summaryrefslogtreecommitdiff
path: root/thirdparty/thorvg/src/loaders/jpg/tvgJpgd.cpp
blob: 6ea2efb0545a6cc2d6a9a4139b2de704e40ec415 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
/*
 * Copyright (c) 2021 - 2023 the ThorVG project. All rights reserved.

 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:

 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.

 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

// jpgd.cpp - C++ class for JPEG decompression.
// Public domain, Rich Geldreich <richgel99@gmail.com>
// Alex Evans: Linear memory allocator (taken from jpge.h).
// v1.04, May. 19, 2012: Code tweaks to fix VS2008 static code analysis warnings (all looked harmless)
//
// Supports progressive and baseline sequential JPEG image files, and the most common chroma subsampling factors: Y, H1V1, H2V1, H1V2, and H2V2.
//
// Chroma upsampling quality: H2V2 is upsampled in the frequency domain, H2V1 and H1V2 are upsampled using point sampling.
// Chroma upsampling reference: "Fast Scheme for Image Size Change in the Compressed Domain"
// http://vision.ai.uiuc.edu/~dugad/research/dct/index.html

#include <memory.h>
#include <stdlib.h>
#include <stdio.h>
#include <setjmp.h>
#include <stdint.h>
#include "tvgJpgd.h"

#ifdef _MSC_VER
  #pragma warning (disable : 4611) // warning C4611: interaction between '_setjmp' and C++ object destruction is non-portable
  #define JPGD_NORETURN __declspec(noreturn)
#elif defined(__GNUC__)
  #define JPGD_NORETURN __attribute__ ((noreturn))
#else
  #define JPGD_NORETURN
#endif

/************************************************************************/
/* Internal Class Implementation                                        */
/************************************************************************/


// Set to 1 to enable freq. domain chroma upsampling on images using H2V2 subsampling (0=faster nearest neighbor sampling).
// This is slower, but results in higher quality on images with highly saturated colors.
#define JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING 1

#define JPGD_ASSERT(x)
#define JPGD_MAX(a,b) (((a)>(b)) ? (a) : (b))
#define JPGD_MIN(a,b) (((a)<(b)) ? (a) : (b))

typedef int16_t jpgd_quant_t;
typedef int16_t jpgd_block_t;

// Success/failure error codes.
enum jpgd_status
{
    JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1,
    JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE,
    JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS,
    JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH,
    JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER,
    JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS,
    JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE,
    JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER, JPGD_ASSERTION_ERROR,
    JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM
};

enum
{
    JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4,
    JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 8192, JPGD_MAX_HEIGHT = 16384, JPGD_MAX_WIDTH = 16384
};

// Input stream interface.
// Derive from this class to read input data from sources other than files or memory. Set m_eof_flag to true when no more data is available.
// The decoder is rather greedy: it will keep on calling this method until its internal input buffer is full, or until the EOF flag is set.
// It the input stream contains data after the JPEG stream's EOI (end of image) marker it will probably be pulled into the internal buffer.
// Call the get_total_bytes_read() method to determine the actual size of the JPEG stream after successful decoding.
struct jpeg_decoder_stream
{
    jpeg_decoder_stream() { }
    virtual ~jpeg_decoder_stream() { }

    // The read() method is called when the internal input buffer is empty.
    // Parameters:
    // pBuf - input buffer
    // max_bytes_to_read - maximum bytes that can be written to pBuf
    // pEOF_flag - set this to true if at end of stream (no more bytes remaining)
    // Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0).
    // Notes: This method will be called in a loop until you set *pEOF_flag to true or the internal buffer is full.
    virtual int read(uint8_t *pBuf, int max_bytes_to_read, bool *pEOF_flag) = 0;
};


// stdio FILE stream class.
class jpeg_decoder_file_stream : public jpeg_decoder_stream
{
    jpeg_decoder_file_stream(const jpeg_decoder_file_stream &);
    jpeg_decoder_file_stream &operator =(const jpeg_decoder_file_stream &);

