summaryrefslogtreecommitdiff
path: root/thirdparty/zstd/compress/huf_compress.c
blob: 302e08864dac592cb1c39cc7b09ff3df89f59735 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
/* ******************************************************************
 * Huffman encoder, part of New Generation Entropy library
 * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
 *
 *  You can contact the author at :
 *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
 *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
****************************************************************** */

/* **************************************************************
*  Compiler specifics
****************************************************************/
#ifdef _MSC_VER    /* Visual Studio */
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#endif


/* **************************************************************
*  Includes
****************************************************************/
#include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
#include "../common/compiler.h"
#include "../common/bitstream.h"
#include "hist.h"
#define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
#include "../common/fse.h"        /* header compression */
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "../common/error_private.h"


/* **************************************************************
*  Error Management
****************************************************************/
#define HUF_isError ERR_isError
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */


/* **************************************************************
*  Utils
****************************************************************/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
}


/* *******************************************************
*  HUF : Huffman block compression
*********************************************************/
/* HUF_compressWeights() :
 * Same as FSE_compress(), but dedicated to huff0's weights compression.
 * The use case needs much less stack memory.
 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
 */
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
{
    BYTE* const ostart = (BYTE*) dst;
    BYTE* op = ostart;
    BYTE* const oend = ostart + dstSize;

    unsigned maxSymbolValue = HUF_TABLELOG_MAX;
    U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;

    FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
    U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];

    unsigned count[HUF_TABLELOG_MAX+1];
    S16 norm[HUF_TABLELOG_MAX+1];

    /* init conditions */
    if (wtSize <= 1) return 0;  /* Not compressible */

    /* Scan input and build symbol stats */
    {   unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
        if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
        if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
    }

    tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
    CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );

    /* Write table description header */
    {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), norm, maxSymbolValue, tableLog) );
        op += hSize;
    }

    /* Compress */
    CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
    {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, CTable) );
        if (cSize == 0) return 0;   /* not enough space for compressed data */
        op += cSize;
    }

    return (size_t)(op-ostart);
}


/*! HUF_writeCTable() :
    `CTable` : Huffman tree to save, using huf representation.
    @return : size of saved CTable */
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
                        const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
{
    BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
    BYTE* op = (BYTE*)dst;
    U32 n;

     /* check conditions */
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);

    /* convert to weight */
    bitsToWeight[0] = 0;
    for (n=1; n<huffLog+1; n++)
        bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
    for (n=0; n<maxSymbolValue; n++)
        huffWeight[n] = bitsToWeight[CTable[n].nbBits];

    /* attempt weights compression by FSE */
    {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
        if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
            op[0] = (BYTE)hSize;
            return hSize+1;
    }   }

    /* write raw values as 4-bits (max : 15) */
    if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
    if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
    op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
    huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
    for (n=0; n<maxSymbolValue; n+=2)
        op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
    return ((maxSymbolValue+1)/2) + 1;
}


size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
{
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
    U32 tableLog = 0;
    U32 nbSymbols = 0;

    /* get symbol weights */
    CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
    *hasZeroWeights = (rankVal[0] > 0);

    /* check result */
    if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
    if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);

    /* Prepare base value per rank */
    {   U32 n, nextRankStart = 0;
        for (n=1; n<=tableLog; n++) {
            U32 curr = nextRankStart;
            nextRankStart += (rankVal[n] << (n-1));
            rankVal[n] = curr;
    }   }

    /* fill nbBits */
    {   U32 n; for (n=0; n<nbSymbols; n++) {
            const U32 w = huffWeight[n];
            CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0);
    }   }

    /* fill val */
    {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
        U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
        { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
        /* determine stating value per rank */
        valPerRank[tableLog+1] = 0;   /* for w==0 */
        {   U16 min = 0;
            U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
                valPerRank[n] = min;     /* get starting value within each rank */
                min += nbPerRank[n];
                min >>= 1;
        }   }
        /* assign value within rank, symbol order */
        { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
    }

