.start;
    BYTE const* const rangeEnd = rangeStart + range.size;

    if (rangeStart == NULL || bufferStart == NULL)
        return 0;
    /* Empty ranges cannot overlap */
    if (bufferStart == bufferEnd || rangeStart == rangeEnd)
        return 0;

    return bufferStart < rangeEnd && rangeStart < bufferEnd;
}

static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
{
    range_t extDict;
    range_t prefix;

    DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
    extDict.start = window.dictBase + window.lowLimit;
    extDict.size = window.dictLimit - window.lowLimit;

    prefix.start = window.base + window.dictLimit;
    prefix.size = window.nextSrc - (window.base + window.dictLimit);
    DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
                (size_t)extDict.start,
                (size_t)extDict.start + extDict.size);
    DEBUGLOG(5, "prefix  [0x%zx, 0x%zx)",
                (size_t)prefix.start,
                (size_t)prefix.start + prefix.size);

    return ZSTDMT_isOverlapped(buffer, extDict)
        || ZSTDMT_isOverlapped(buffer, prefix);
}

static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
{
    if (mtctx->params.ldmParams.enableLdm) {
        ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
        DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
        DEBUGLOG(5, "source  [0x%zx, 0x%zx)",
                    (size_t)buffer.start,
                    (size_t)buffer.start + buffer.capacity);
        ZSTD_PTHREAD_MUTEX_LOCK(mutex);
        while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
            DEBUGLOG(5, "Waiting for LDM to finish...");
            ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
        }
        DEBUGLOG(6, "Done waiting for LDM to finish");
        ZSTD_pthread_mutex_unlock(mutex);
    }
}

/**
 * Attempts to set the inBuff to the next section to fill.
 * If any part of the new section is still in use we give up.
 * Returns non-zero if the buffer is filled.
 */
static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
{
    range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
    size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
    size_t const target = mtctx->targetSectionSize;
    buffer_t buffer;

    DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
    assert(mtctx->inBuff.buffer.start == NULL);
    assert(mtctx->roundBuff.capacity >= target);

    if (spaceLeft < target) {
        /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
         * Simply copy the prefix to the beginning in that case.
         */
        BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
        size_t const prefixSize = mtctx->inBuff.prefix.size;

        buffer.start = start;
        buffer.capacity = prefixSize;
        if (ZSTDMT_isOverlapped(buffer, inUse)) {
            DEBUGLOG(5, "Waiting for buffer...");
            return 0;
        }
        ZSTDMT_waitForLdmComplete(mtctx, buffer);
        memmove(start, mtctx->inBuff.prefix.start, prefixSize);
        mtctx->inBuff.prefix.start = start;
        mtctx->roundBuff.pos = prefixSize;
    }
    buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
    buffer.capacity = target;

    if (ZSTDMT_isOverlapped(buffer, inUse)) {
        DEBUGLOG(5, "Waiting for buffer...");
        return 0;
    }
    assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));

    ZSTDMT_waitForLdmComplete(mtctx, buffer);

    DEBUGLOG(5, "Using prefix range [%zx, %zx)",
                (size_t)mtctx->inBuff.prefix.start,
                (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
    DEBUGLOG(5, "Using source range [%zx, %zx)",
                (size_t)buffer.start,
                (size_t)buffer.start + buffer.capacity);


    mtctx->inBuff.buffer = buffer;
    mtctx->inBuff.filled = 0;
    assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
    return 1;
}

typedef struct {
  size_t toLoad;  /* The number of bytes to load from the input. */
  int flush;      /* Boolean declaring if we must flush because we found a synchronization point. */
} syncPoint_t;

/**
 * Searches through the input for a synchronization point. If one is found, we
 * will instruct the caller to flush, and return the number of bytes to load.
 * Otherwise, we will load as many bytes as possible and instruct the caller
 * to continue as normal.
 */
static syncPoint_t
findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
{
    BYTE const* const istart = (BYTE const*)input.src + input.pos;
    U64 const primePower = mtctx->rsync.primePower;
    U64 const hitMask = mtctx->rsync.hitMask;

    syncPoint_t syncPoint;
    U64 hash;
    BYTE const* prev;
    size_t pos;

    syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
    syncPoint.flush = 0;
    if (!mtctx->params.rsyncable)
        /* Rsync is disabled. */
        return syncPoint;
    if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
        /* Not enough to compute the hash.
         * We will miss any synchronization points in this RSYNC_LENGTH byte
         * window. However, since it depends only in the internal buffers, if the
         * state is already synchronized, we will remain synchronized.
         * Additionally, the probability that we miss a synchronization point is
         * low: RSYNC_LENGTH / targetSectionSize.
         */
        return syncPoint;
    /* Initialize the loop variables. */
    if (mtctx->inBuff.filled >= RSYNC_LENGTH) {
        /* We have enough bytes buffered to initialize the hash.
         * Start scanning at the beginning of the input.
         */
        pos = 0;
        prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
        hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
    } else {
        /* We don't have enough bytes buffered to initialize the hash, but
         * we know we have at least RSYNC_LENGTH bytes total.
         * Start scanning after the first RSYNC_LENGTH bytes less the bytes
         * already buffered.
         */
        pos = RSYNC_LENGTH - mtctx->inBuff.filled;
        prev = (BYTE const*)mtctx->inBuff.buffer.start - pos;
        hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled);
        hash = ZSTD_rollingHash_append(hash, istart, pos);
    }
    /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
     * through the input. If we hit a synchronization point, then cut the
     * job off, and tell the compressor to flush the job. Otherwise, load
     * all the bytes and continue as normal.
     * If we go too long without a synchronization point (targetSectionSize)
     * then a block will be emitted anyways, but this is okay, since if we
     * are already synchronized we will remain synchronized.
     */
    for (; pos < syncPoint.toLoad; ++pos) {
        BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
        /* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */
        hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
        if ((hash & hitMask) == hitMask) {
            syncPoint.toLoad = pos + 1;
            syncPoint.flush = 1;
            break;
        }
    }
    return syncPoint;
}

size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
{
    size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
    if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
    return hintInSize;
}

