summaryrefslogtreecommitdiff
path: root/thirdparty/zstd/compress/zstd_compress_internal.h
blob: 3b04fd09f641d03d8386a093bafc0b83d5973ba3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
/*
 * Copyright (c) Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

/* This header contains definitions
 * that shall **only** be used by modules within lib/compress.
 */

#ifndef ZSTD_COMPRESS_H
#define ZSTD_COMPRESS_H

/*-*************************************
*  Dependencies
***************************************/
#include "../common/zstd_internal.h"
#include "zstd_cwksp.h"
#ifdef ZSTD_MULTITHREAD
#  include "zstdmt_compress.h"
#endif

#if defined (__cplusplus)
extern "C" {
#endif

/*-*************************************
*  Constants
***************************************/
#define kSearchStrength      8
#define HASH_READ_SIZE       8
#define ZSTD_DUBT_UNSORTED_MARK 1   /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
                                       It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
                                       It's not a big deal though : candidate will just be sorted again.
                                       Additionally, candidate position 1 will be lost.
                                       But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
                                       The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
                                       This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */


/*-*************************************
*  Context memory management
***************************************/
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;

typedef struct ZSTD_prefixDict_s {
    const void* dict;
    size_t dictSize;
    ZSTD_dictContentType_e dictContentType;
} ZSTD_prefixDict;

typedef struct {
    void* dictBuffer;
    void const* dict;
    size_t dictSize;
    ZSTD_dictContentType_e dictContentType;
    ZSTD_CDict* cdict;
} ZSTD_localDict;

typedef struct {
    HUF_CElt CTable[HUF_CTABLE_SIZE_U32(255)];
    HUF_repeat repeatMode;
} ZSTD_hufCTables_t;

typedef struct {
    FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
    FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
    FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
    FSE_repeat offcode_repeatMode;
    FSE_repeat matchlength_repeatMode;
    FSE_repeat litlength_repeatMode;
} ZSTD_fseCTables_t;

typedef struct {
    ZSTD_hufCTables_t huf;
    ZSTD_fseCTables_t fse;
} ZSTD_entropyCTables_t;

/***********************************************
*  Entropy buffer statistics structs and funcs *
***********************************************/
/** ZSTD_hufCTablesMetadata_t :
 *  Stores Literals Block Type for a super-block in hType, and
 *  huffman tree description in hufDesBuffer.
 *  hufDesSize refers to the size of huffman tree description in bytes.
 *  This metadata is populated in ZSTD_buildBlockEntropyStats_literals() */
typedef struct {
    symbolEncodingType_e hType;
    BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE];
    size_t hufDesSize;
} ZSTD_hufCTablesMetadata_t;

/** ZSTD_fseCTablesMetadata_t :
 *  Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and
 *  fse tables in fseTablesBuffer.
 *  fseTablesSize refers to the size of fse tables in bytes.
 *  This metadata is populated in ZSTD_buildBlockEntropyStats_sequences() */
typedef struct {
    symbolEncodingType_e llType;
    symbolEncodingType_e ofType;
    symbolEncodingType_e mlType;
    BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE];
    size_t fseTablesSize;
    size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */
} ZSTD_fseCTablesMetadata_t;

typedef struct {
    ZSTD_hufCTablesMetadata_t hufMetadata;
    ZSTD_fseCTablesMetadata_t fseMetadata;
} ZSTD_entropyCTablesMetadata_t;

/** ZSTD_buildBlockEntropyStats() :
 *  Builds entropy for the block.
 *  @return : 0 on success or error code */
size_t ZSTD_buildBlockEntropyStats(seqStore_t* seqStorePtr,
                             const ZSTD_entropyCTables_t* prevEntropy,
                                   ZSTD_entropyCTables_t* nextEntropy,
                             const ZSTD_CCtx_params* cctxParams,
                                   ZSTD_entropyCTablesMetadata_t* entropyMetadata,
                                   void* workspace, size_t wkspSize);

/*********************************
*  Compression internals structs *
*********************************/

typedef struct {
    U32 off;            /* Offset code (offset + ZSTD_REP_MOVE) for the match */
    U32 len;            /* Raw length of match */
} ZSTD_match_t;

typedef struct {
    U32 offset;         /* Offset of sequence */
    U32 litLength;      /* Length of literals prior to match */
    U32 matchLength;    /* Raw length of match */
} rawSeq;

typedef struct {
  rawSeq* seq;          /* The start of the sequences */
  size_t pos;           /* The index in seq where reading stopped. pos <= size. */
  size_t posInSequence; /* The position within the sequence at seq[pos] where reading
                           stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */
  size_t size;          /* The number of sequences. <= capacity. */
  size_t capacity;      /* The capacity starting from `seq` pointer */
} rawSeqStore_t;

UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0};

typedef struct {
    int price;
    U32 off;
    U32 mlen;
    U32 litlen;
    U32 rep[ZSTD_REP_NUM];
} ZSTD_optimal_t;

typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;

typedef struct {
    /* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
    unsigned* litFreq;           /* table of literals statistics, of size 256 */
    unsigned* litLengthFreq;     /* table of litLength statistics, of size (MaxLL+1) */
    unsigned* matchLengthFreq;   /* table of matchLength statistics, of size (MaxML+1) */
    unsigned* offCodeFreq;       /* table of offCode statistics, of size (MaxOff+1) */
    ZSTD_match_t* matchTable;    /* list of found matches, of size ZSTD_OPT_NUM+1 */
    ZSTD_optimal_t* priceTable;  /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */

    U32  litSum;                 /* nb of literals */
    U32  litLengthSum;           /* nb of litLength codes */
    U32  matchLengthSum;         /* nb of matchLength codes */
    U32  offCodeSum;             /* nb of offset codes */
    U32  litSumBasePrice;        /* to compare to log2(litfreq) */
    U32  litLengthSumBasePrice;  /* to compare to log2(llfreq)  */
    U32  matchLengthSumBasePrice;/* to compare to log2(mlfreq)  */
    U32  offCodeSumBasePrice;    /* to compare to log2(offreq)  */
    ZSTD_OptPrice_e priceType;   /* prices can be determined dynamically, or follow a pre-defined cost structure */
    const ZSTD_entropyCTables_t* symbolCosts;  /* pre-calculated dictionary statistics */
    ZSTD_literalCompressionMode_e literalCompressionMode;
} optState_t;

typedef struct {
  ZSTD_entropyCTables_t entropy;
  U32 rep[ZSTD_REP_NUM];
} ZSTD_compressedBlockState_t;

typedef struct {
    BYTE const* nextSrc;       /* next block here to continue on current prefix */
    BYTE const* base;          /* All regular indexes relative to this position */
    BYTE const* dictBase;      /* extDict indexes relative to this position */
    U32 dictLimit;             /* below that point, need extDict */
    U32 lowLimit;              /* below that point, no more valid data */
    U32 nbOverflowCorrections; /* Number of times overflow correction has run since
                                * ZSTD_window_init(). Useful for debugging coredumps
                                * and for ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY.
                                */
} ZSTD_window_t;

typedef struct ZSTD_matchState_t ZSTD_matchState_t;

#define ZSTD_ROW_HASH_CACHE_SIZE 8       /* Size of prefetching hash cache for row-based matchfinder */

struct ZSTD_matchState_t {
    ZSTD_window_t window;   /* State for window round buffer management */
    U32 loadedDictEnd;      /* index of end of dictionary, within context's referential.
                             * When loadedDictEnd != 0, a dictionary is in use, and still valid.
                             * This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance.
                             * Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity().
                             * When dict referential is copied into active context (i.e. not attached),
                             * loadedDictEnd == dictSize, since referential starts from zero.
                             */
    U32 nextToUpdate;       /* index from which to continue table update */
    U32 hashLog3;           /* dispatch table for matches of len==3 : larger == faster, more memory */

    U32 rowHashLog;                          /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/
    U16* tagTable;                           /* For row-based matchFinder: A row-based table containing the hashes and head index. */
    U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */

    U32* hashTable;
    U32* hashTable3;
    U32* chainTable;

    U32 forceNonContiguous; /* Non-zero if we should force non-contiguous load for the next window update. */

    int dedicatedDictSearch;  /* Indicates whether this matchState is using the
                               * dedicated dictionary search structure.
                               */
    optState_t opt;         /* optimal parser state */
    const ZSTD_matchState_t* dictMatchState;
    ZSTD_compressionParameters cParams;
    const rawSeqStore_t* ldmSeqStore;
};

typedef struct {
    ZSTD_compressedBlockState_t* prevCBlock;
    ZSTD_compressedBlockState_t* nextCBlock;
    ZSTD_matchState_t matchState;
} ZSTD_blockState_t;

typedef struct {
    U32 offset;
    U32 checksum;
} ldmEntry_t;

typedef struct {
    BYTE const* split;
    U32 hash;
    U32 checksum;
    ldmEntry_t* bucket;
} ldmMatchCandidate_t;

#define LDM_BATCH_SIZE 64

typedef struct {
    ZSTD_window_t window;   /* State for the window round buffer management */
    ldmEntry_t* hashTable;
    U32 loadedDictEnd;
    BYTE* bucketOffsets;    /* Next position in bucket to insert entry */
    size_t splitIndices[LDM_BATCH_SIZE];
    ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE];
} ldmState_t;

typedef struct {
    U32 enableLdm;          /* 1 if enable long distance matching */
    U32 hashLog;            /* Log size of hashTable */
    U32 bucketSizeLog;      /* Log bucket size for collision resolution, at most 8 */
    U32 minMatchLength;     /* Minimum match length */
    U32 hashRateLog;       /* Log number of entries to skip */
    U32 windowLog;          /* Window log for the LDM */
} ldmParams_t;

typedef struct {
    int collectSequences;
    ZSTD_Sequence* seqStart;
    size_t seqIndex;
    size_t maxSequences;
} SeqCollector;

struct ZSTD_CCtx_params_s {
    ZSTD_format_e format;
    ZSTD_compressionParameters cParams;
    ZSTD_frameParameters fParams;

    int compressionLevel;
    int forceWindow;           /* force back-references to respect limit of
                                * 1<<wLog, even for dictionary */
    size_t targetCBlockSize;   /* Tries to fit compressed block size to be around targetCBlockSize.
                                * No target when targetCBlockSize == 0.
                                * There is no guarantee on compressed block size */
    int srcSizeHint;           /* User's best guess of source size.
                                * Hint is not valid when srcSizeHint == 0.
                                * There is no guarantee that hint is close to actual source size */

    ZSTD_dictAttachPref_e attachDictPref;
    ZSTD_literalCompressionMode_e literalCompressionMode;

    /* Multithreading: used to pass parameters to mtctx */
    int nbWorkers;
    size_t jobSize;
    int overlapLog;
    int rsyncable;

    /* Long distance matching parameters */
    ldmParams_t ldmParams;

    /* Dedicated dict search algorithm trigger */
    int enableDedicatedDictSearch;

    /* Input/output buffer modes */
    ZSTD_bufferMode_e inBufferMode;
    ZSTD_bufferMode_e outBufferMode;