    FILE *m_pFile = nullptr;
    bool m_eof_flag = false;
    bool m_error_flag = false;

public:
    jpeg_decoder_file_stream() {}
    virtual ~jpeg_decoder_file_stream();
    bool open(const char *Pfilename);
    void close();
    virtual int read(uint8_t *pBuf, int max_bytes_to_read, bool *pEOF_flag);
  };


// Memory stream class.
class jpeg_decoder_mem_stream : public jpeg_decoder_stream
{
    const uint8_t *m_pSrc_data;
    uint32_t m_ofs, m_size;

public:
    jpeg_decoder_mem_stream() : m_pSrc_data(nullptr), m_ofs(0), m_size(0) {}
    jpeg_decoder_mem_stream(const uint8_t *pSrc_data, uint32_t size) : m_pSrc_data(pSrc_data), m_ofs(0), m_size(size) {}
    virtual ~jpeg_decoder_mem_stream() {}
    bool open(const uint8_t *pSrc_data, uint32_t size);
    void close() { m_pSrc_data = nullptr; m_ofs = 0; m_size = 0; }
    virtual int read(uint8_t *pBuf, int max_bytes_to_read, bool *pEOF_flag);
};


class jpeg_decoder
{
public:
    // Call get_error_code() after constructing to determine if the stream is valid or not. You may call the get_width(), get_height(), etc.
    // methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline.
    jpeg_decoder(jpeg_decoder_stream *pStream);
    ~jpeg_decoder();

    // Call this method after constructing the object to begin decompression.
    // If JPGD_SUCCESS is returned you may then call decode() on each scanline.
    int begin_decoding();
    // Returns the next scan line.
    // For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (get_bytes_per_pixel() will return 1).
    // Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and get_bytes_per_pixel() will return 4).
    // Returns JPGD_SUCCESS if a scan line has been returned.
    // Returns JPGD_DONE if all scan lines have been returned.
    // Returns JPGD_FAILED if an error occurred. Call get_error_code() for a more info.
    int decode(const void** pScan_line, uint32_t* pScan_line_len);
    inline jpgd_status get_error_code() const { return m_error_code; }
    inline int get_width() const { return m_image_x_size; }
    inline int get_height() const { return m_image_y_size; }
    inline int get_num_components() const { return m_comps_in_frame; }
    inline int get_bytes_per_pixel() const { return m_dest_bytes_per_pixel; }
    inline int get_bytes_per_scan_line() const { return m_image_x_size * get_bytes_per_pixel(); }
    // Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file).
    inline int get_total_bytes_read() const { return m_total_bytes_read; }

private:
    jpeg_decoder(const jpeg_decoder &);
    jpeg_decoder &operator =(const jpeg_decoder &);

    typedef void (*pDecode_block_func)(jpeg_decoder *, int, int, int);

    struct huff_tables
    {
      bool ac_table;
      uint32_t  look_up[256];
      uint32_t  look_up2[256];
      uint8_t code_size[256];
      uint32_t  tree[512];
    };

    struct coeff_buf
    {
      uint8_t *pData;
      int block_num_x, block_num_y;
      int block_len_x, block_len_y;
      int block_size;
    };

    struct mem_block
    {
      mem_block *m_pNext;
      size_t m_used_count;
      size_t m_size;
      char m_data[1];
    };

