summaryrefslogtreecommitdiff
path: root/thirdparty/vhacd/inc/vhacdVolume.h
blob: c445f20122b731a853e211147fb10fb1beac3004 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/* Copyright (c) 2011 Khaled Mamou (kmamou at gmail dot com)
 All rights reserved.
 
 
 Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 
 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 
 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
 
 3. The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission.
 
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#pragma once
#ifndef VHACD_VOLUME_H
#define VHACD_VOLUME_H
#include "vhacdMesh.h"
#include "vhacdVector.h"
#include <assert.h>

#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4456 4701)
#endif

namespace VHACD {

enum VOXEL_VALUE {
    PRIMITIVE_UNDEFINED = 0,
    PRIMITIVE_OUTSIDE_SURFACE = 1,
    PRIMITIVE_INSIDE_SURFACE = 2,
    PRIMITIVE_ON_SURFACE = 3
};

struct Voxel {
public:
    short m_coord[3];
    short m_data;
};

class PrimitiveSet {
public:
    virtual ~PrimitiveSet(){};
    virtual PrimitiveSet* Create() const = 0;
    virtual const size_t GetNPrimitives() const = 0;
    virtual const size_t GetNPrimitivesOnSurf() const = 0;
    virtual const size_t GetNPrimitivesInsideSurf() const = 0;
    virtual const double GetEigenValue(AXIS axis) const = 0;
    virtual const double ComputeMaxVolumeError() const = 0;
    virtual const double ComputeVolume() const = 0;
    virtual void Clip(const Plane& plane, PrimitiveSet* const positivePart,
        PrimitiveSet* const negativePart) const = 0;
    virtual void Intersect(const Plane& plane, SArray<Vec3<double> >* const positivePts,
        SArray<Vec3<double> >* const negativePts, const size_t sampling) const = 0;
    virtual void ComputeExteriorPoints(const Plane& plane, const Mesh& mesh,
        SArray<Vec3<double> >* const exteriorPts) const = 0;
    virtual void ComputeClippedVolumes(const Plane& plane, double& positiveVolume,
        double& negativeVolume) const = 0;
    virtual void SelectOnSurface(PrimitiveSet* const onSurfP) const = 0;
    virtual void ComputeConvexHull(Mesh& meshCH, const size_t sampling = 1) const = 0;
    virtual void ComputeBB() = 0;
    virtual void ComputePrincipalAxes() = 0;
    virtual void AlignToPrincipalAxes() = 0;
    virtual void RevertAlignToPrincipalAxes() = 0;
    virtual void Convert(Mesh& mesh, const VOXEL_VALUE value) const = 0;
    const Mesh& GetConvexHull() const { return m_convexHull; };
    Mesh& GetConvexHull() { return m_convexHull; };
private:
    Mesh m_convexHull;
};

//!
class VoxelSet : public PrimitiveSet {
    friend class Volume;

public:
    //! Destructor.
    ~VoxelSet(void);
    //! Constructor.
    VoxelSet();

    const size_t GetNPrimitives() const { return m_voxels.Size(); }
    const size_t GetNPrimitivesOnSurf() const { return m_numVoxelsOnSurface; }
    const size_t GetNPrimitivesInsideSurf() const { return m_numVoxelsInsideSurface; }
    const double GetEigenValue(AXIS axis) const { return m_D[axis][axis]; }
    const double ComputeVolume() const { return m_unitVolume * m_voxels.Size(); }
    const double ComputeMaxVolumeError() const { return m_unitVolume * m_numVoxelsOnSurface; }
    const Vec3<short>& GetMinBBVoxels() const { return m_minBBVoxels; }
    const Vec3<short>& GetMaxBBVoxels() const { return m_maxBBVoxels; }
    const Vec3<double>& GetMinBB() const { return m_minBB; }
    const double& GetScale() const { return m_scale; }
    const double& GetUnitVolume() const { return m_unitVolume; }
    Vec3<double> GetPoint(Vec3<short> voxel) const
    {
        return Vec3<double>(voxel[0] * m_scale + m_minBB[0],
            voxel[1] * m_scale + m_minBB[1],
            voxel[2] * m_scale + m_minBB[2]);
    }
    Vec3<double> GetPoint(const Voxel& voxel) const
    {
        return Vec3<double>(voxel.m_coord[0] * m_scale + m_minBB[0],
            voxel.m_coord[1] * m_scale + m_minBB[1],
            voxel.m_coord[2] * m_scale + m_minBB[2]);
    }
    Vec3<double> GetPoint(Vec3<double> voxel) const
    {
        return Vec3<double>(voxel[0] * m_scale + m_minBB[0],
            voxel[1] * m_scale + m_minBB[1],
            voxel[2] * m_scale + m_minBB[2]);
    }
    void GetPoints(const Voxel& voxel, Vec3<double>* const pts) const;
    void ComputeConvexHull(Mesh& meshCH, const size_t sampling = 1) const;
    void Clip(const Plane& plane, PrimitiveSet* const positivePart, PrimitiveSet* const negativePart) const;
    void Intersect(const Plane& plane, SArray<Vec3<double> >* const positivePts,
        SArray<Vec3<double> >* const negativePts, const size_t sampling) const;
    void ComputeExteriorPoints(const Plane& plane, const Mesh& mesh,
        SArray<Vec3<double> >* const exteriorPts) const;
    void ComputeClippedVolumes(const Plane& plane, double& positiveVolume, double& negativeVolume) const;
    void SelectOnSurface(PrimitiveSet* const onSurfP) const;
    void ComputeBB();
    void Convert(Mesh& mesh, const VOXEL_VALUE value) const;
    void ComputePrincipalAxes();
    PrimitiveSet* Create() const
    {
        return new VoxelSet();
    }
    void AlignToPrincipalAxes(){};
    void RevertAlignToPrincipalAxes(){};
    Voxel* const GetVoxels() { return m_voxels.Data(); }
    const Voxel* const GetVoxels() const { return m_voxels.Data(); }