    *maxSymbolValuePtr = nbSymbols - 1;
    return readSize;
}

U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
{
    const HUF_CElt* table = (const HUF_CElt*)symbolTable;
    assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
    return table[symbolValue].nbBits;
}


typedef struct nodeElt_s {
    U32 count;
    U16 parent;
    BYTE byte;
    BYTE nbBits;
} nodeElt;

/**
 * HUF_setMaxHeight():
 * Enforces maxNbBits on the Huffman tree described in huffNode.
 *
 * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
 * the tree to so that it is a valid canonical Huffman tree.
 *
 * @pre               The sum of the ranks of each symbol == 2^largestBits,
 *                    where largestBits == huffNode[lastNonNull].nbBits.
 * @post              The sum of the ranks of each symbol == 2^largestBits,
 *                    where largestBits is the return value <= maxNbBits.
 *
 * @param huffNode    The Huffman tree modified in place to enforce maxNbBits.
 * @param lastNonNull The symbol with the lowest count in the Huffman tree.
 * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree
 *                    may not respect. After this function the Huffman tree will
 *                    respect maxNbBits.
 * @return            The maximum number of bits of the Huffman tree after adjustment,
 *                    necessarily no more than maxNbBits.
 */
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
{
    const U32 largestBits = huffNode[lastNonNull].nbBits;
    /* early exit : no elt > maxNbBits, so the tree is already valid. */
    if (largestBits <= maxNbBits) return largestBits;

    /* there are several too large elements (at least >= 2) */
    {   int totalCost = 0;
        const U32 baseCost = 1 << (largestBits - maxNbBits);
        int n = (int)lastNonNull;

        /* Adjust any ranks > maxNbBits to maxNbBits.
         * Compute totalCost, which is how far the sum of the ranks is
         * we are over 2^largestBits after adjust the offending ranks.
         */
        while (huffNode[n].nbBits > maxNbBits) {
            totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
            huffNode[n].nbBits = (BYTE)maxNbBits;
            n--;
        }
        /* n stops at huffNode[n].nbBits <= maxNbBits */
        assert(huffNode[n].nbBits <= maxNbBits);
        /* n end at index of smallest symbol using < maxNbBits */
        while (huffNode[n].nbBits == maxNbBits) --n;

        /* renorm totalCost from 2^largestBits to 2^maxNbBits
         * note : totalCost is necessarily a multiple of baseCost */
        assert((totalCost & (baseCost - 1)) == 0);
        totalCost >>= (largestBits - maxNbBits);
        assert(totalCost > 0);

        /* repay normalized cost */
        {   U32 const noSymbol = 0xF0F0F0F0;
            U32 rankLast[HUF_TABLELOG_MAX+2];

            /* Get pos of last (smallest = lowest cum. count) symbol per rank */
            ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
            {   U32 currentNbBits = maxNbBits;
                int pos;
                for (pos=n ; pos >= 0; pos--) {
                    if (huffNode[pos].nbBits >= currentNbBits) continue;
                    currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
                    rankLast[maxNbBits-currentNbBits] = (U32)pos;
            }   }

            while (totalCost > 0) {
                /* Try to reduce the next power of 2 above totalCost because we
                 * gain back half the rank.
                 */
                U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
                for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
                    U32 const highPos = rankLast[nBitsToDecrease];
                    U32 const lowPos = rankLast[nBitsToDecrease-1];
                    if (highPos == noSymbol) continue;
                    /* Decrease highPos if no symbols of lowPos or if it is
                     * not cheaper to remove 2 lowPos than highPos.
                     */
                    if (lowPos == noSymbol) break;
                    {   U32 const highTotal = huffNode[highPos].count;
                        U32 const lowTotal = 2 * huffNode[lowPos].count;
                        if (highTotal <= lowTotal) break;
                }   }
                /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
                assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
                /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
                while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
                    nBitsToDecrease++;
                assert(rankLast[nBitsToDecrease] != noSymbol);
                /* Increase the number of bits to gain back half the rank cost. */
                totalCost -= 1 << (nBitsToDecrease-1);
                huffNode[rankLast[nBitsToDecrease]].nbBits++;