    jmp_buf m_jmp_state;
    mem_block *m_pMem_blocks;
    int m_image_x_size;
    int m_image_y_size;
    jpeg_decoder_stream *m_pStream;
    int m_progressive_flag;
    uint8_t m_huff_ac[JPGD_MAX_HUFF_TABLES];
    uint8_t* m_huff_num[JPGD_MAX_HUFF_TABLES];      // pointer to number of Huffman codes per bit size
    uint8_t* m_huff_val[JPGD_MAX_HUFF_TABLES];      // pointer to Huffman codes per bit size
    jpgd_quant_t* m_quant[JPGD_MAX_QUANT_TABLES]; // pointer to quantization tables
    int m_scan_type;                              // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported)
    int m_comps_in_frame;                         // # of components in frame
    int m_comp_h_samp[JPGD_MAX_COMPONENTS];       // component's horizontal sampling factor
    int m_comp_v_samp[JPGD_MAX_COMPONENTS];       // component's vertical sampling factor
    int m_comp_quant[JPGD_MAX_COMPONENTS];        // component's quantization table selector
    int m_comp_ident[JPGD_MAX_COMPONENTS];        // component's ID
    int m_comp_h_blocks[JPGD_MAX_COMPONENTS];
    int m_comp_v_blocks[JPGD_MAX_COMPONENTS];
    int m_comps_in_scan;                          // # of components in scan
    int m_comp_list[JPGD_MAX_COMPS_IN_SCAN];      // components in this scan
    int m_comp_dc_tab[JPGD_MAX_COMPONENTS];       // component's DC Huffman coding table selector
    int m_comp_ac_tab[JPGD_MAX_COMPONENTS];       // component's AC Huffman coding table selector
    int m_spectral_start;                         // spectral selection start
    int m_spectral_end;                           // spectral selection end
    int m_successive_low;                         // successive approximation low
    int m_successive_high;                        // successive approximation high
    int m_max_mcu_x_size;                         // MCU's max. X size in pixels
    int m_max_mcu_y_size;                         // MCU's max. Y size in pixels
    int m_blocks_per_mcu;
    int m_max_blocks_per_row;
    int m_mcus_per_row, m_mcus_per_col;
    int m_mcu_org[JPGD_MAX_BLOCKS_PER_MCU];
    int m_total_lines_left;                       // total # lines left in image
    int m_mcu_lines_left;                         // total # lines left in this MCU
    int m_real_dest_bytes_per_scan_line;
    int m_dest_bytes_per_scan_line;               // rounded up
    int m_dest_bytes_per_pixel;                   // 4 (RGB) or 1 (Y)
    huff_tables* m_pHuff_tabs[JPGD_MAX_HUFF_TABLES];
    coeff_buf* m_dc_coeffs[JPGD_MAX_COMPONENTS];
    coeff_buf* m_ac_coeffs[JPGD_MAX_COMPONENTS];
    int m_eob_run;
    int m_block_y_mcu[JPGD_MAX_COMPONENTS];
    uint8_t* m_pIn_buf_ofs;
    int m_in_buf_left;
    int m_tem_flag;
    bool m_eof_flag;
    uint8_t m_in_buf_pad_start[128];
    uint8_t m_in_buf[JPGD_IN_BUF_SIZE + 128];
    uint8_t m_in_buf_pad_end[128];
    int m_bits_left;
    uint32_t m_bit_buf;
    int m_restart_interval;
    int m_restarts_left;
    int m_next_restart_num;
    int m_max_mcus_per_row;
    int m_max_blocks_per_mcu;
    int m_expanded_blocks_per_mcu;
    int m_expanded_blocks_per_row;
    int m_expanded_blocks_per_component;
    bool  m_freq_domain_chroma_upsample;
    int m_max_mcus_per_col;
    uint32_t m_last_dc_val[JPGD_MAX_COMPONENTS];
    jpgd_block_t* m_pMCU_coefficients;
    int m_mcu_block_max_zag[JPGD_MAX_BLOCKS_PER_MCU];
    uint8_t* m_pSample_buf;
    int m_crr[256];
    int m_cbb[256];
    int m_crg[256];
    int m_cbg[256];
    uint8_t* m_pScan_line_0;
    uint8_t* m_pScan_line_1;
    jpgd_status m_error_code;
    bool m_ready_flag;
    int m_total_bytes_read;