private:
    size_t m_numVoxelsOnSurface;
    size_t m_numVoxelsInsideSurface;
    Vec3<double> m_minBB;
    double m_scale;
    SArray<Voxel, 8> m_voxels;
    double m_unitVolume;
    Vec3<double> m_minBBPts;
    Vec3<double> m_maxBBPts;
    Vec3<short> m_minBBVoxels;
    Vec3<short> m_maxBBVoxels;
    Vec3<short> m_barycenter;
    double m_Q[3][3];
    double m_D[3][3];
    Vec3<double> m_barycenterPCA;
};

struct Tetrahedron {
public:
    Vec3<double> m_pts[4];
    unsigned char m_data;
};

//!
class TetrahedronSet : public PrimitiveSet {
    friend class Volume;

public:
    //! Destructor.
    ~TetrahedronSet(void);
    //! Constructor.
    TetrahedronSet();

    const size_t GetNPrimitives() const { return m_tetrahedra.Size(); }
    const size_t GetNPrimitivesOnSurf() const { return m_numTetrahedraOnSurface; }
    const size_t GetNPrimitivesInsideSurf() const { return m_numTetrahedraInsideSurface; }
    const Vec3<double>& GetMinBB() const { return m_minBB; }
    const Vec3<double>& GetMaxBB() const { return m_maxBB; }
    const Vec3<double>& GetBarycenter() const { return m_barycenter; }
    const double GetEigenValue(AXIS axis) const { return m_D[axis][axis]; }
    const double GetSacle() const { return m_scale; }
    const double ComputeVolume() const;
    const double ComputeMaxVolumeError() const;
    void ComputeConvexHull(Mesh& meshCH, const size_t sampling = 1) const;
    void ComputePrincipalAxes();
    void AlignToPrincipalAxes();
    void RevertAlignToPrincipalAxes();
    void Clip(const Plane& plane, PrimitiveSet* const positivePart, PrimitiveSet* const negativePart) const;
    void Intersect(const Plane& plane, SArray<Vec3<double> >* const positivePts,
        SArray<Vec3<double> >* const negativePts, const size_t sampling) const;
    void ComputeExteriorPoints(const Plane& plane, const Mesh& mesh,
        SArray<Vec3<double> >* const exteriorPts) const;
    void ComputeClippedVolumes(const Plane& plane, double& positiveVolume, double& negativeVolume) const;
    void SelectOnSurface(PrimitiveSet* const onSurfP) const;
    void ComputeBB();
    void Convert(Mesh& mesh, const VOXEL_VALUE value) const;
    inline bool Add(Tetrahedron& tetrahedron);
    PrimitiveSet* Create() const
    {
        return new TetrahedronSet();
    }
    static const double EPS;

private:
    void AddClippedTetrahedra(const Vec3<double> (&pts)[10], const int32_t nPts);

    size_t m_numTetrahedraOnSurface;
    size_t m_numTetrahedraInsideSurface;
    double m_scale;
    Vec3<double> m_minBB;
    Vec3<double> m_maxBB;
    Vec3<double> m_barycenter;
    SArray<Tetrahedron, 8> m_tetrahedra;
    double m_Q[3][3];
    double m_D[3][3];
};

//!
class Volume {
public:
    //! Destructor.
    ~Volume(void);

    //! Constructor.
    Volume();