                /* Fix up the new rank.
                 * If the new rank was empty, this symbol is now its smallest.
                 * Otherwise, this symbol will be the largest in the new rank so no adjustment.
                 */
                if (rankLast[nBitsToDecrease-1] == noSymbol)
                    rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
                /* Fix up the old rank.
                 * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
                 * it must be the only symbol in its rank, so the old rank now has no symbols.
                 * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
                 * the smallest node in the rank. If the previous position belongs to a different rank,
                 * then the rank is now empty.
                 */
                if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
                    rankLast[nBitsToDecrease] = noSymbol;
                else {
                    rankLast[nBitsToDecrease]--;
                    if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
                        rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
                }
            }   /* while (totalCost > 0) */

            /* If we've removed too much weight, then we have to add it back.
             * To avoid overshooting again, we only adjust the smallest rank.
             * We take the largest nodes from the lowest rank 0 and move them
             * to rank 1. There's guaranteed to be enough rank 0 symbols because
             * TODO.
             */
            while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
                /* special case : no rank 1 symbol (using maxNbBits-1);
                 * let's create one from largest rank 0 (using maxNbBits).
                 */
                if (rankLast[1] == noSymbol) {
                    while (huffNode[n].nbBits == maxNbBits) n--;
                    huffNode[n+1].nbBits--;
                    assert(n >= 0);
                    rankLast[1] = (U32)(n+1);
                    totalCost++;
                    continue;
                }
                huffNode[ rankLast[1] + 1 ].nbBits--;
                rankLast[1]++;
                totalCost ++;
            }
        }   /* repay normalized cost */
    }   /* there are several too large elements (at least >= 2) */

    return maxNbBits;
}

typedef struct {
    U32 base;
    U32 curr;
} rankPos;

typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];

#define RANK_POSITION_TABLE_SIZE 32

typedef struct {
  huffNodeTable huffNodeTbl;
  rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
} HUF_buildCTable_wksp_tables;

/**
 * HUF_sort():
 * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
 *
 * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
 *                            Must have (maxSymbolValue + 1) entries.
 * @param[in]  count          Histogram of the symbols.
 * @param[in]  maxSymbolValue Maximum symbol value.
 * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
 */
static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition)
{
    int n;
    int const maxSymbolValue1 = (int)maxSymbolValue + 1;

    /* Compute base and set curr to base.
     * For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1.
     * Then 2^lowerRank <= count[n]+1 <= 2^rank.
     * We attribute each symbol to lowerRank's base value, because we want to know where
     * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
     */
    ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
    for (n = 0; n < maxSymbolValue1; ++n) {
        U32 lowerRank = BIT_highbit32(count[n] + 1);
        rankPosition[lowerRank].base++;
    }
    assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
    for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
        rankPosition[n-1].base += rankPosition[n].base;
        rankPosition[n-1].curr = rankPosition[n-1].base;
    }
    /* Sort */
    for (n = 0; n < maxSymbolValue1; ++n) {
        U32 const c = count[n];
        U32 const r = BIT_highbit32(c+1) + 1;
        U32 pos = rankPosition[r].curr++;
        /* Insert into the correct position in the rank.
         * We have at most 256 symbols, so this insertion should be fine.
         */
        while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
            huffNode[pos] = huffNode[pos-1];
            pos--;
        }
        huffNode[pos].count = c;
        huffNode[pos].byte  = (BYTE)n;
    }
}


/** HUF_buildCTable_wksp() :
 *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
 *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
 */
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)

