summaryrefslogtreecommitdiff
path: root/thirdparty/vhacd/inc/btAlignedObjectArray.h
blob: d82449e8fdac239bb5a2fb015923c7a04ee9e406 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#ifndef BT_OBJECT_ARRAY__
#define BT_OBJECT_ARRAY__

#include "btAlignedAllocator.h"
#include "btScalar.h" // has definitions like SIMD_FORCE_INLINE

///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW
///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors
///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator=
///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and
///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240

#define BT_USE_PLACEMENT_NEW 1
//#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise...
#define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful

#ifdef BT_USE_MEMCPY
#include <memory.h>
#include <string.h>
#endif //BT_USE_MEMCPY

#ifdef BT_USE_PLACEMENT_NEW
#include <new> //for placement new
#endif //BT_USE_PLACEMENT_NEW

//GODOT ADDITION
namespace VHACD {
//

///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods
///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
template <typename T>
//template <class T>
class btAlignedObjectArray {
	btAlignedAllocator<T, 16> m_allocator;

	int32_t m_size;
	int32_t m_capacity;
	T *m_data;
	//PCK: added this line
	bool m_ownsMemory;

#ifdef BT_ALLOW_ARRAY_COPY_OPERATOR
public:
	SIMD_FORCE_INLINE btAlignedObjectArray<T> &operator=(const btAlignedObjectArray<T> &other) {
		copyFromArray(other);
		return *this;
	}
#else //BT_ALLOW_ARRAY_COPY_OPERATOR
private:
	SIMD_FORCE_INLINE btAlignedObjectArray<T> &operator=(const btAlignedObjectArray<T> &other);
#endif //BT_ALLOW_ARRAY_COPY_OPERATOR

protected:
	SIMD_FORCE_INLINE int32_t allocSize(int32_t size) {
		return (size ? size * 2 : 1);
	}
	SIMD_FORCE_INLINE void copy(int32_t start, int32_t end, T *dest) const {
		int32_t i;
		for (i = start; i < end; ++i)
#ifdef BT_USE_PLACEMENT_NEW
			new (&dest[i]) T(m_data[i]);
#else
			dest[i] = m_data[i];
#endif //BT_USE_PLACEMENT_NEW
	}

	SIMD_FORCE_INLINE void init() {
		//PCK: added this line
		m_ownsMemory = true;
		m_data = 0;
		m_size = 0;
		m_capacity = 0;
	}
	SIMD_FORCE_INLINE void destroy(int32_t first, int32_t last) {
		int32_t i;
		for (i = first; i < last; i++) {
			m_data[i].~T();
		}
	}

	SIMD_FORCE_INLINE void *allocate(int32_t size) {
		if (size)
			return m_allocator.allocate(size);
		return 0;
	}

	SIMD_FORCE_INLINE void deallocate() {
		if (m_data) {
			//PCK: enclosed the deallocation in this block
			if (m_ownsMemory) {
				m_allocator.deallocate(m_data);
			}
			m_data = 0;
		}
	}

public:
	btAlignedObjectArray() {
		init();
	}

	~btAlignedObjectArray() {
		clear();
	}

	///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
	btAlignedObjectArray(const btAlignedObjectArray &otherArray) {
		init();

		int32_t otherSize = otherArray.size();
		resize(otherSize);
		otherArray.copy(0, otherSize, m_data);
	}

	/// return the number of elements in the array
	SIMD_FORCE_INLINE int32_t size() const {
		return m_size;
	}

	SIMD_FORCE_INLINE const T &at(int32_t n) const {
		btAssert(n >= 0);
		btAssert(n < size());
		return m_data[n];
	}

	SIMD_FORCE_INLINE T &at(int32_t n) {
		btAssert(n >= 0);
		btAssert(n < size());
		return m_data[n];
	}

	SIMD_FORCE_INLINE const T &operator[](int32_t n) const {
		btAssert(n >= 0);
		btAssert(n < size());
		return m_data[n];
	}

	SIMD_FORCE_INLINE T &operator[](int32_t n) {
		btAssert(n >= 0);
		btAssert(n < size());
		return m_data[n];
	}

	///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
	SIMD_FORCE_INLINE void clear() {
		destroy(0, size());

		deallocate();

		init();
	}

	SIMD_FORCE_INLINE void pop_back() {
		btAssert(m_size > 0);
		m_size--;
		m_data[m_size].~T();
	}

	///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
	///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
	SIMD_FORCE_INLINE void resize(int32_t newsize, const T &fillData = T()) {
		int32_t curSize = size();

		if (newsize < curSize) {
			for (int32_t i = newsize; i < curSize; i++) {
				m_data[i].~T();
			}
		} else {
			if (newsize > size()) {
				reserve(newsize);
			}
#ifdef BT_USE_PLACEMENT_NEW
			for (int32_t i = curSize; i < newsize; i++) {
				new (&m_data[i]) T(fillData);
			}
#endif //BT_USE_PLACEMENT_NEW
		}

		m_size = newsize;
	}

	SIMD_FORCE_INLINE T &expandNonInitializing() {
		int32_t sz = size();
		if (sz == capacity()) {
			reserve(allocSize(size()));
		}
		m_size++;

		return m_data[sz];
	}

	SIMD_FORCE_INLINE T &expand(const T &fillValue = T()) {
		int32_t sz = size();
		if (sz == capacity()) {
			reserve(allocSize(size()));
		}
		m_size++;
#ifdef BT_USE_PLACEMENT_NEW
		new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
#endif

		return m_data[sz];
	}

	SIMD_FORCE_INLINE void push_back(const T &_Val) {
		int32_t sz = size();
		if (sz == capacity()) {
			reserve(allocSize(size()));
		}

