1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
|
/*
* Copyright (c) 2020-2021 Samsung Electronics Co., Ltd. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* Copyright notice for the EFL:
* Copyright (C) EFL developers (see AUTHORS)
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define _USE_MATH_DEFINES //Math Constants are not defined in Standard C/C++.
#include <math.h>
#include <clocale>
#include <ctype.h>
#include "tvgSvgLoaderCommon.h"
#include "tvgSvgPath.h"
#include "tvgSvgUtil.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
static char* _skipComma(const char* content)
{
while (*content && isspace(*content)) {
content++;
}
if (*content == ',') return (char*)content + 1;
return (char*)content;
}
static bool _parseNumber(char** content, float* number)
{
char* end = NULL;
*number = svgUtilStrtof(*content, &end);
//If the start of string is not number
if ((*content) == end) return false;
//Skip comma if any
*content = _skipComma(end);
return true;
}
static bool _parseFlag(char** content, int* number)
{
char* end = NULL;
if (*(*content) != '0' && *(*content) != '1') return false;
*number = *(*content) - '0';
*content += 1;
end = *content;
*content = _skipComma(end);
return true;
}
void _pathAppendArcTo(Array<PathCommand>* cmds, Array<Point>* pts, Point* cur, Point* curCtl, float x, float y, float rx, float ry, float angle, bool largeArc, bool sweep)
{
float cxp, cyp, cx, cy;
float sx, sy;
float cosPhi, sinPhi;
float dx2, dy2;
float x1p, y1p;
float x1p2, y1p2;
float rx2, ry2;
float lambda;
float c;
float at;
float theta1, deltaTheta;
float nat;
float delta, bcp;
float cosPhiRx, cosPhiRy;
float sinPhiRx, sinPhiRy;
float cosTheta1, sinTheta1;
int segments;
//Some helpful stuff is available here:
//http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
sx = cur->x;
sy = cur->y;
//If start and end points are identical, then no arc is drawn
if ((fabsf(x - sx) < (1.0f / 256.0f)) && (fabsf(y - sy) < (1.0f / 256.0f))) return;
//Correction of out-of-range radii, see F6.6.1 (step 2)
rx = fabsf(rx);
ry = fabsf(ry);
angle = angle * M_PI / 180.0f;
cosPhi = cosf(angle);
sinPhi = sinf(angle);
dx2 = (sx - x) / 2.0f;
dy2 = (sy - y) / 2.0f;
x1p = cosPhi * dx2 + sinPhi * dy2;
y1p = cosPhi * dy2 - sinPhi * dx2;
x1p2 = x1p * x1p;
y1p2 = y1p * y1p;
rx2 = rx * rx;
ry2 = ry * ry;
lambda = (x1p2 / rx2) + (y1p2 / ry2);
//Correction of out-of-range radii, see F6.6.2 (step 4)
if (lambda > 1.0f) {
//See F6.6.3
float lambdaRoot = sqrtf(lambda);
rx *= lambdaRoot;
ry *= lambdaRoot;
//Update rx2 and ry2
rx2 = rx * rx;
ry2 = ry * ry;
}
c = (rx2 * ry2) - (rx2 * y1p2) - (ry2 * x1p2);
//Check if there is no possible solution
//(i.e. we can't do a square root of a negative value)
if (c < 0.0f) {
//Scale uniformly until we have a single solution
//(see F6.2) i.e. when c == 0.0
float scale = sqrtf(1.0f - c / (rx2 * ry2));
rx *= scale;
ry *= scale;
//Update rx2 and ry2
rx2 = rx * rx;
ry2 = ry * ry;
//Step 2 (F6.5.2) - simplified since c == 0.0
cxp = 0.0f;
cyp = 0.0f;
//Step 3 (F6.5.3 first part) - simplified since cxp and cyp == 0.0
cx = 0.0f;
cy = 0.0f;
} else {
//Complete c calculation
c = sqrtf(c / ((rx2 * y1p2) + (ry2 * x1p2)));
//Inverse sign if Fa == Fs
if (largeArc == sweep) c = -c;
//Step 2 (F6.5.2)
cxp = c * (rx * y1p / ry);
cyp = c * (-ry * x1p / rx);
//Step 3 (F6.5.3 first part)
cx = cosPhi * cxp - sinPhi * cyp;
cy = sinPhi * cxp + cosPhi * cyp;
}
//Step 3 (F6.5.3 second part) we now have the center point of the ellipse
cx += (sx + x) / 2.0f;
cy += (sy + y) / 2.0f;
//Sstep 4 (F6.5.4)
//We dont' use arccos (as per w3c doc), see
//http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm
//Note: atan2 (0.0, 1.0) == 0.0