/* HUF_buildTree():
 * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
 *
 * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array.
 * @param maxSymbolValue  The maximum symbol value.
 * @return                The smallest node in the Huffman tree (by count).
 */
static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
{
    nodeElt* const huffNode0 = huffNode - 1;
    int nonNullRank;
    int lowS, lowN;
    int nodeNb = STARTNODE;
    int n, nodeRoot;
    /* init for parents */
    nonNullRank = (int)maxSymbolValue;
    while(huffNode[nonNullRank].count == 0) nonNullRank--;
    lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
    huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
    huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
    nodeNb++; lowS-=2;
    for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
    huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */

    /* create parents */
    while (nodeNb <= nodeRoot) {
        int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
        int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
        huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
        huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
        nodeNb++;
    }

    /* distribute weights (unlimited tree height) */
    huffNode[nodeRoot].nbBits = 0;
    for (n=nodeRoot-1; n>=STARTNODE; n--)
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
    for (n=0; n<=nonNullRank; n++)
        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;

    return nonNullRank;
}

/**
 * HUF_buildCTableFromTree():
 * Build the CTable given the Huffman tree in huffNode.
 *
 * @param[out] CTable         The output Huffman CTable.
 * @param      huffNode       The Huffman tree.
 * @param      nonNullRank    The last and smallest node in the Huffman tree.
 * @param      maxSymbolValue The maximum symbol value.
 * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree.
 */
static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
{
    /* fill result into ctable (val, nbBits) */
    int n;
    U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
    U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
    int const alphabetSize = (int)(maxSymbolValue + 1);
    for (n=0; n<=nonNullRank; n++)
        nbPerRank[huffNode[n].nbBits]++;
    /* determine starting value per rank */
    {   U16 min = 0;
        for (n=(int)maxNbBits; n>0; n--) {
            valPerRank[n] = min;      /* get starting value within each rank */
            min += nbPerRank[n];
            min >>= 1;
    }   }
    for (n=0; n<alphabetSize; n++)
        CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits;   /* push nbBits per symbol, symbol order */
    for (n=0; n<alphabetSize; n++)
        CTable[n].val = valPerRank[CTable[n].nbBits]++;   /* assign value within rank, symbol order */
}

size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{
    HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace;
    nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
    nodeElt* const huffNode = huffNode0+1;
    int nonNullRank;

    /* safety checks */
    if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC);  /* must be aligned on 4-bytes boundaries */
    if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
      return ERROR(workSpace_tooSmall);
    if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
      return ERROR(maxSymbolValue_tooLarge);
    ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));

    /* sort, decreasing order */
    HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);

    /* build tree */
    nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);

    /* enforce maxTableLog */
    maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
    if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */

    HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits);

    return maxNbBits;
}

size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{
    size_t nbBits = 0;
    int s;
    for (s = 0; s <= (int)maxSymbolValue; ++s) {
        nbBits += CTable[s].nbBits * count[s];
    }
    return nbBits >> 3;
}

int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
  int bad = 0;
  int s;
  for (s = 0; s <= (int)maxSymbolValue; ++s) {
    bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
  }
  return !bad;
}

size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }

FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
{
    BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
}

#define HUF_FLUSHBITS(s)  BIT_flushBits(s)

#define HUF_FLUSHBITS_1(stream) \
    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)

#define HUF_FLUSHBITS_2(stream) \
    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)

FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
                                   const void* src, size_t srcSize,
                                   const HUF_CElt* CTable)
{
    const BYTE* ip = (const BYTE*) src;
    BYTE* const ostart = (BYTE*)dst;
    BYTE* const oend = ostart + dstSize;
    BYTE* op = ostart;
    size_t n;
    BIT_CStream_t bitC;