    /* Sequence compression API */
    ZSTD_sequenceFormat_e blockDelimiters;
    int validateSequences;

    /* Block splitting */
    int splitBlocks;

    /* Param for deciding whether to use row-based matchfinder */
    ZSTD_useRowMatchFinderMode_e useRowMatchFinder;

    /* Always load a dictionary in ext-dict mode (not prefix mode)? */
    int deterministicRefPrefix;

    /* Internal use, for createCCtxParams() and freeCCtxParams() only */
    ZSTD_customMem customMem;
};  /* typedef'd to ZSTD_CCtx_params within "zstd.h" */

#define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2))
#define ENTROPY_WORKSPACE_SIZE (HUF_WORKSPACE_SIZE + COMPRESS_SEQUENCES_WORKSPACE_SIZE)

/**
 * Indicates whether this compression proceeds directly from user-provided
 * source buffer to user-provided destination buffer (ZSTDb_not_buffered), or
 * whether the context needs to buffer the input/output (ZSTDb_buffered).
 */
typedef enum {
    ZSTDb_not_buffered,
    ZSTDb_buffered
} ZSTD_buffered_policy_e;

struct ZSTD_CCtx_s {
    ZSTD_compressionStage_e stage;
    int cParamsChanged;                  /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
    int bmi2;                            /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
    ZSTD_CCtx_params requestedParams;
    ZSTD_CCtx_params appliedParams;
    ZSTD_CCtx_params simpleApiParams;    /* Param storage used by the simple API - not sticky. Must only be used in top-level simple API functions for storage. */
    U32   dictID;
    size_t dictContentSize;

    ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */
    size_t blockSize;
    unsigned long long pledgedSrcSizePlusOne;  /* this way, 0 (default) == unknown */
    unsigned long long consumedSrcSize;
    unsigned long long producedCSize;
    XXH64_state_t xxhState;
    ZSTD_customMem customMem;
    ZSTD_threadPool* pool;
    size_t staticSize;
    SeqCollector seqCollector;
    int isFirstBlock;
    int initialized;

    seqStore_t seqStore;      /* sequences storage ptrs */
    ldmState_t ldmState;      /* long distance matching state */
    rawSeq* ldmSequences;     /* Storage for the ldm output sequences */
    size_t maxNbLdmSequences;
    rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
    ZSTD_blockState_t blockState;
    U32* entropyWorkspace;  /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */

    /* Wether we are streaming or not */
    ZSTD_buffered_policy_e bufferedPolicy;

    /* streaming */
    char*  inBuff;
    size_t inBuffSize;
    size_t inToCompress;
    size_t inBuffPos;
    size_t inBuffTarget;
    char*  outBuff;
    size_t outBuffSize;
    size_t outBuffContentSize;
    size_t outBuffFlushedSize;
    ZSTD_cStreamStage streamStage;
    U32    frameEnded;

    /* Stable in/out buffer verification */
    ZSTD_inBuffer expectedInBuffer;
    size_t expectedOutBufferSize;

    /* Dictionary */
    ZSTD_localDict localDict;
    const ZSTD_CDict* cdict;
    ZSTD_prefixDict prefixDict;   /* single-usage dictionary */

    /* Multi-threading */
#ifdef ZSTD_MULTITHREAD
    ZSTDMT_CCtx* mtctx;
#endif

    /* Tracing */
#if ZSTD_TRACE
    ZSTD_TraceCtx traceCtx;
#endif
};

typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;

typedef enum {
    ZSTD_noDict = 0,
    ZSTD_extDict = 1,
    ZSTD_dictMatchState = 2,
    ZSTD_dedicatedDictSearch = 3
} ZSTD_dictMode_e;

typedef enum {
    ZSTD_cpm_noAttachDict = 0,  /* Compression with ZSTD_noDict or ZSTD_extDict.
                                 * In this mode we use both the srcSize and the dictSize
                                 * when selecting and adjusting parameters.
                                 */
    ZSTD_cpm_attachDict = 1,    /* Compression with ZSTD_dictMatchState or ZSTD_dedicatedDictSearch.
                                 * In this mode we only take the srcSize into account when selecting
                                 * and adjusting parameters.
                                 */
    ZSTD_cpm_createCDict = 2,   /* Creating a CDict.
                                 * In this mode we take both the source size and the dictionary size
                                 * into account when selecting and adjusting the parameters.
                                 */
    ZSTD_cpm_unknown = 3,       /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams.
                                 * We don't know what these parameters are for. We default to the legacy
                                 * behavior of taking both the source size and the dict size into account
                                 * when selecting and adjusting parameters.
                                 */
} ZSTD_cParamMode_e;

typedef size_t (*ZSTD_blockCompressor) (
        ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        void const* src, size_t srcSize);
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_useRowMatchFinderMode_e rowMatchfinderMode, ZSTD_dictMode_e dictMode);


MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
{
    static const BYTE LL_Code[64] = {  0,  1,  2,  3,  4,  5,  6,  7,
                                       8,  9, 10, 11, 12, 13, 14, 15,
                                      16, 16, 17, 17, 18, 18, 19, 19,
                                      20, 20, 20, 20, 21, 21, 21, 21,
                                      22, 22, 22, 22, 22, 22, 22, 22,
                                      23, 23, 23, 23, 23, 23, 23, 23,
                                      24, 24, 24, 24, 24, 24, 24, 24,
                                      24, 24, 24, 24, 24, 24, 24, 24 };
    static const U32 LL_deltaCode = 19;
    return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
}

