summaryrefslogtreecommitdiff
path: root/thirdparty/zstd/compress/huf_compress.c
blob: fe11aafb8f14013e7154b17bcac3f2dc337ab94b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
/* ******************************************************************
   Huffman encoder, part of New Generation Entropy library
   Copyright (C) 2013-2016, Yann Collet.

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
    - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
    - Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */

/* **************************************************************
*  Compiler specifics
****************************************************************/
#ifdef _MSC_VER    /* Visual Studio */
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#endif


/* **************************************************************
*  Includes
****************************************************************/
#include <string.h>     /* memcpy, memset */
#include <stdio.h>      /* printf (debug) */
#include "bitstream.h"
#define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
#include "fse.h"        /* header compression */
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"


/* **************************************************************
*  Error Management
****************************************************************/
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */
#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return f
#define CHECK_F(f)   { CHECK_V_F(_var_err__, f); }


/* **************************************************************
*  Utils
****************************************************************/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
}


/* *******************************************************
*  HUF : Huffman block compression
*********************************************************/
/* HUF_compressWeights() :
 * Same as FSE_compress(), but dedicated to huff0's weights compression.
 * The use case needs much less stack memory.
 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
 */
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
{
    BYTE* const ostart = (BYTE*) dst;
    BYTE* op = ostart;
    BYTE* const oend = ostart + dstSize;

    U32 maxSymbolValue = HUF_TABLELOG_MAX;
    U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;

    FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
    BYTE scratchBuffer[1<<MAX_FSE_TABLELOG_FOR_HUFF_HEADER];

    U32 count[HUF_TABLELOG_MAX+1];
    S16 norm[HUF_TABLELOG_MAX+1];

    /* init conditions */
    if (wtSize <= 1) return 0;  /* Not compressible */

    /* Scan input and build symbol stats */
    {   CHECK_V_F(maxCount, FSE_count_simple(count, &maxSymbolValue, weightTable, wtSize) );
        if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
        if (maxCount == 1) return 0;         /* each symbol present maximum once => not compressible */
    }

    tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
    CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue) );

    /* Write table description header */
    {   CHECK_V_F(hSize, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
        op += hSize;
    }

    /* Compress */
    CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
    {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable) );
        if (cSize == 0) return 0;   /* not enough space for compressed data */
        op += cSize;
    }

    return op-ostart;
}


struct HUF_CElt_s {
  U16  val;
  BYTE nbBits;
};   /* typedef'd to HUF_CElt within "huf.h" */

/*! HUF_writeCTable() :
    `CTable` : Huffman tree to save, using huf representation.
    @return : size of saved CTable */
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
                        const HUF_CElt* CTable, U32 maxSymbolValue, U32 huffLog)
{
    BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
    BYTE* op = (BYTE*)dst;
    U32 n;

     /* check conditions */
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);

    /* convert to weight */
    bitsToWeight[0] = 0;
    for (n=1; n<huffLog+1; n++)
        bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
    for (n=0; n<maxSymbolValue; n++)
        huffWeight[n] = bitsToWeight[CTable[n].nbBits];

    /* attempt weights compression by FSE */
    {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
        if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
            op[0] = (BYTE)hSize;
            return hSize+1;
    }   }

    /* write raw values as 4-bits (max : 15) */
    if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
    if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
    op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
    huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
    for (n=0; n<maxSymbolValue; n+=2)
        op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
    return ((maxSymbolValue+1)/2) + 1;
}


size_t HUF_readCTable (HUF_CElt* CTable, U32 maxSymbolValue, const void* src, size_t srcSize)
{
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
    U32 tableLog = 0;
    U32 nbSymbols = 0;

    /* get symbol weights */
    CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));

    /* check result */
    if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
    if (nbSymbols > maxSymbolValue+1) return ERROR(maxSymbolValue_tooSmall);

    /* Prepare base value per rank */
    {   U32 n, nextRankStart = 0;
        for (n=1; n<=tableLog; n++) {
            U32 current = nextRankStart;
            nextRankStart += (rankVal[n] << (n-1));
            rankVal[n] = current;
    }   }

    /* fill nbBits */
    {   U32 n; for (n=0; n<nbSymbols; n++) {
            const U32 w = huffWeight[n];
            CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
    }   }