    void free_all_blocks();
    JPGD_NORETURN void stop_decoding(jpgd_status status);
    void *alloc(size_t n, bool zero = false);
    void word_clear(void *p, uint16_t c, uint32_t n);
    void prep_in_buffer();
    void read_dht_marker();
    void read_dqt_marker();
    void read_sof_marker();
    void skip_variable_marker();
    void read_dri_marker();
    void read_sos_marker();
    int next_marker();
    int process_markers();
    void locate_soi_marker();
    void locate_sof_marker();
    int locate_sos_marker();
    void init(jpeg_decoder_stream * pStream);
    void create_look_ups();
    void fix_in_buffer();
    void transform_mcu(int mcu_row);
    void transform_mcu_expand(int mcu_row);
    coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y);
    inline jpgd_block_t *coeff_buf_getp(coeff_buf *cb, int block_x, int block_y);
    void load_next_row();
    void decode_next_row();
    void make_huff_table(int index, huff_tables *pH);
    void check_quant_tables();
    void check_huff_tables();
    void calc_mcu_block_order();
    int init_scan();
    void init_frame();
    void process_restart();
    void decode_scan(pDecode_block_func decode_block_func);
    void init_progressive();
    void init_sequential();
    void decode_start();
    void decode_init(jpeg_decoder_stream * pStream);
    void H2V2Convert();
    void H2V1Convert();
    void H1V2Convert();
    void H1V1Convert();
    void gray_convert();
    void expanded_convert();
    void find_eoi();
    inline uint32_t get_char();
    inline uint32_t get_char(bool *pPadding_flag);
    inline void stuff_char(uint8_t q);
    inline uint8_t get_octet();
    inline uint32_t get_bits(int num_bits);
    inline uint32_t get_bits_no_markers(int numbits);
    inline int huff_decode(huff_tables *pH);
    inline int huff_decode(huff_tables *pH, int& extrabits);
    static inline uint8_t clamp(int i);
    static void decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
    static void decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
    static void decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
    static void decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
};


// DCT coefficients are stored in this sequence.
static int g_ZAG[64] = {  0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 };

enum JPEG_MARKER
{
  M_SOF0  = 0xC0, M_SOF1  = 0xC1, M_SOF2  = 0xC2, M_SOF3  = 0xC3, M_SOF5  = 0xC5, M_SOF6  = 0xC6, M_SOF7  = 0xC7, M_JPG   = 0xC8,
  M_SOF9  = 0xC9, M_SOF10 = 0xCA, M_SOF11 = 0xCB, M_SOF13 = 0xCD, M_SOF14 = 0xCE, M_SOF15 = 0xCF, M_DHT   = 0xC4, M_DAC   = 0xCC,
  M_RST0  = 0xD0, M_RST1  = 0xD1, M_RST2  = 0xD2, M_RST3  = 0xD3, M_RST4  = 0xD4, M_RST5  = 0xD5, M_RST6  = 0xD6, M_RST7  = 0xD7,
  M_SOI   = 0xD8, M_EOI   = 0xD9, M_SOS   = 0xDA, M_DQT   = 0xDB, M_DNL   = 0xDC, M_DRI   = 0xDD, M_DHP   = 0xDE, M_EXP   = 0xDF,
  M_APP0  = 0xE0, M_APP15 = 0xEF, M_JPG0  = 0xF0, M_JPG13 = 0xFD, M_COM   = 0xFE, M_TEM   = 0x01, M_ERROR = 0x100, RST0   = 0xD0
};

enum JPEG_SUBSAMPLING { JPGD_GRAYSCALE = 0, JPGD_YH1V1, JPGD_YH2V1, JPGD_YH1V2, JPGD_YH2V2 };

#define CONST_BITS  13
#define PASS1_BITS  2
#define SCALEDONE ((int32_t)1)
#define DESCALE(x,n)  (((x) + (SCALEDONE << ((n)-1))) >> (n))
#define DESCALE_ZEROSHIFT(x,n)  (((x) + (128 << (n)) + (SCALEDONE << ((n)-1))) >> (n))
#define MULTIPLY(var, cnst)  ((var) * (cnst))
#define CLAMP(i) ((static_cast<uint32_t>(i) > 255) ? (((~i) >> 31) & 0xFF) : (i))