/* ZSTD_MLcode() :
 * note : mlBase = matchLength - MINMATCH;
 *        because it's the format it's stored in seqStore->sequences */
MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
{
    static const BYTE ML_Code[128] = { 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
                                      16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
                                      32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
                                      38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
                                      40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
                                      41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
                                      42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
                                      42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
    static const U32 ML_deltaCode = 36;
    return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
}

typedef struct repcodes_s {
    U32 rep[3];
} repcodes_t;

MEM_STATIC repcodes_t ZSTD_updateRep(U32 const rep[3], U32 const offset, U32 const ll0)
{
    repcodes_t newReps;
    if (offset >= ZSTD_REP_NUM) {  /* full offset */
        newReps.rep[2] = rep[1];
        newReps.rep[1] = rep[0];
        newReps.rep[0] = offset - ZSTD_REP_MOVE;
    } else {   /* repcode */
        U32 const repCode = offset + ll0;
        if (repCode > 0) {  /* note : if repCode==0, no change */
            U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
            newReps.rep[2] = (repCode >= 2) ? rep[1] : rep[2];
            newReps.rep[1] = rep[0];
            newReps.rep[0] = currentOffset;
        } else {   /* repCode == 0 */
            ZSTD_memcpy(&newReps, rep, sizeof(newReps));
        }
    }
    return newReps;
}

/* ZSTD_cParam_withinBounds:
 * @return 1 if value is within cParam bounds,
 * 0 otherwise */
MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
{
    ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
    if (ZSTD_isError(bounds.error)) return 0;
    if (value < bounds.lowerBound) return 0;
    if (value > bounds.upperBound) return 0;
    return 1;
}

/* ZSTD_noCompressBlock() :
 * Writes uncompressed block to dst buffer from given src.
 * Returns the size of the block */
MEM_STATIC size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
{
    U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3);
    RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity,
                    dstSize_tooSmall, "dst buf too small for uncompressed block");
    MEM_writeLE24(dst, cBlockHeader24);
    ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
    return ZSTD_blockHeaderSize + srcSize;
}

MEM_STATIC size_t ZSTD_rleCompressBlock (void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock)
{
    BYTE* const op = (BYTE*)dst;
    U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3);
    RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, "");
    MEM_writeLE24(op, cBlockHeader);
    op[3] = src;
    return 4;
}


/* ZSTD_minGain() :
 * minimum compression required
 * to generate a compress block or a compressed literals section.
 * note : use same formula for both situations */
MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
{
    U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
    ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
    assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
    return (srcSize >> minlog) + 2;
}

MEM_STATIC int ZSTD_disableLiteralsCompression(const ZSTD_CCtx_params* cctxParams)
{
    switch (cctxParams->literalCompressionMode) {
    case ZSTD_lcm_huffman:
        return 0;
    case ZSTD_lcm_uncompressed:
        return 1;
    default:
        assert(0 /* impossible: pre-validated */);
        /* fall-through */
    case ZSTD_lcm_auto:
        return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0);
    }
}

/*! ZSTD_safecopyLiterals() :
 *  memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w.
 *  Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single
 *  large copies.
 */
static void ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w) {
    assert(iend > ilimit_w);
    if (ip <= ilimit_w) {
        ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap);
        op += ilimit_w - ip;
        ip = ilimit_w;
    }
    while (ip < iend) *op++ = *ip++;
}

/*! ZSTD_storeSeq() :
 *  Store a sequence (litlen, litPtr, offCode and mlBase) into seqStore_t.
 *  `offCode` : distance to match + ZSTD_REP_MOVE (values <= ZSTD_REP_MOVE are repCodes).
 *  `mlBase` : matchLength - MINMATCH
 *  Allowed to overread literals up to litLimit.
*/
HINT_INLINE UNUSED_ATTR
void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const BYTE* literals, const BYTE* litLimit, U32 offCode, size_t mlBase)
{
    BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
    BYTE const* const litEnd = literals + litLength;
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
    static const BYTE* g_start = NULL;
    if (g_start==NULL) g_start = (const BYTE*)literals;  /* note : index only works for compression within a single segment */
    {   U32 const pos = (U32)((const BYTE*)literals - g_start);
        DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
               pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offCode);
    }
#endif
    assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
    /* copy Literals */
    assert(seqStorePtr->maxNbLit <= 128 KB);
    assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
    assert(literals + litLength <= litLimit);
    if (litEnd <= litLimit_w) {
        /* Common case we can use wildcopy.
	 * First copy 16 bytes, because literals are likely short.
	 */
        assert(WILDCOPY_OVERLENGTH >= 16);
        ZSTD_copy16(seqStorePtr->lit, literals);
        if (litLength > 16) {
            ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap);
        }
    } else {
        ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w);
    }
    seqStorePtr->lit += litLength;

    /* literal Length */
    if (litLength>0xFFFF) {
        assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
        seqStorePtr->longLengthType = ZSTD_llt_literalLength;
        seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
    }
    seqStorePtr->sequences[0].litLength = (U16)litLength;

    /* match offset */
    seqStorePtr->sequences[0].offset = offCode + 1;