    //! Voxelize
    template <class T>
    void Voxelize(const T* const points, const uint32_t stridePoints, const uint32_t nPoints,
        const int32_t* const triangles, const uint32_t strideTriangles, const uint32_t nTriangles,
        const size_t dim, const Vec3<double>& barycenter, const double (&rot)[3][3]);
    unsigned char& GetVoxel(const size_t i, const size_t j, const size_t k)
    {
        assert(i < m_dim[0] || i >= 0);
        assert(j < m_dim[0] || j >= 0);
        assert(k < m_dim[0] || k >= 0);
        return m_data[i + j * m_dim[0] + k * m_dim[0] * m_dim[1]];
    }
    const unsigned char& GetVoxel(const size_t i, const size_t j, const size_t k) const
    {
        assert(i < m_dim[0] || i >= 0);
        assert(j < m_dim[0] || j >= 0);
        assert(k < m_dim[0] || k >= 0);
        return m_data[i + j * m_dim[0] + k * m_dim[0] * m_dim[1]];
    }
    const size_t GetNPrimitivesOnSurf() const { return m_numVoxelsOnSurface; }
    const size_t GetNPrimitivesInsideSurf() const { return m_numVoxelsInsideSurface; }
    void Convert(Mesh& mesh, const VOXEL_VALUE value) const;
    void Convert(VoxelSet& vset) const;
    void Convert(TetrahedronSet& tset) const;
    void AlignToPrincipalAxes(double (&rot)[3][3]) const;

private:
    void FillOutsideSurface(const size_t i0, const size_t j0, const size_t k0, const size_t i1,
        const size_t j1, const size_t k1);
    void FillInsideSurface();
    template <class T>
    void ComputeBB(const T* const points, const uint32_t stridePoints, const uint32_t nPoints,
        const Vec3<double>& barycenter, const double (&rot)[3][3]);
    void Allocate();
    void Free();

    Vec3<double> m_minBB;
    Vec3<double> m_maxBB;
    double m_scale;
    size_t m_dim[3]; //>! dim
    size_t m_numVoxelsOnSurface;
    size_t m_numVoxelsInsideSurface;
    size_t m_numVoxelsOutsideSurface;
    unsigned char* m_data;
};
int32_t TriBoxOverlap(const Vec3<double>& boxcenter, const Vec3<double>& boxhalfsize, const Vec3<double>& triver0,
    const Vec3<double>& triver1, const Vec3<double>& triver2);
template <class T>
inline void ComputeAlignedPoint(const T* const points, const uint32_t idx, const Vec3<double>& barycenter,
    const double (&rot)[3][3], Vec3<double>& pt){};
template <>
inline void ComputeAlignedPoint<float>(const float* const points, const uint32_t idx, const Vec3<double>& barycenter, const double (&rot)[3][3], Vec3<double>& pt)
{
    double x = points[idx + 0] - barycenter[0];
    double y = points[idx + 1] - barycenter[1];
    double z = points[idx + 2] - barycenter[2];
    pt[0] = rot[0][0] * x + rot[1][0] * y + rot[2][0] * z;
    pt[1] = rot[0][1] * x + rot[1][1] * y + rot[2][1] * z;
    pt[2] = rot[0][2] * x + rot[1][2] * y + rot[2][2] * z;
}
template <>
inline void ComputeAlignedPoint<double>(const double* const points, const uint32_t idx, const Vec3<double>& barycenter, const double (&rot)[3][3], Vec3<double>& pt)
{
    double x = points[idx + 0] - barycenter[0];
    double y = points[idx + 1] - barycenter[1];
    double z = points[idx + 2] - barycenter[2];
    pt[0] = rot[0][0] * x + rot[1][0] * y + rot[2][0] * z;
    pt[1] = rot[0][1] * x + rot[1][1] * y + rot[2][1] * z;
    pt[2] = rot[0][2] * x + rot[1][2] * y + rot[2][2] * z;
}
template <class T>
void Volume::ComputeBB(const T* const points, const uint32_t stridePoints, const uint32_t nPoints,
    const Vec3<double>& barycenter, const double (&rot)[3][3])
{
    Vec3<double> pt;
    ComputeAlignedPoint(points, 0, barycenter, rot, pt);
    m_maxBB = pt;
    m_minBB = pt;
    for (uint32_t v = 1; v < nPoints; ++v) {
        ComputeAlignedPoint(points, v * stridePoints, barycenter, rot, pt);
        for (int32_t i = 0; i < 3; ++i) {
            if (pt[i] < m_minBB[i])
                m_minBB[i] = pt[i];
            else if (pt[i] > m_maxBB[i])
                m_maxBB[i] = pt[i];
        }
    }
}
template <class T>
void Volume::Voxelize(const T* const points, const uint32_t stridePoints, const uint32_t nPoints,
    const int32_t* const triangles, const uint32_t strideTriangles, const uint32_t nTriangles,
    const size_t dim, const Vec3<double>& barycenter, const double (&rot)[3][3])
{
    if (nPoints == 0) {
        return;
    }
    ComputeBB(points, stridePoints, nPoints, barycenter, rot);