at = atan2(((y1p - cyp) / ry), ((x1p - cxp) / rx));
theta1 = (at < 0.0f) ? 2.0f * M_PI + at : at;
nat = atan2(((-y1p - cyp) / ry), ((-x1p - cxp) / rx));
deltaTheta = (nat < at) ? 2.0f * M_PI - at + nat : nat - at;
if (sweep) {
//Ensure delta theta < 0 or else add 360 degrees
if (deltaTheta < 0.0f) deltaTheta += (float)(2.0f * M_PI);
} else {
//Ensure delta theta > 0 or else substract 360 degrees
if (deltaTheta > 0.0f) deltaTheta -= (float)(2.0f * M_PI);
}
//Add several cubic bezier to approximate the arc
//(smaller than 90 degrees)
//We add one extra segment because we want something
//Smaller than 90deg (i.e. not 90 itself)
segments = static_cast<int>(fabsf(deltaTheta / float(M_PI_2)) + 1.0f);
delta = deltaTheta / segments;
//http://www.stillhq.com/ctpfaq/2001/comp.text.pdf-faq-2001-04.txt (section 2.13)
bcp = 4.0f / 3.0f * (1.0f - cosf(delta / 2.0f)) / sinf(delta / 2.0f);
cosPhiRx = cosPhi * rx;
cosPhiRy = cosPhi * ry;
sinPhiRx = sinPhi * rx;
sinPhiRy = sinPhi * ry;
cosTheta1 = cosf(theta1);
sinTheta1 = sinf(theta1);
for (int i = 0; i < segments; ++i) {
//End angle (for this segment) = current + delta
float c1x, c1y, ex, ey, c2x, c2y;
float theta2 = theta1 + delta;
float cosTheta2 = cosf(theta2);
float sinTheta2 = sinf(theta2);
Point p[3];
//First control point (based on start point sx,sy)
c1x = sx - bcp * (cosPhiRx * sinTheta1 + sinPhiRy * cosTheta1);
c1y = sy + bcp * (cosPhiRy * cosTheta1 - sinPhiRx * sinTheta1);
//End point (for this segment)
ex = cx + (cosPhiRx * cosTheta2 - sinPhiRy * sinTheta2);
ey = cy + (sinPhiRx * cosTheta2 + cosPhiRy * sinTheta2);
//Second control point (based on end point ex,ey)
c2x = ex + bcp * (cosPhiRx * sinTheta2 + sinPhiRy * cosTheta2);
c2y = ey + bcp * (sinPhiRx * sinTheta2 - cosPhiRy * cosTheta2);
cmds->push(PathCommand::CubicTo);
p[0] = {c1x, c1y};
p[1] = {c2x, c2y};
p[2] = {ex, ey};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = p[1];
*cur = p[2];
//Next start point is the current end point (same for angle)
sx = ex;
sy = ey;
theta1 = theta2;
//Avoid recomputations
cosTheta1 = cosTheta2;
sinTheta1 = sinTheta2;
}
}
static int _numberCount(char cmd)
{
int count = 0;
switch (cmd) {
case 'M':
case 'm':
case 'L':
case 'l':
case 'T':
case 't': {
count = 2;
break;
}
case 'C':
case 'c':
case 'E':
case 'e': {
count = 6;
break;
}
case 'H':
case 'h':
case 'V':
case 'v': {
count = 1;
break;
}
case 'S':
case 's':
case 'Q':
case 'q': {
count = 4;
break;
}
case 'A':
case 'a': {
count = 7;
break;
}
default:
break;
}
return count;
}
static bool _processCommand(Array<PathCommand>* cmds, Array<Point>* pts, char cmd, float* arr, int count, Point* cur, Point* curCtl, Point* startPoint, bool *isQuadratic)
{
switch (cmd) {
case 'm':
case 'l':
case 'c':
case 's':
case 'q':
case 't': {
for (int i = 0; i < count - 1; i += 2) {
arr[i] = arr[i] + cur->x;
arr[i + 1] = arr[i + 1] + cur->y;
}
break;
}
case 'h': {
arr[0] = arr[0] + cur->x;
break;
}
case 'v': {
arr[0] = arr[0] + cur->y;
break;
}
case 'a': {
arr[5] = arr[5] + cur->x;
arr[6] = arr[6] + cur->y;
break;
}
default: {
break;
}
}
switch (cmd) {
case 'm':
case 'M': {
Point p = {arr[0], arr[1]};
cmds->push(PathCommand::MoveTo);
pts->push(p);
*cur = {arr[0], arr[1]};
*startPoint = {arr[0], arr[1]};
break;
}
case 'l':
case 'L': {
Point p = {arr[0], arr[1]};
cmds->push(PathCommand::LineTo);
pts->push(p);
*cur = {arr[0], arr[1]};
break;
}
case 'c':
case 'C': {
Point p[3];
cmds->push(PathCommand::CubicTo);
p[0] = {arr[0], arr[1]};
p[1] = {arr[2], arr[3]};
p[2] = {arr[4], arr[5]};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = p[1];
*cur = p[2];
*isQuadratic = false;
break;
}
case 's':
case 'S': {
Point p[3], ctrl;