#define FIX_0_298631336  ((int32_t)2446)        /* FIX(0.298631336) */
#define FIX_0_390180644  ((int32_t)3196)        /* FIX(0.390180644) */
#define FIX_0_541196100  ((int32_t)4433)        /* FIX(0.541196100) */
#define FIX_0_765366865  ((int32_t)6270)        /* FIX(0.765366865) */
#define FIX_0_899976223  ((int32_t)7373)        /* FIX(0.899976223) */
#define FIX_1_175875602  ((int32_t)9633)        /* FIX(1.175875602) */
#define FIX_1_501321110  ((int32_t)12299)       /* FIX(1.501321110) */
#define FIX_1_847759065  ((int32_t)15137)       /* FIX(1.847759065) */
#define FIX_1_961570560  ((int32_t)16069)       /* FIX(1.961570560) */
#define FIX_2_053119869  ((int32_t)16819)       /* FIX(2.053119869) */
#define FIX_2_562915447  ((int32_t)20995)       /* FIX(2.562915447) */
#define FIX_3_072711026  ((int32_t)25172)       /* FIX(3.072711026) */


// Compiler creates a fast path 1D IDCT for X non-zero columns
template <int NONZERO_COLS>
struct Row
{
    static void idct(int* pTemp, const jpgd_block_t* pSrc)
    {
        // ACCESS_COL() will be optimized at compile time to either an array access, or 0.
        #define ACCESS_COL(x) (((x) < NONZERO_COLS) ? (int)pSrc[x] : 0)

        const int z2 = ACCESS_COL(2), z3 = ACCESS_COL(6);
        const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
        const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
        const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);

        const int tmp0 = static_cast<unsigned int>(ACCESS_COL(0) + ACCESS_COL(4)) << CONST_BITS;
        const int tmp1 = static_cast<unsigned int>(ACCESS_COL(0) - ACCESS_COL(4)) << CONST_BITS;

        const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2;

        const int atmp0 = ACCESS_COL(7), atmp1 = ACCESS_COL(5), atmp2 = ACCESS_COL(3), atmp3 = ACCESS_COL(1);

        const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3;
        const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602);

        const int az1 = MULTIPLY(bz1, - FIX_0_899976223);
        const int az2 = MULTIPLY(bz2, - FIX_2_562915447);
        const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5;
        const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5;

        const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3;
        const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4;
        const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3;
        const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4;

        pTemp[0] = DESCALE(tmp10 + btmp3, CONST_BITS-PASS1_BITS);
        pTemp[7] = DESCALE(tmp10 - btmp3, CONST_BITS-PASS1_BITS);
        pTemp[1] = DESCALE(tmp11 + btmp2, CONST_BITS-PASS1_BITS);
        pTemp[6] = DESCALE(tmp11 - btmp2, CONST_BITS-PASS1_BITS);
        pTemp[2] = DESCALE(tmp12 + btmp1, CONST_BITS-PASS1_BITS);
        pTemp[5] = DESCALE(tmp12 - btmp1, CONST_BITS-PASS1_BITS);
        pTemp[3] = DESCALE(tmp13 + btmp0, CONST_BITS-PASS1_BITS);
        pTemp[4] = DESCALE(tmp13 - btmp0, CONST_BITS-PASS1_BITS);
    }
};


template <>
struct Row<0>
{
    static void idct(int* pTemp, const jpgd_block_t* pSrc)
    {
#ifdef _MSC_VER
      pTemp; pSrc;
#endif
    }
};


template <>
struct Row<1>
{
    static void idct(int* pTemp, const jpgd_block_t* pSrc)
    {
        const int dcval = (pSrc[0] << PASS1_BITS);

        pTemp[0] = dcval;
        pTemp[1] = dcval;
        pTemp[2] = dcval;
        pTemp[3] = dcval;
        pTemp[4] = dcval;
        pTemp[5] = dcval;
        pTemp[6] = dcval;
        pTemp[7] = dcval;
    }
};