    /* init */
    if (dstSize < 8) return 0;   /* not enough space to compress */
    { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op));
      if (HUF_isError(initErr)) return 0; }

    n = srcSize & ~3;  /* join to mod 4 */
    switch (srcSize & 3)
    {
        case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
                 HUF_FLUSHBITS_2(&bitC);
		 /* fall-through */
        case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
                 HUF_FLUSHBITS_1(&bitC);
		 /* fall-through */
        case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
                 HUF_FLUSHBITS(&bitC);
		 /* fall-through */
        case 0 : /* fall-through */
        default: break;
    }

    for (; n>0; n-=4) {  /* note : n&3==0 at this stage */
        HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
        HUF_FLUSHBITS_1(&bitC);
        HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
        HUF_FLUSHBITS_2(&bitC);
        HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
        HUF_FLUSHBITS_1(&bitC);
        HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
        HUF_FLUSHBITS(&bitC);
    }

    return BIT_closeCStream(&bitC);
}

#if DYNAMIC_BMI2

static TARGET_ATTRIBUTE("bmi2") size_t
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
                                   const void* src, size_t srcSize,
                                   const HUF_CElt* CTable)
{
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}

static size_t
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
                                      const void* src, size_t srcSize,
                                      const HUF_CElt* CTable)
{
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}

static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
                              const void* src, size_t srcSize,
                              const HUF_CElt* CTable, const int bmi2)
{
    if (bmi2) {
        return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
    }
    return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
}

#else

static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
                              const void* src, size_t srcSize,
                              const HUF_CElt* CTable, const int bmi2)
{
    (void)bmi2;
    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}

#endif

size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
    return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}


static size_t
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
                              const void* src, size_t srcSize,
                              const HUF_CElt* CTable, int bmi2)
{
    size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
    const BYTE* ip = (const BYTE*) src;
    const BYTE* const iend = ip + srcSize;
    BYTE* const ostart = (BYTE*) dst;
    BYTE* const oend = ostart + dstSize;
    BYTE* op = ostart;

    if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
    if (srcSize < 12) return 0;   /* no saving possible : too small input */
    op += 6;   /* jumpTable */

    assert(op <= oend);
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
        if (cSize==0) return 0;
        assert(cSize <= 65535);
        MEM_writeLE16(ostart, (U16)cSize);
        op += cSize;
    }

    ip += segmentSize;
    assert(op <= oend);
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
        if (cSize==0) return 0;
        assert(cSize <= 65535);
        MEM_writeLE16(ostart+2, (U16)cSize);
        op += cSize;
    }

    ip += segmentSize;
    assert(op <= oend);
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
        if (cSize==0) return 0;
        assert(cSize <= 65535);
        MEM_writeLE16(ostart+4, (U16)cSize);
        op += cSize;
    }

    ip += segmentSize;
    assert(op <= oend);
    assert(ip <= iend);
    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
        if (cSize==0) return 0;
        op += cSize;
    }

    return (size_t)(op-ostart);
}

size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
    return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}

typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;

static size_t HUF_compressCTable_internal(
                BYTE* const ostart, BYTE* op, BYTE* const oend,
                const void* src, size_t srcSize,
                HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
{
    size_t const cSize = (nbStreams==HUF_singleStream) ?
                         HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
                         HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
    if (HUF_isError(cSize)) { return cSize; }
    if (cSize==0) { return 0; }   /* uncompressible */
    op += cSize;
    /* check compressibility */
    assert(op >= ostart);
    if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
    return (size_t)(op-ostart);
}

typedef struct {
    unsigned count[HUF_SYMBOLVALUE_MAX + 1];
    HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
    HUF_buildCTable_wksp_tables buildCTable_wksp;
} HUF_compress_tables_t;

/* HUF_compress_internal() :
 * `workSpace_align4` must be aligned on 4-bytes boundaries,
 * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U32 unsigned */
static size_t
HUF_compress_internal (void* dst, size_t dstSize,
                 const void* src, size_t srcSize,
                       unsigned maxSymbolValue, unsigned huffLog,
                       HUF_nbStreams_e nbStreams,
                       void* workSpace_align4, size_t wkspSize,
                       HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
                 const int bmi2)
{
    HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace_align4;
    BYTE* const ostart = (BYTE*)dst;
    BYTE* const oend = ostart + dstSize;
    BYTE* op = ostart;

    HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE);
    assert(((size_t)workSpace_align4 & 3) == 0);   /* must be aligned on 4-bytes boundaries */

    /* checks & inits */
    if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
    if (!srcSize) return 0;  /* Uncompressed */
    if (!dstSize) return 0;  /* cannot fit anything within dst budget */
    if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
    if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
    if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
    if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;

    /* Heuristic : If old table is valid, use it for small inputs */
    if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
        return HUF_compressCTable_internal(ostart, op, oend,
                                           src, srcSize,
                                           nbStreams, oldHufTable, bmi2);
    }

    /* Scan input and build symbol stats */
    {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace_align4, wkspSize) );
        if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
        if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
    }

    /* Check validity of previous table */
    if ( repeat
      && *repeat == HUF_repeat_check
      && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
        *repeat = HUF_repeat_none;
    }
    /* Heuristic : use existing table for small inputs */
    if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
        return HUF_compressCTable_internal(ostart, op, oend,
                                           src, srcSize,
                                           nbStreams, oldHufTable, bmi2);
    }

    /* Build Huffman Tree */
    huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
    {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
                                            maxSymbolValue, huffLog,
                                            &table->buildCTable_wksp, sizeof(table->buildCTable_wksp));
        CHECK_F(maxBits);
        huffLog = (U32)maxBits;
        /* Zero unused symbols in CTable, so we can check it for validity */
        ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0,
               sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
    }

    /* Write table description header */
    {   CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
        /* Check if using previous huffman table is beneficial */
        if (repeat && *repeat != HUF_repeat_none) {
            size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
            size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
            if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
                return HUF_compressCTable_internal(ostart, op, oend,
                                                   src, srcSize,
                                                   nbStreams, oldHufTable, bmi2);
        }   }

        /* Use the new huffman table */
        if (hSize + 12ul >= srcSize) { return 0; }
        op += hSize;
        if (repeat) { *repeat = HUF_repeat_none; }
        if (oldHufTable)
            ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
    }
    return HUF_compressCTable_internal(ostart, op, oend,
                                       src, srcSize,
                                       nbStreams, table->CTable, bmi2);
}


size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_singleStream,
                                 workSpace, wkspSize,
                                 NULL, NULL, 0, 0 /*bmi2*/);
}

size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize,
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_singleStream,
                                 workSpace, wkspSize, hufTable,
                                 repeat, preferRepeat, bmi2);
}

/* HUF_compress4X_repeat():
 * compress input using 4 streams.
 * provide workspace to generate compression tables */
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_fourStreams,
                                 workSpace, wkspSize,
                                 NULL, NULL, 0, 0 /*bmi2*/);
}

/* HUF_compress4X_repeat():
 * compress input using 4 streams.
 * re-use an existing huffman compression table */
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
                      const void* src, size_t srcSize,
                      unsigned maxSymbolValue, unsigned huffLog,
                      void* workSpace, size_t wkspSize,
                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
    return HUF_compress_internal(dst, dstSize, src, srcSize,
                                 maxSymbolValue, huffLog, HUF_fourStreams,
                                 workSpace, wkspSize,
                                 hufTable, repeat, preferRepeat, bmi2);
}

#ifndef ZSTD_NO_UNUSED_FUNCTIONS
/** HUF_buildCTable() :
 * @return : maxNbBits
 *  Note : count is used before tree is written, so they can safely overlap
 */
size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
{
    HUF_buildCTable_wksp_tables workspace;
    return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
}

size_t HUF_compress1X (void* dst, size_t dstSize,
                 const void* src, size_t srcSize,
                 unsigned maxSymbolValue, unsigned huffLog)
{
    unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
    return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}

size_t HUF_compress2 (void* dst, size_t dstSize,
                const void* src, size_t srcSize,
                unsigned maxSymbolValue, unsigned huffLog)
{
    unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
    return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}

size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
    return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
}
#endif