if ((cmds->count > 1) && (cmds->data[cmds->count - 1] == PathCommand::CubicTo) &&
!(*isQuadratic)) {
ctrl.x = 2 * cur->x - curCtl->x;
ctrl.y = 2 * cur->y - curCtl->y;
} else {
ctrl = *cur;
}
cmds->push(PathCommand::CubicTo);
p[0] = ctrl;
p[1] = {arr[0], arr[1]};
p[2] = {arr[2], arr[3]};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = p[1];
*cur = p[2];
*isQuadratic = false;
break;
}
case 'q':
case 'Q': {
Point p[3];
float ctrl_x0 = (cur->x + 2 * arr[0]) * (1.0 / 3.0);
float ctrl_y0 = (cur->y + 2 * arr[1]) * (1.0 / 3.0);
float ctrl_x1 = (arr[2] + 2 * arr[0]) * (1.0 / 3.0);
float ctrl_y1 = (arr[3] + 2 * arr[1]) * (1.0 / 3.0);
cmds->push(PathCommand::CubicTo);
p[0] = {ctrl_x0, ctrl_y0};
p[1] = {ctrl_x1, ctrl_y1};
p[2] = {arr[2], arr[3]};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = {arr[0], arr[1]};
*cur = p[2];
*isQuadratic = true;
break;
}
case 't':
case 'T': {
Point p[3], ctrl;
if ((cmds->count > 1) && (cmds->data[cmds->count - 1] == PathCommand::CubicTo) &&
*isQuadratic) {
ctrl.x = 2 * cur->x - curCtl->x;
ctrl.y = 2 * cur->y - curCtl->y;
} else {
ctrl = *cur;
}
float ctrl_x0 = (cur->x + 2 * ctrl.x) * (1.0 / 3.0);
float ctrl_y0 = (cur->y + 2 * ctrl.y) * (1.0 / 3.0);
float ctrl_x1 = (arr[0] + 2 * ctrl.x) * (1.0 / 3.0);
float ctrl_y1 = (arr[1] + 2 * ctrl.y) * (1.0 / 3.0);
cmds->push(PathCommand::CubicTo);
p[0] = {ctrl_x0, ctrl_y0};
p[1] = {ctrl_x1, ctrl_y1};
p[2] = {arr[0], arr[1]};
pts->push(p[0]);
pts->push(p[1]);
pts->push(p[2]);
*curCtl = {ctrl.x, ctrl.y};
*cur = p[2];
*isQuadratic = true;
break;
}
case 'h':
case 'H': {
Point p = {arr[0], cur->y};
cmds->push(PathCommand::LineTo);
pts->push(p);
cur->x = arr[0];
break;
}
case 'v':
case 'V': {
Point p = {cur->x, arr[0]};
cmds->push(PathCommand::LineTo);
pts->push(p);
cur->y = arr[0];
break;
}
case 'z':
case 'Z': {
cmds->push(PathCommand::Close);
*cur = *startPoint;
break;
}
case 'a':
case 'A': {
_pathAppendArcTo(cmds, pts, cur, curCtl, arr[5], arr[6], arr[0], arr[1], arr[2], arr[3], arr[4]);
*cur = *curCtl = {arr[5], arr[6]};
*isQuadratic = false;
break;
}
default: {
return false;
}
}
return true;
}
static char* _nextCommand(char* path, char* cmd, float* arr, int* count)
{
int large, sweep;
path = _skipComma(path);
if (isalpha(*path)) {
*cmd = *path;
path++;
*count = _numberCount(*cmd);
} else {
if (*cmd == 'm') *cmd = 'l';
else if (*cmd == 'M') *cmd = 'L';
}
if (*count == 7) {
//Special case for arc command
if (_parseNumber(&path, &arr[0])) {
if (_parseNumber(&path, &arr[1])) {
if (_parseNumber(&path, &arr[2])) {
if (_parseFlag(&path, &large)) {
if (_parseFlag(&path, &sweep)) {
if (_parseNumber(&path, &arr[5])) {
if (_parseNumber(&path, &arr[6])) {
arr[3] = (float)large;
arr[4] = (float)sweep;
return path;
}
}
}
}
}
}
}
*count = 0;
return NULL;
}
for (int i = 0; i < *count; i++) {
if (!_parseNumber(&path, &arr[i])) {
*count = 0;
return NULL;
}
path = _skipComma(path);
}
return path;
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
bool svgPathToTvgPath(const char* svgPath, Array<PathCommand>& cmds, Array<Point>& pts)
{
float numberArray[7];
int numberCount = 0;
Point cur = { 0, 0 };
Point curCtl = { 0, 0 };
Point startPoint = { 0, 0 };
char cmd = 0;
bool isQuadratic = false;
char* path = (char*)svgPath;
char* curLocale;
curLocale = setlocale(LC_NUMERIC, NULL);
if (curLocale) curLocale = strdup(curLocale);
setlocale(LC_NUMERIC, "POSIX");
while ((path[0] != '\0')) {
path = _nextCommand(path, &cmd, numberArray, &numberCount);
if (!path) break;
if (!_processCommand(&cmds, &pts, cmd, numberArray, numberCount, &cur, &curCtl, &startPoint, &isQuadratic)) break;
}
setlocale(LC_NUMERIC, curLocale);
if (curLocale) free(curLocale);
return true;
}
|