    /* fill val */
    {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
        U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
        { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
        /* determine stating value per rank */
        valPerRank[tableLog+1] = 0;   /* for w==0 */
        {   U16 min = 0;
            U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
                valPerRank[n] = min;     /* get starting value within each rank */
                min += nbPerRank[n];
                min >>= 1;
        }   }
        /* assign value within rank, symbol order */
        { U32 n; for (n=0; n<=maxSymbolValue; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
    }

    return readSize;
}


typedef struct nodeElt_s {
    U32 count;
    U16 parent;
    BYTE byte;
    BYTE nbBits;
} nodeElt;

static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
{
    const U32 largestBits = huffNode[lastNonNull].nbBits;
    if (largestBits <= maxNbBits) return largestBits;   /* early exit : no elt > maxNbBits */

    /* there are several too large elements (at least >= 2) */
    {   int totalCost = 0;
        const U32 baseCost = 1 << (largestBits - maxNbBits);
        U32 n = lastNonNull;

        while (huffNode[n].nbBits > maxNbBits) {
            totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
            huffNode[n].nbBits = (BYTE)maxNbBits;
            n --;
        }  /* n stops at huffNode[n].nbBits <= maxNbBits */
        while (huffNode[n].nbBits == maxNbBits) n--;   /* n end at index of smallest symbol using < maxNbBits */

        /* renorm totalCost */
        totalCost >>= (largestBits - maxNbBits);  /* note : totalCost is necessarily a multiple of baseCost */

        /* repay normalized cost */
        {   U32 const noSymbol = 0xF0F0F0F0;
            U32 rankLast[HUF_TABLELOG_MAX+2];
            int pos;

            /* Get pos of last (smallest) symbol per rank */
            memset(rankLast, 0xF0, sizeof(rankLast));
            {   U32 currentNbBits = maxNbBits;
                for (pos=n ; pos >= 0; pos--) {
                    if (huffNode[pos].nbBits >= currentNbBits) continue;
                    currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
                    rankLast[maxNbBits-currentNbBits] = pos;
            }   }

            while (totalCost > 0) {
                U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
                for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
                    U32 highPos = rankLast[nBitsToDecrease];
                    U32 lowPos = rankLast[nBitsToDecrease-1];
                    if (highPos == noSymbol) continue;
                    if (lowPos == noSymbol) break;
                    {   U32 const highTotal = huffNode[highPos].count;
                        U32 const lowTotal = 2 * huffNode[lowPos].count;
                        if (highTotal <= lowTotal) break;
                }   }
                /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
                while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))  /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
                    nBitsToDecrease ++;
                totalCost -= 1 << (nBitsToDecrease-1);
                if (rankLast[nBitsToDecrease-1] == noSymbol)
                    rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];   /* this rank is no longer empty */
                huffNode[rankLast[nBitsToDecrease]].nbBits ++;
                if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
                    rankLast[nBitsToDecrease] = noSymbol;
                else {
                    rankLast[nBitsToDecrease]--;
                    if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
                        rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
            }   }   /* while (totalCost > 0) */

            while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
                if (rankLast[1] == noSymbol) {  /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
                    while (huffNode[n].nbBits == maxNbBits) n--;
                    huffNode[n+1].nbBits--;
                    rankLast[1] = n+1;
                    totalCost++;
                    continue;
                }
                huffNode[ rankLast[1] + 1 ].nbBits--;
                rankLast[1]++;
                totalCost ++;
    }   }   }   /* there are several too large elements (at least >= 2) */

    return maxNbBits;
}


typedef struct {
    U32 base;
    U32 current;
} rankPos;

static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
{
    rankPos rank[32];
    U32 n;

    memset(rank, 0, sizeof(rank));
    for (n=0; n<=maxSymbolValue; n++) {
        U32 r = BIT_highbit32(count[n] + 1);
        rank[r].base ++;
    }
    for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
    for (n=0; n<32; n++) rank[n].current = rank[n].base;
    for (n=0; n<=maxSymbolValue; n++) {
        U32 const c = count[n];
        U32 const r = BIT_highbit32(c+1) + 1;
        U32 pos = rank[r].current++;
        while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
        huffNode[pos].count = c;
        huffNode[pos].byte  = (BYTE)n;
    }
}


/** HUF_buildCTable_wksp() :
 *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
 *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
 */
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
typedef nodeElt huffNodeTable[2*HUF_SYMBOLVALUE_MAX+1 +1];
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{
    nodeElt* const huffNode0 = (nodeElt*)workSpace;
    nodeElt* const huffNode = huffNode0+1;
    U32 n, nonNullRank;
    int lowS, lowN;
    U16 nodeNb = STARTNODE;
    U32 nodeRoot;

    /* safety checks */
    if (wkspSize < sizeof(huffNodeTable)) return ERROR(GENERIC);   /* workSpace is not large enough */
    if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(GENERIC);
    memset(huffNode0, 0, sizeof(huffNodeTable));