    double d[3] = { m_maxBB[0] - m_minBB[0], m_maxBB[1] - m_minBB[1], m_maxBB[2] - m_minBB[2] };
    double r;
    if (d[0] >= d[1] && d[0] >= d[2]) {
        r = d[0];
        m_dim[0] = dim;
        m_dim[1] = 2 + static_cast<size_t>(dim * d[1] / d[0]);
        m_dim[2] = 2 + static_cast<size_t>(dim * d[2] / d[0]);
    }
    else if (d[1] >= d[0] && d[1] >= d[2]) {
        r = d[1];
        m_dim[1] = dim;
        m_dim[0] = 2 + static_cast<size_t>(dim * d[0] / d[1]);
        m_dim[2] = 2 + static_cast<size_t>(dim * d[2] / d[1]);
    }
    else {
        r = d[2];
        m_dim[2] = dim;
        m_dim[0] = 2 + static_cast<size_t>(dim * d[0] / d[2]);
        m_dim[1] = 2 + static_cast<size_t>(dim * d[1] / d[2]);
    }

    m_scale = r / (dim - 1);
    double invScale = (dim - 1) / r;

    Allocate();
    m_numVoxelsOnSurface = 0;
    m_numVoxelsInsideSurface = 0;
    m_numVoxelsOutsideSurface = 0;

    Vec3<double> p[3];
    size_t i, j, k;
    size_t i0, j0, k0;
    size_t i1, j1, k1;
    Vec3<double> boxcenter;
    Vec3<double> pt;
    const Vec3<double> boxhalfsize(0.5, 0.5, 0.5);
    for (size_t t = 0, ti = 0; t < nTriangles; ++t, ti += strideTriangles) {
        Vec3<int32_t> tri(triangles[ti + 0],
            triangles[ti + 1],
            triangles[ti + 2]);
        for (int32_t c = 0; c < 3; ++c) {
            ComputeAlignedPoint(points, tri[c] * stridePoints, barycenter, rot, pt);
            p[c][0] = (pt[0] - m_minBB[0]) * invScale;
            p[c][1] = (pt[1] - m_minBB[1]) * invScale;
            p[c][2] = (pt[2] - m_minBB[2]) * invScale;
            i = static_cast<size_t>(p[c][0] + 0.5);
            j = static_cast<size_t>(p[c][1] + 0.5);
            k = static_cast<size_t>(p[c][2] + 0.5);
            assert(i < m_dim[0] && i >= 0 && j < m_dim[1] && j >= 0 && k < m_dim[2] && k >= 0);

            if (c == 0) {
                i0 = i1 = i;
                j0 = j1 = j;
                k0 = k1 = k;
            }
            else {
                if (i < i0)
                    i0 = i;
                if (j < j0)
                    j0 = j;
                if (k < k0)
                    k0 = k;
                if (i > i1)
                    i1 = i;
                if (j > j1)
                    j1 = j;
                if (k > k1)
                    k1 = k;
            }
        }
        if (i0 > 0)
            --i0;
        if (j0 > 0)
            --j0;
        if (k0 > 0)
            --k0;
        if (i1 < m_dim[0])
            ++i1;
        if (j1 < m_dim[1])
            ++j1;
        if (k1 < m_dim[2])
            ++k1;
        for (size_t i = i0; i < i1; ++i) {
            boxcenter[0] = (double)i;
            for (size_t j = j0; j < j1; ++j) {
                boxcenter[1] = (double)j;
                for (size_t k = k0; k < k1; ++k) {
                    boxcenter[2] = (double)k;
                    int32_t res = TriBoxOverlap(boxcenter, boxhalfsize, p[0], p[1], p[2]);
                    unsigned char& value = GetVoxel(i, j, k);
                    if (res == 1 && value == PRIMITIVE_UNDEFINED) {
                        value = PRIMITIVE_ON_SURFACE;
                        ++m_numVoxelsOnSurface;
                    }
                }
            }
        }
    }
    FillOutsideSurface(0, 0, 0, m_dim[0], m_dim[1], 1);
    FillOutsideSurface(0, 0, m_dim[2] - 1, m_dim[0], m_dim[1], m_dim[2]);
    FillOutsideSurface(0, 0, 0, m_dim[0], 1, m_dim[2]);
    FillOutsideSurface(0, m_dim[1] - 1, 0, m_dim[0], m_dim[1], m_dim[2]);
    FillOutsideSurface(0, 0, 0, 1, m_dim[1], m_dim[2]);
    FillOutsideSurface(m_dim[0] - 1, 0, 0, m_dim[0], m_dim[1], m_dim[2]);
    FillInsideSurface();
}
}

#ifdef _MSC_VER
#pragma warning(pop)
#endif


#endif // VHACD_VOLUME_H