/** ZSTDMT_compressStream_generic() :
 *  internal use only - exposed to be invoked from zstd_compress.c
 *  assumption : output and input are valid (pos <= size)
 * @return : minimum amount of data remaining to flush, 0 if none */
size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
                                     ZSTD_outBuffer* output,
                                     ZSTD_inBuffer* input,
                                     ZSTD_EndDirective endOp)
{
    unsigned forwardInputProgress = 0;
    DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
                (U32)endOp, (U32)(input->size - input->pos));
    assert(output->pos <= output->size);
    assert(input->pos  <= input->size);

    if (mtctx->singleBlockingThread) {  /* delegate to single-thread (synchronous) */
        return ZSTD_compressStream2(mtctx->cctxPool->cctx[0], output, input, endOp);
    }

    if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
        /* current frame being ended. Only flush/end are allowed */
        return ERROR(stage_wrong);
    }

    /* single-pass shortcut (note : synchronous-mode) */
    if ( (!mtctx->params.rsyncable)   /* rsyncable mode is disabled */
      && (mtctx->nextJobID == 0)      /* just started */
      && (mtctx->inBuff.filled == 0)  /* nothing buffered */
      && (!mtctx->jobReady)           /* no job already created */
      && (endOp == ZSTD_e_end)        /* end order */
      && (output->size - output->pos >= ZSTD_compressBound(input->size - input->pos)) ) { /* enough space in dst */
        size_t const cSize = ZSTDMT_compress_advanced_internal(mtctx,
                (char*)output->dst + output->pos, output->size - output->pos,
                (const char*)input->src + input->pos, input->size - input->pos,
                mtctx->cdict, mtctx->params);
        if (ZSTD_isError(cSize)) return cSize;
        input->pos = input->size;
        output->pos += cSize;
        mtctx->allJobsCompleted = 1;
        mtctx->frameEnded = 1;
        return 0;
    }

    /* fill input buffer */
    if ( (!mtctx->jobReady)
      && (input->size > input->pos) ) {   /* support NULL input */
        if (mtctx->inBuff.buffer.start == NULL) {
            assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
            if (!ZSTDMT_tryGetInputRange(mtctx)) {
                /* It is only possible for this operation to fail if there are
                 * still compression jobs ongoing.
                 */
                DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
                assert(mtctx->doneJobID != mtctx->nextJobID);
            } else
                DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
        }
        if (mtctx->inBuff.buffer.start != NULL) {
            syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
            if (syncPoint.flush && endOp == ZSTD_e_continue) {
                endOp = ZSTD_e_flush;
            }
            assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
            DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
                        (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
            memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
            input->pos += syncPoint.toLoad;
            mtctx->inBuff.filled += syncPoint.toLoad;
            forwardInputProgress = syncPoint.toLoad>0;
        }
        if ((input->pos < input->size) && (endOp == ZSTD_e_end))
            endOp = ZSTD_e_flush;   /* can't end now : not all input consumed */
    }

    if ( (mtctx->jobReady)
      || (mtctx->inBuff.filled >= mtctx->targetSectionSize)  /* filled enough : let's compress */
      || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0))  /* something to flush : let's go */
      || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) {   /* must finish the frame with a zero-size block */
        size_t const jobSize = mtctx->inBuff.filled;
        assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
        FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) );
    }

    /* check for potential compressed data ready to be flushed */
    {   size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
        if (input->pos < input->size) return MAX(remainingToFlush, 1);  /* input not consumed : do not end flush yet */
        DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
        return remainingToFlush;
    }
}


size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
    FORWARD_IF_ERROR( ZSTDMT_compressStream_generic(mtctx, output, input, ZSTD_e_continue) );

    /* recommended next input size : fill current input buffer */
    return mtctx->targetSectionSize - mtctx->inBuff.filled;   /* note : could be zero when input buffer is fully filled and no more availability to create new job */
}


static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_EndDirective endFrame)
{
    size_t const srcSize = mtctx->inBuff.filled;
    DEBUGLOG(5, "ZSTDMT_flushStream_internal");

    if ( mtctx->jobReady     /* one job ready for a worker to pick up */
      || (srcSize > 0)       /* still some data within input buffer */
      || ((endFrame==ZSTD_e_end) && !mtctx->frameEnded)) {  /* need a last 0-size block to end frame */
           DEBUGLOG(5, "ZSTDMT_flushStream_internal : create a new job (%u bytes, end:%u)",
                        (U32)srcSize, (U32)endFrame);
        FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, srcSize, endFrame) );
    }

    /* check if there is any data available to flush */
    return ZSTDMT_flushProduced(mtctx, output, 1 /* blockToFlush */, endFrame);
}


size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output)
{
    DEBUGLOG(5, "ZSTDMT_flushStream");
    if (mtctx->singleBlockingThread)
        return ZSTD_flushStream(mtctx->cctxPool->cctx[0], output);
    return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_flush);
}

size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output)
{
    DEBUGLOG(4, "ZSTDMT_endStream");
    if (mtctx->singleBlockingThread)
        return ZSTD_endStream(mtctx->cctxPool->cctx[0], output);
    return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_end);
}