// Compiler creates a fast path 1D IDCT for X non-zero rows
template <int NONZERO_ROWS>
struct Col
{
    static void idct(uint8_t* pDst_ptr, const int* pTemp)
    {
        // ACCESS_ROW() will be optimized at compile time to either an array access, or 0.
        #define ACCESS_ROW(x) (((x) < NONZERO_ROWS) ? pTemp[x * 8] : 0)

        const int z2 = ACCESS_ROW(2);
        const int z3 = ACCESS_ROW(6);

        const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
        const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
        const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);

        const int tmp0 = static_cast<unsigned int>(ACCESS_ROW(0) + ACCESS_ROW(4)) << CONST_BITS;
        const int tmp1 = static_cast<unsigned int>(ACCESS_ROW(0) - ACCESS_ROW(4)) << CONST_BITS;

        const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2;

        const int atmp0 = ACCESS_ROW(7), atmp1 = ACCESS_ROW(5), atmp2 = ACCESS_ROW(3), atmp3 = ACCESS_ROW(1);

        const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3;
        const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602);

        const int az1 = MULTIPLY(bz1, - FIX_0_899976223);
        const int az2 = MULTIPLY(bz2, - FIX_2_562915447);
        const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5;
        const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5;

        const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3;
        const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4;
        const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3;
        const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4;

        int i = DESCALE_ZEROSHIFT(tmp10 + btmp3, CONST_BITS+PASS1_BITS+3);
        pDst_ptr[8*0] = (uint8_t)CLAMP(i);

        i = DESCALE_ZEROSHIFT(tmp10 - btmp3, CONST_BITS+PASS1_BITS+3);
        pDst_ptr[8*7] = (uint8_t)CLAMP(i);

        i = DESCALE_ZEROSHIFT(tmp11 + btmp2, CONST_BITS+PASS1_BITS+3);
        pDst_ptr[8*1] = (uint8_t)CLAMP(i);

        i = DESCALE_ZEROSHIFT(tmp11 - btmp2, CONST_BITS+PASS1_BITS+3);
        pDst_ptr[8*6] = (uint8_t)CLAMP(i);

        i = DESCALE_ZEROSHIFT(tmp12 + btmp1, CONST_BITS+PASS1_BITS+3);
        pDst_ptr[8*2] = (uint8_t)CLAMP(i);

        i = DESCALE_ZEROSHIFT(tmp12 - btmp1, CONST_BITS+PASS1_BITS+3);
        pDst_ptr[8*5] = (uint8_t)CLAMP(i);

        i = DESCALE_ZEROSHIFT(tmp13 + btmp0, CONST_BITS+PASS1_BITS+3);
        pDst_ptr[8*3] = (uint8_t)CLAMP(i);

        i = DESCALE_ZEROSHIFT(tmp13 - btmp0, CONST_BITS+PASS1_BITS+3);
        pDst_ptr[8*4] = (uint8_t)CLAMP(i);
    }
};


template <>
struct Col<1>
{
    static void idct(uint8_t* pDst_ptr, const int* pTemp)
    {
        int dcval = DESCALE_ZEROSHIFT(pTemp[0], PASS1_BITS+3);
        const uint8_t dcval_clamped = (uint8_t)CLAMP(dcval);
        pDst_ptr[0*8] = dcval_clamped;
        pDst_ptr[1*8] = dcval_clamped;
        pDst_ptr[2*8] = dcval_clamped;
        pDst_ptr[3*8] = dcval_clamped;
        pDst_ptr[4*8] = dcval_clamped;
        pDst_ptr[5*8] = dcval_clamped;
        pDst_ptr[6*8] = dcval_clamped;
        pDst_ptr[7*8] = dcval_clamped;
    }
};