    /* sort, decreasing order */
    HUF_sort(huffNode, count, maxSymbolValue);

    /* init for parents */
    nonNullRank = maxSymbolValue;
    while(huffNode[nonNullRank].count == 0) nonNullRank--;
    lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
    huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
    huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
    nodeNb++; lowS-=2;
    for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
    huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */

    /* create parents */
    while (nodeNb <= nodeRoot) {
        U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
        U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
        huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
        huffNode[n1].parent = huffNode[n2].parent = nodeNb;
        nodeNb++;
    }

    /* distribute weights (unlimited tree height) */
    huffNode[nodeRoot].nbBits = 0;
    for (n=nodeRoot-1; n>=STARTNODE; n--)
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
    for (n=0; n<=nonNullRank; n++)
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;

    /* enforce maxTableLog */
    maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);

    /* fill result into tree (val, nbBits) */
    {   U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
        U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
        if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
        for (n=0; n<=nonNullRank; n++)
            nbPerRank[huffNode[n].nbBits]++;
        /* determine stating value per rank */
        {   U16 min = 0;
            for (n=maxNbBits; n>0; n--) {
                valPerRank[n] = min;      /* get starting value within each rank */
                min += nbPerRank[n];
                min >>= 1;
        }   }
        for (n=0; n<=maxSymbolValue; n++)
            tree[huffNode[n].byte].nbBits = huffNode[n].nbBits;   /* push nbBits per symbol, symbol order */
        for (n=0; n<=maxSymbolValue; n++)
            tree[n].val = valPerRank[tree[n].nbBits]++;   /* assign value within rank, symbol order */
    }

    return maxNbBits;
}

/** HUF_buildCTable() :
 *  Note : count is used before tree is written, so they can safely overlap
 */
size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
{
    huffNodeTable nodeTable;
    return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, nodeTable, sizeof(nodeTable));
}

static size_t HUF_estimateCompressedSize(HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{
    size_t nbBits = 0;
    int s;
    for (s = 0; s <= (int)maxSymbolValue; ++s) {
        nbBits += CTable[s].nbBits * count[s];
    }
    return nbBits >> 3;
}

static int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
  int bad = 0;
  int s;
  for (s = 0; s <= (int)maxSymbolValue; ++s) {
    bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
  }
  return !bad;
}

static void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
{
    BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
}

size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }

#define HUF_FLUSHBITS(s)  (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))

#define HUF_FLUSHBITS_1(stream) \
    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)

#define HUF_FLUSHBITS_2(stream) \
    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)

size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
    const BYTE* ip = (const BYTE*) src;
    BYTE* const ostart = (BYTE*)dst;
    BYTE* const oend = ostart + dstSize;
    BYTE* op = ostart;
    size_t n;
    const unsigned fast = (dstSize >= HUF_BLOCKBOUND(srcSize));
    BIT_CStream_t bitC;

    /* init */
    if (dstSize < 8) return 0;   /* not enough space to compress */
    { size_t const initErr = BIT_initCStream(&bitC, op, oend-op);
      if (HUF_isError(initErr)) return 0; }

    n = srcSize & ~3;  /* join to mod 4 */
    switch (srcSize & 3)
    {
        case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
                 HUF_FLUSHBITS_2(&bitC);
        case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
                 HUF_FLUSHBITS_1(&bitC);
        case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
                 HUF_FLUSHBITS(&bitC);
        case 0 :
        default: ;
    }

    for (; n>0; n-=4) {  /* note : n&3==0 at this stage */
        HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
        HUF_FLUSHBITS_1(&bitC);
        HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
        HUF_FLUSHBITS_2(&bitC);
        HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
        HUF_FLUSHBITS_1(&bitC);
        HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
        HUF_FLUSHBITS(&bitC);
    }

    return BIT_closeCStream(&bitC);
}


size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
    size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
    const BYTE* ip = (const BYTE*) src;
    const BYTE* const iend = ip + srcSize;
    BYTE* const ostart = (BYTE*) dst;
    BYTE* const oend = ostart + dstSize;
    BYTE* op = ostart;

    if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
    if (srcSize < 12) return 0;   /* no saving possible : too small input */
    op += 6;   /* jumpTable */