#ifdef BT_USE_PLACEMENT_NEW
		new (&m_data[m_size]) T(_Val);
#else
		m_data[size()] = _Val;
#endif //BT_USE_PLACEMENT_NEW

		m_size++;
	}

	/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
	SIMD_FORCE_INLINE int32_t capacity() const {
		return m_capacity;
	}

	SIMD_FORCE_INLINE void reserve(int32_t _Count) { // determine new minimum length of allocated storage
		if (capacity() < _Count) { // not enough room, reallocate
			T *s = (T *)allocate(_Count);

			copy(0, size(), s);

			destroy(0, size());

			deallocate();

			//PCK: added this line
			m_ownsMemory = true;

			m_data = s;

			m_capacity = _Count;
		}
	}

	class less {
	public:
		bool operator()(const T &a, const T &b) {
			return (a < b);
		}
	};

	template <typename L>
	void quickSortInternal(const L &CompareFunc, int32_t lo, int32_t hi) {
		//  lo is the lower index, hi is the upper index
		//  of the region of array a that is to be sorted
		int32_t i = lo, j = hi;
		T x = m_data[(lo + hi) / 2];

		//  partition
		do {
			while (CompareFunc(m_data[i], x))
				i++;
			while (CompareFunc(x, m_data[j]))
				j--;
			if (i <= j) {
				swap(i, j);
				i++;
				j--;
			}
		} while (i <= j);

		//  recursion
		if (lo < j)
			quickSortInternal(CompareFunc, lo, j);
		if (i < hi)
			quickSortInternal(CompareFunc, i, hi);
	}

	template <typename L>
	void quickSort(const L &CompareFunc) {
		//don't sort 0 or 1 elements
		if (size() > 1) {
			quickSortInternal(CompareFunc, 0, size() - 1);
		}
	}

	///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
	template <typename L>
	void downHeap(T *pArr, int32_t k, int32_t n, const L &CompareFunc) {
		/*  PRE: a[k+1..N] is a heap */
		/* POST:  a[k..N]  is a heap */

		T temp = pArr[k - 1];
		/* k has child(s) */
		while (k <= n / 2) {
			int32_t child = 2 * k;

			if ((child < n) && CompareFunc(pArr[child - 1], pArr[child])) {
				child++;
			}
			/* pick larger child */
			if (CompareFunc(temp, pArr[child - 1])) {
				/* move child up */
				pArr[k - 1] = pArr[child - 1];
				k = child;
			} else {
				break;
			}
		}
		pArr[k - 1] = temp;
	} /*downHeap*/

	void swap(int32_t index0, int32_t index1) {
#ifdef BT_USE_MEMCPY
		char temp[sizeof(T)];
		memcpy(temp, &m_data[index0], sizeof(T));
		memcpy(&m_data[index0], &m_data[index1], sizeof(T));
		memcpy(&m_data[index1], temp, sizeof(T));
#else
		T temp = m_data[index0];
		m_data[index0] = m_data[index1];
		m_data[index1] = temp;
#endif //BT_USE_PLACEMENT_NEW
	}

	template <typename L>
	void heapSort(const L &CompareFunc) {
		/* sort a[0..N-1],  N.B. 0 to N-1 */
		int32_t k;
		int32_t n = m_size;
		for (k = n / 2; k > 0; k--) {
			downHeap(m_data, k, n, CompareFunc);
		}

		/* a[1..N] is now a heap */
		while (n >= 1) {
			swap(0, n - 1); /* largest of a[0..n-1] */

			n = n - 1;
			/* restore a[1..i-1] heap */
			downHeap(m_data, 1, n, CompareFunc);
		}
	}

	///non-recursive binary search, assumes sorted array
	int32_t findBinarySearch(const T &key) const {
		int32_t first = 0;
		int32_t last = size() - 1;

		//assume sorted array
		while (first <= last) {
			int32_t mid = (first + last) / 2; // compute mid point.
			if (key > m_data[mid])
				first = mid + 1; // repeat search in top half.
			else if (key < m_data[mid])
				last = mid - 1; // repeat search in bottom half.
			else
				return mid; // found it. return position /////
		}
		return size(); // failed to find key
	}

	int32_t findLinearSearch(const T &key) const {
		int32_t index = size();
		int32_t i;

		for (i = 0; i < size(); i++) {
			if (m_data[i] == key) {
				index = i;
				break;
			}
		}
		return index;
	}

	void remove(const T &key) {

		int32_t findIndex = findLinearSearch(key);
		if (findIndex < size()) {
			swap(findIndex, size() - 1);
			pop_back();
		}
	}

	//PCK: whole function
	void initializeFromBuffer(void *buffer, int32_t size, int32_t capacity) {
		clear();
		m_ownsMemory = false;
		m_data = (T *)buffer;
		m_size = size;
		m_capacity = capacity;
	}

	void copyFromArray(const btAlignedObjectArray &otherArray) {
		int32_t otherSize = otherArray.size();
		resize(otherSize);
		otherArray.copy(0, otherSize, m_data);
	}
};

//GODOT ADDITION
}; // namespace VHACD
//

#endif //BT_OBJECT_ARRAY__