    /* match Length */
    if (mlBase>0xFFFF) {
        assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
        seqStorePtr->longLengthType = ZSTD_llt_matchLength;
        seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
    }
    seqStorePtr->sequences[0].matchLength = (U16)mlBase;

    seqStorePtr->sequences++;
}


/*-*************************************
*  Match length counter
***************************************/
static unsigned ZSTD_NbCommonBytes (size_t val)
{
    if (MEM_isLittleEndian()) {
        if (MEM_64bits()) {
#       if defined(_MSC_VER) && defined(_WIN64)
#           if STATIC_BMI2
                return _tzcnt_u64(val) >> 3;
#           else
                unsigned long r = 0;
                return _BitScanForward64( &r, (U64)val ) ? (unsigned)(r >> 3) : 0;
#           endif
#       elif defined(__GNUC__) && (__GNUC__ >= 4)
            return (__builtin_ctzll((U64)val) >> 3);
#       else
            static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
                                                     0, 3, 1, 3, 1, 4, 2, 7,
                                                     0, 2, 3, 6, 1, 5, 3, 5,
                                                     1, 3, 4, 4, 2, 5, 6, 7,
                                                     7, 0, 1, 2, 3, 3, 4, 6,
                                                     2, 6, 5, 5, 3, 4, 5, 6,
                                                     7, 1, 2, 4, 6, 4, 4, 5,
                                                     7, 2, 6, 5, 7, 6, 7, 7 };
            return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
#       endif
        } else { /* 32 bits */
#       if defined(_MSC_VER)
            unsigned long r=0;
            return _BitScanForward( &r, (U32)val ) ? (unsigned)(r >> 3) : 0;
#       elif defined(__GNUC__) && (__GNUC__ >= 3)
            return (__builtin_ctz((U32)val) >> 3);
#       else
            static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
                                                     3, 2, 2, 1, 3, 2, 0, 1,
                                                     3, 3, 1, 2, 2, 2, 2, 0,
                                                     3, 1, 2, 0, 1, 0, 1, 1 };
            return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
#       endif
        }
    } else {  /* Big Endian CPU */
        if (MEM_64bits()) {
#       if defined(_MSC_VER) && defined(_WIN64)
#           if STATIC_BMI2
			    return _lzcnt_u64(val) >> 3;
#           else
			    unsigned long r = 0;
			    return _BitScanReverse64(&r, (U64)val) ? (unsigned)(r >> 3) : 0;
#           endif
#       elif defined(__GNUC__) && (__GNUC__ >= 4)
            return (__builtin_clzll(val) >> 3);
#       else
            unsigned r;
            const unsigned n32 = sizeof(size_t)*4;   /* calculate this way due to compiler complaining in 32-bits mode */
            if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
            if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
            r += (!val);
            return r;
#       endif
        } else { /* 32 bits */
#       if defined(_MSC_VER)
            unsigned long r = 0;
            return _BitScanReverse( &r, (unsigned long)val ) ? (unsigned)(r >> 3) : 0;
#       elif defined(__GNUC__) && (__GNUC__ >= 3)
            return (__builtin_clz((U32)val) >> 3);
#       else
            unsigned r;
            if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
            r += (!val);
            return r;
#       endif
    }   }
}


MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
{
    const BYTE* const pStart = pIn;
    const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);

    if (pIn < pInLoopLimit) {
        { size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
          if (diff) return ZSTD_NbCommonBytes(diff); }
        pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
        while (pIn < pInLoopLimit) {
            size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
            if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
            pIn += ZSTD_NbCommonBytes(diff);
            return (size_t)(pIn - pStart);
    }   }
    if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
    if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
    if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
    return (size_t)(pIn - pStart);
}

/** ZSTD_count_2segments() :
 *  can count match length with `ip` & `match` in 2 different segments.
 *  convention : on reaching mEnd, match count continue starting from iStart
 */
MEM_STATIC size_t
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
                     const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
{
    const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
    size_t const matchLength = ZSTD_count(ip, match, vEnd);
    if (match + matchLength != mEnd) return matchLength;
    DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
    DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
    DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
    DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
    DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
    return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
}


/*-*************************************
 *  Hashes
 ***************************************/
static const U32 prime3bytes = 506832829U;
static U32    ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes)  >> (32-h) ; }
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */

static const U32 prime4bytes = 2654435761U;
static U32    ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }

static const U64 prime5bytes = 889523592379ULL;
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u  << (64-40)) * prime5bytes) >> (64-h)) ; }
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }

static const U64 prime6bytes = 227718039650203ULL;
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u  << (64-48)) * prime6bytes) >> (64-h)) ; }
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }

static const U64 prime7bytes = 58295818150454627ULL;
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u  << (64-56)) * prime7bytes) >> (64-h)) ; }
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }

static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }

MEM_STATIC FORCE_INLINE_ATTR
size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
{
    switch(mls)
    {
    default:
    case 4: return ZSTD_hash4Ptr(p, hBits);
    case 5: return ZSTD_hash5Ptr(p, hBits);
    case 6: return ZSTD_hash6Ptr(p, hBits);
    case 7: return ZSTD_hash7Ptr(p, hBits);
    case 8: return ZSTD_hash8Ptr(p, hBits);
    }
}

/** ZSTD_ipow() :
 * Return base^exponent.
 */
static U64 ZSTD_ipow(U64 base, U64 exponent)
{
    U64 power = 1;
    while (exponent) {
      if (exponent & 1) power *= base;
      exponent >>= 1;
      base *= base;
    }
    return power;
}

#define ZSTD_ROLL_HASH_CHAR_OFFSET 10

/** ZSTD_rollingHash_append() :
 * Add the buffer to the hash value.
 */
static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
{
    BYTE const* istart = (BYTE const*)buf;
    size_t pos;
    for (pos = 0; pos < size; ++pos) {
        hash *= prime8bytes;
        hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
    }
    return hash;
}

/** ZSTD_rollingHash_compute() :
 * Compute the rolling hash value of the buffer.
 */
MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
{
    return ZSTD_rollingHash_append(0, buf, size);
}

/** ZSTD_rollingHash_primePower() :
 * Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
 * over a window of length bytes.
 */
MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
{
    return ZSTD_ipow(prime8bytes, length - 1);
}