    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
        if (cSize==0) return 0;
        MEM_writeLE16(ostart, (U16)cSize);
        op += cSize;
    }

    ip += segmentSize;
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
        if (cSize==0) return 0;
        MEM_writeLE16(ostart+2, (U16)cSize);
        op += cSize;
    }

    ip += segmentSize;
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
        if (cSize==0) return 0;
        MEM_writeLE16(ostart+4, (U16)cSize);
        op += cSize;
    }

    ip += segmentSize;
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, iend-ip, CTable) );
        if (cSize==0) return 0;
        op += cSize;
    }

    return op-ostart;
}


static size_t HUF_compressCTable_internal(
                BYTE* const ostart, BYTE* op, BYTE* const oend,
                const void* src, size_t srcSize,
                unsigned singleStream, const HUF_CElt* CTable)
{
    size_t const cSize = singleStream ?
                         HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) :
                         HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable);
    if (HUF_isError(cSize)) { return cSize; }
    if (cSize==0) { return 0; }   /* uncompressible */
    op += cSize;
    /* check compressibility */
    if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
    return op-ostart;
}


/* `workSpace` must a table of at least 1024 unsigned */
static size_t HUF_compress_internal (
                void* dst, size_t dstSize,
                const void* src, size_t srcSize,
                unsigned maxSymbolValue, unsigned huffLog,
                unsigned singleStream,
                void* workSpace, size_t wkspSize,
                HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat)
{
    BYTE* const ostart = (BYTE*)dst;
    BYTE* const oend = ostart + dstSize;
    BYTE* op = ostart;

    U32* count;
    size_t const countSize = sizeof(U32) * (HUF_SYMBOLVALUE_MAX + 1);
    HUF_CElt* CTable;
    size_t const CTableSize = sizeof(HUF_CElt) * (HUF_SYMBOLVALUE_MAX + 1);

    /* checks & inits */
    if (wkspSize < sizeof(huffNodeTable) + countSize + CTableSize) return ERROR(GENERIC);
    if (!srcSize) return 0;  /* Uncompressed (note : 1 means rle, so first byte must be correct) */
    if (!dstSize) return 0;  /* cannot fit within dst budget */
    if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
    if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
    if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
    if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;

    count = (U32*)workSpace;
    workSpace = (BYTE*)workSpace + countSize;
    wkspSize -= countSize;
    CTable = (HUF_CElt*)workSpace;
    workSpace = (BYTE*)workSpace + CTableSize;
    wkspSize -= CTableSize;

    /* Heuristic : If we don't need to check the validity of the old table use the old table for small inputs */
    if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
        return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
    }

    /* Scan input and build symbol stats */
    {   CHECK_V_F(largest, FSE_count_wksp (count, &maxSymbolValue, (const BYTE*)src, srcSize, (U32*)workSpace) );
        if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
        if (largest <= (srcSize >> 7)+1) return 0;   /* Fast heuristic : not compressible enough */
    }

    /* Check validity of previous table */
    if (repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, count, maxSymbolValue)) {
        *repeat = HUF_repeat_none;
    }
    /* Heuristic : use existing table for small inputs */
    if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
        return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
    }

    /* Build Huffman Tree */
    huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
    {   CHECK_V_F(maxBits, HUF_buildCTable_wksp (CTable, count, maxSymbolValue, huffLog, workSpace, wkspSize) );
        huffLog = (U32)maxBits;
        /* Zero the unused symbols so we can check it for validity */
        memset(CTable + maxSymbolValue + 1, 0, CTableSize - (maxSymbolValue + 1) * sizeof(HUF_CElt));
    }

    /* Write table description header */
    {   CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog) );
        /* Check if using the previous table will be beneficial */
        if (repeat && *repeat != HUF_repeat_none) {
            size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, count, maxSymbolValue);
            size_t const newSize = HUF_estimateCompressedSize(CTable, count, maxSymbolValue);
            if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
                return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
            }
        }
        /* Use the new table */
        if (hSize + 12ul >= srcSize) { return 0; }
        op += hSize;
        if (repeat) { *repeat = HUF_repeat_none; }
        if (oldHufTable) { memcpy(oldHufTable, CTable, CTableSize); } /* Save the new table */
    }
    return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, CTable);
}


size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, NULL, NULL, 0);
}

size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize,
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
}

size_t HUF_compress1X (void* dst, size_t dstSize,
                 const void* src, size_t srcSize,
                 unsigned maxSymbolValue, unsigned huffLog)
{
    unsigned workSpace[1024];
    return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}

size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, NULL, NULL, 0);
}

size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize,
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
}

size_t HUF_compress2 (void* dst, size_t dstSize,
                const void* src, size_t srcSize,
                unsigned maxSymbolValue, unsigned huffLog)
{
    unsigned workSpace[1024];
    return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}

size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    return HUF_compress2(dst, maxDstSize, src, (U32)srcSize, 255, HUF_TABLELOG_DEFAULT);
}