/** ZSTD_rollingHash_rotate() :
 * Rotate the rolling hash by one byte.
 */
MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
{
    hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
    hash *= prime8bytes;
    hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
    return hash;
}

/*-*************************************
*  Round buffer management
***************************************/
#if (ZSTD_WINDOWLOG_MAX_64 > 31)
# error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
#endif
/* Max current allowed */
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
/* Maximum chunk size before overflow correction needs to be called again */
#define ZSTD_CHUNKSIZE_MAX                                                     \
    ( ((U32)-1)                  /* Maximum ending current index */            \
    - ZSTD_CURRENT_MAX)          /* Maximum beginning lowLimit */

/**
 * ZSTD_window_clear():
 * Clears the window containing the history by simply setting it to empty.
 */
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
{
    size_t const endT = (size_t)(window->nextSrc - window->base);
    U32 const end = (U32)endT;

    window->lowLimit = end;
    window->dictLimit = end;
}

MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window)
{
    return window.dictLimit == 1 &&
           window.lowLimit == 1 &&
           (window.nextSrc - window.base) == 1;
}

/**
 * ZSTD_window_hasExtDict():
 * Returns non-zero if the window has a non-empty extDict.
 */
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
{
    return window.lowLimit < window.dictLimit;
}

/**
 * ZSTD_matchState_dictMode():
 * Inspects the provided matchState and figures out what dictMode should be
 * passed to the compressor.
 */
MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
{
    return ZSTD_window_hasExtDict(ms->window) ?
        ZSTD_extDict :
        ms->dictMatchState != NULL ?
            (ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) :
            ZSTD_noDict;
}

/* Defining this macro to non-zero tells zstd to run the overflow correction
 * code much more frequently. This is very inefficient, and should only be
 * used for tests and fuzzers.
 */
#ifndef ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY
#  ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
#    define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 1
#  else
#    define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 0
#  endif
#endif

/**
 * ZSTD_window_canOverflowCorrect():
 * Returns non-zero if the indices are large enough for overflow correction
 * to work correctly without impacting compression ratio.
 */
MEM_STATIC U32 ZSTD_window_canOverflowCorrect(ZSTD_window_t const window,
                                              U32 cycleLog,
                                              U32 maxDist,
                                              U32 loadedDictEnd,
                                              void const* src)
{
    U32 const cycleSize = 1u << cycleLog;
    U32 const curr = (U32)((BYTE const*)src - window.base);
    U32 const minIndexToOverflowCorrect = cycleSize + MAX(maxDist, cycleSize);

    /* Adjust the min index to backoff the overflow correction frequency,
     * so we don't waste too much CPU in overflow correction. If this
     * computation overflows we don't really care, we just need to make
     * sure it is at least minIndexToOverflowCorrect.
     */
    U32 const adjustment = window.nbOverflowCorrections + 1;
    U32 const adjustedIndex = MAX(minIndexToOverflowCorrect * adjustment,
                                  minIndexToOverflowCorrect);
    U32 const indexLargeEnough = curr > adjustedIndex;

    /* Only overflow correct early if the dictionary is invalidated already,
     * so we don't hurt compression ratio.
     */
    U32 const dictionaryInvalidated = curr > maxDist + loadedDictEnd;

    return indexLargeEnough && dictionaryInvalidated;
}

/**
 * ZSTD_window_needOverflowCorrection():
 * Returns non-zero if the indices are getting too large and need overflow
 * protection.
 */
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
                                                  U32 cycleLog,
                                                  U32 maxDist,
                                                  U32 loadedDictEnd,
                                                  void const* src,
                                                  void const* srcEnd)
{
    U32 const curr = (U32)((BYTE const*)srcEnd - window.base);
    if (ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
        if (ZSTD_window_canOverflowCorrect(window, cycleLog, maxDist, loadedDictEnd, src)) {
            return 1;
        }
    }
    return curr > ZSTD_CURRENT_MAX;
}

/**
 * ZSTD_window_correctOverflow():
 * Reduces the indices to protect from index overflow.
 * Returns the correction made to the indices, which must be applied to every
 * stored index.
 *
 * The least significant cycleLog bits of the indices must remain the same,
 * which may be 0. Every index up to maxDist in the past must be valid.
 */
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
                                           U32 maxDist, void const* src)
{
    /* preemptive overflow correction:
     * 1. correction is large enough:
     *    lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
     *    1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
     *
     *    current - newCurrent
     *    > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
     *    > (3<<29) - (1<<chainLog)
     *    > (3<<29) - (1<<30)             (NOTE: chainLog <= 30)
     *    > 1<<29
     *
     * 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
     *    After correction, current is less than (1<<chainLog + 1<<windowLog).
     *    In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
     *    In 32-bit mode we are safe, because (chainLog <= 29), so
     *    ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
     * 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
     *    windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
     */
    U32 const cycleSize = 1u << cycleLog;
    U32 const cycleMask = cycleSize - 1;
    U32 const curr = (U32)((BYTE const*)src - window->base);
    U32 const currentCycle0 = curr & cycleMask;
    /* Exclude zero so that newCurrent - maxDist >= 1. */
    U32 const currentCycle1 = currentCycle0 == 0 ? cycleSize : currentCycle0;
    U32 const newCurrent = currentCycle1 + MAX(maxDist, cycleSize);
    U32 const correction = curr - newCurrent;
    /* maxDist must be a power of two so that:
     *   (newCurrent & cycleMask) == (curr & cycleMask)
     * This is required to not corrupt the chains / binary tree.
     */
    assert((maxDist & (maxDist - 1)) == 0);
    assert((curr & cycleMask) == (newCurrent & cycleMask));
    assert(curr > newCurrent);
    if (!ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
        /* Loose bound, should be around 1<<29 (see above) */
        assert(correction > 1<<28);
    }

    window->base += correction;
    window->dictBase += correction;
    if (window->lowLimit <= correction) window->lowLimit = 1;
    else window->lowLimit -= correction;
    if (window->dictLimit <= correction) window->dictLimit = 1;
    else window->dictLimit -= correction;

    /* Ensure we can still reference the full window. */
    assert(newCurrent >= maxDist);
    assert(newCurrent - maxDist >= 1);
    /* Ensure that lowLimit and dictLimit didn't underflow. */
    assert(window->lowLimit <= newCurrent);
    assert(window->dictLimit <= newCurrent);

    ++window->nbOverflowCorrections;

    DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
             window->lowLimit);
    return correction;
}

/**
 * ZSTD_window_enforceMaxDist():
 * Updates lowLimit so that:
 *    (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
 *
 * It ensures index is valid as long as index >= lowLimit.
 * This must be called before a block compression call.
 *
 * loadedDictEnd is only defined if a dictionary is in use for current compression.
 * As the name implies, loadedDictEnd represents the index at end of dictionary.
 * The value lies within context's referential, it can be directly compared to blockEndIdx.
 *
 * If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
 * If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
 * This is because dictionaries are allowed to be referenced fully
 * as long as the last byte of the dictionary is in the window.
 * Once input has progressed beyond window size, dictionary cannot be referenced anymore.
 *
 * In normal dict mode, the dictionary lies between lowLimit and dictLimit.
 * In dictMatchState mode, lowLimit and dictLimit are the same,
 * and the dictionary is below them.
 * forceWindow and dictMatchState are therefore incompatible.
 */
MEM_STATIC void
ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
                     const void* blockEnd,
                           U32   maxDist,
                           U32*  loadedDictEndPtr,
                     const ZSTD_matchState_t** dictMatchStatePtr)
{
    U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
    U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
    DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
                (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);

    /* - When there is no dictionary : loadedDictEnd == 0.
         In which case, the test (blockEndIdx > maxDist) is merely to avoid
         overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
       - When there is a standard dictionary :
         Index referential is copied from the dictionary,
         which means it starts from 0.
         In which case, loadedDictEnd == dictSize,
         and it makes sense to compare `blockEndIdx > maxDist + dictSize`
         since `blockEndIdx` also starts from zero.
       - When there is an attached dictionary :
         loadedDictEnd is expressed within the referential of the context,
         so it can be directly compared against blockEndIdx.
    */
    if (blockEndIdx > maxDist + loadedDictEnd) {
        U32 const newLowLimit = blockEndIdx - maxDist;
        if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
        if (window->dictLimit < window->lowLimit) {
            DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
                        (unsigned)window->dictLimit, (unsigned)window->lowLimit);
            window->dictLimit = window->lowLimit;
        }
        /* On reaching window size, dictionaries are invalidated */
        if (loadedDictEndPtr) *loadedDictEndPtr = 0;
        if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
    }
}

/* Similar to ZSTD_window_enforceMaxDist(),
 * but only invalidates dictionary
 * when input progresses beyond window size.
 * assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL)
 *              loadedDictEnd uses same referential as window->base
 *              maxDist is the window size */
MEM_STATIC void
ZSTD_checkDictValidity(const ZSTD_window_t* window,
                       const void* blockEnd,
                             U32   maxDist,
                             U32*  loadedDictEndPtr,
                       const ZSTD_matchState_t** dictMatchStatePtr)
{
    assert(loadedDictEndPtr != NULL);
    assert(dictMatchStatePtr != NULL);
    {   U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
        U32 const loadedDictEnd = *loadedDictEndPtr;
        DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
                    (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
        assert(blockEndIdx >= loadedDictEnd);

        if (blockEndIdx > loadedDictEnd + maxDist) {
            /* On reaching window size, dictionaries are invalidated.
             * For simplification, if window size is reached anywhere within next block,
             * the dictionary is invalidated for the full block.
             */
            DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)");
            *loadedDictEndPtr = 0;
            *dictMatchStatePtr = NULL;
        } else {
            if (*loadedDictEndPtr != 0) {
                DEBUGLOG(6, "dictionary considered valid for current block");
    }   }   }
}

MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) {
    ZSTD_memset(window, 0, sizeof(*window));
    window->base = (BYTE const*)"";
    window->dictBase = (BYTE const*)"";
    window->dictLimit = 1;    /* start from 1, so that 1st position is valid */
    window->lowLimit = 1;     /* it ensures first and later CCtx usages compress the same */
    window->nextSrc = window->base + 1;   /* see issue #1241 */
    window->nbOverflowCorrections = 0;
}

/**
 * ZSTD_window_update():
 * Updates the window by appending [src, src + srcSize) to the window.
 * If it is not contiguous, the current prefix becomes the extDict, and we
 * forget about the extDict. Handles overlap of the prefix and extDict.
 * Returns non-zero if the segment is contiguous.
 */
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
                                  void const* src, size_t srcSize,
                                  int forceNonContiguous)
{
    BYTE const* const ip = (BYTE const*)src;
    U32 contiguous = 1;
    DEBUGLOG(5, "ZSTD_window_update");
    if (srcSize == 0)
        return contiguous;
    assert(window->base != NULL);
    assert(window->dictBase != NULL);
    /* Check if blocks follow each other */
    if (src != window->nextSrc || forceNonContiguous) {
        /* not contiguous */
        size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
        DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
        window->lowLimit = window->dictLimit;
        assert(distanceFromBase == (size_t)(U32)distanceFromBase);  /* should never overflow */
        window->dictLimit = (U32)distanceFromBase;
        window->dictBase = window->base;
        window->base = ip - distanceFromBase;
        /* ms->nextToUpdate = window->dictLimit; */
        if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit;   /* too small extDict */
        contiguous = 0;
    }
    window->nextSrc = ip + srcSize;
    /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
    if ( (ip+srcSize > window->dictBase + window->lowLimit)
       & (ip < window->dictBase + window->dictLimit)) {
        ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
        U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
        window->lowLimit = lowLimitMax;
        DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
    }
    return contiguous;
}

/**
 * Returns the lowest allowed match index. It may either be in the ext-dict or the prefix.
 */
MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
{
    U32    const maxDistance = 1U << windowLog;
    U32    const lowestValid = ms->window.lowLimit;
    U32    const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
    U32    const isDictionary = (ms->loadedDictEnd != 0);
    /* When using a dictionary the entire dictionary is valid if a single byte of the dictionary
     * is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't
     * valid for the entire block. So this check is sufficient to find the lowest valid match index.
     */
    U32    const matchLowest = isDictionary ? lowestValid : withinWindow;
    return matchLowest;
}

/**
 * Returns the lowest allowed match index in the prefix.
 */
MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
{
    U32    const maxDistance = 1U << windowLog;
    U32    const lowestValid = ms->window.dictLimit;
    U32    const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
    U32    const isDictionary = (ms->loadedDictEnd != 0);
    /* When computing the lowest prefix index we need to take the dictionary into account to handle
     * the edge case where the dictionary and the source are contiguous in memory.
     */
    U32    const matchLowest = isDictionary ? lowestValid : withinWindow;
    return matchLowest;
}



/* debug functions */
#if (DEBUGLEVEL>=2)

MEM_STATIC double ZSTD_fWeight(U32 rawStat)
{
    U32 const fp_accuracy = 8;
    U32 const fp_multiplier = (1 << fp_accuracy);
    U32 const newStat = rawStat + 1;
    U32 const hb = ZSTD_highbit32(newStat);
    U32 const BWeight = hb * fp_multiplier;
    U32 const FWeight = (newStat << fp_accuracy) >> hb;
    U32 const weight = BWeight + FWeight;
    assert(hb + fp_accuracy < 31);
    return (double)weight / fp_multiplier;
}

/* display a table content,
 * listing each element, its frequency, and its predicted bit cost */
MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
{
    unsigned u, sum;
    for (u=0, sum=0; u<=max; u++) sum += table[u];
    DEBUGLOG(2, "total nb elts: %u", sum);
    for (u=0; u<=max; u++) {
        DEBUGLOG(2, "%2u: %5u  (%.2f)",
                u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
    }
}

#endif


#if defined (__cplusplus)
}
#endif

/* ===============================================================
 * Shared internal declarations
 * These prototypes may be called from sources not in lib/compress
 * =============================================================== */

/* ZSTD_loadCEntropy() :
 * dict : must point at beginning of a valid zstd dictionary.
 * return : size of dictionary header (size of magic number + dict ID + entropy tables)
 * assumptions : magic number supposed already checked
 *               and dictSize >= 8 */
size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
                         const void* const dict, size_t dictSize);

void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs);

/* ==============================================================
 * Private declarations
 * These prototypes shall only be called from within lib/compress
 * ============================================================== */

/* ZSTD_getCParamsFromCCtxParams() :
 * cParams are built depending on compressionLevel, src size hints,
 * LDM and manually set compression parameters.
 * Note: srcSizeHint == 0 means 0!
 */
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
        const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);

/*! ZSTD_initCStream_internal() :
 *  Private use only. Init streaming operation.
 *  expects params to be valid.
 *  must receive dict, or cdict, or none, but not both.
 *  @return : 0, or an error code */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
                     const void* dict, size_t dictSize,
                     const ZSTD_CDict* cdict,
                     const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize);

void ZSTD_resetSeqStore(seqStore_t* ssPtr);

/*! ZSTD_getCParamsFromCDict() :
 *  as the name implies */
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);

/* ZSTD_compressBegin_advanced_internal() :
 * Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
                                    const void* dict, size_t dictSize,
                                    ZSTD_dictContentType_e dictContentType,
                                    ZSTD_dictTableLoadMethod_e dtlm,
                                    const ZSTD_CDict* cdict,
                                    const ZSTD_CCtx_params* params,
                                    unsigned long long pledgedSrcSize);

/* ZSTD_compress_advanced_internal() :
 * Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
                                       void* dst, size_t dstCapacity,
                                 const void* src, size_t srcSize,
                                 const void* dict,size_t dictSize,
                                 const ZSTD_CCtx_params* params);


/* ZSTD_writeLastEmptyBlock() :
 * output an empty Block with end-of-frame mark to complete a frame
 * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
 *           or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
 */
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);


/* ZSTD_referenceExternalSequences() :
 * Must be called before starting a compression operation.
 * seqs must parse a prefix of the source.
 * This cannot be used when long range matching is enabled.
 * Zstd will use these sequences, and pass the literals to a secondary block
 * compressor.
 * @return : An error code on failure.
 * NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
 * access and data corruption.
 */
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);

/** ZSTD_cycleLog() :
 *  condition for correct operation : hashLog > 1 */
U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat);

/** ZSTD_CCtx_trace() :
 *  Trace the end of a compression call.
 */
void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize);

#endif /* ZSTD_COMPRESS_H */