static const uint8_t s_idct_row_table[] = {
    1,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0, 2,1,0,0,0,0,0,0, 2,1,1,0,0,0,0,0, 2,2,1,0,0,0,0,0, 3,2,1,0,0,0,0,0, 4,2,1,0,0,0,0,0, 4,3,1,0,0,0,0,0,
    4,3,2,0,0,0,0,0, 4,3,2,1,0,0,0,0, 4,3,2,1,1,0,0,0, 4,3,2,2,1,0,0,0, 4,3,3,2,1,0,0,0, 4,4,3,2,1,0,0,0, 5,4,3,2,1,0,0,0, 6,4,3,2,1,0,0,0,
    6,5,3,2,1,0,0,0, 6,5,4,2,1,0,0,0, 6,5,4,3,1,0,0,0, 6,5,4,3,2,0,0,0, 6,5,4,3,2,1,0,0, 6,5,4,3,2,1,1,0, 6,5,4,3,2,2,1,0, 6,5,4,3,3,2,1,0,
    6,5,4,4,3,2,1,0, 6,5,5,4,3,2,1,0, 6,6,5,4,3,2,1,0, 7,6,5,4,3,2,1,0, 8,6,5,4,3,2,1,0, 8,7,5,4,3,2,1,0, 8,7,6,4,3,2,1,0, 8,7,6,5,3,2,1,0,
    8,7,6,5,4,2,1,0, 8,7,6,5,4,3,1,0, 8,7,6,5,4,3,2,0, 8,7,6,5,4,3,2,1, 8,7,6,5,4,3,2,2, 8,7,6,5,4,3,3,2, 8,7,6,5,4,4,3,2, 8,7,6,5,5,4,3,2,
    8,7,6,6,5,4,3,2, 8,7,7,6,5,4,3,2, 8,8,7,6,5,4,3,2, 8,8,8,6,5,4,3,2, 8,8,8,7,5,4,3,2, 8,8,8,7,6,4,3,2, 8,8,8,7,6,5,3,2, 8,8,8,7,6,5,4,2,
    8,8,8,7,6,5,4,3, 8,8,8,7,6,5,4,4, 8,8,8,7,6,5,5,4, 8,8,8,7,6,6,5,4, 8,8,8,7,7,6,5,4, 8,8,8,8,7,6,5,4, 8,8,8,8,8,6,5,4, 8,8,8,8,8,7,5,4,
    8,8,8,8,8,7,6,4, 8,8,8,8,8,7,6,5, 8,8,8,8,8,7,6,6, 8,8,8,8,8,7,7,6, 8,8,8,8,8,8,7,6, 8,8,8,8,8,8,8,6, 8,8,8,8,8,8,8,7, 8,8,8,8,8,8,8,8,
};


static const uint8_t s_idct_col_table[] = { 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 };


void idct(const jpgd_block_t* pSrc_ptr, uint8_t* pDst_ptr, int block_max_zag)
{
    JPGD_ASSERT(block_max_zag >= 1);
    JPGD_ASSERT(block_max_zag <= 64);

    if (block_max_zag <= 1) {
        int k = ((pSrc_ptr[0] + 4) >> 3) + 128;
        k = CLAMP(k);
        k = k | (k<<8);
        k = k | (k<<16);
        for (int i = 8; i > 0; i--) {
            *(int*)&pDst_ptr[0] = k;
            *(int*)&pDst_ptr[4] = k;
            pDst_ptr += 8;
        }
      return;
    }

    int temp[64];
    const jpgd_block_t* pSrc = pSrc_ptr;
    int* pTemp = temp;
    const uint8_t* pRow_tab = &s_idct_row_table[(block_max_zag - 1) * 8];
    int i;
    for (i = 8; i > 0; i--, pRow_tab++) {
        switch (*pRow_tab) {
            case 0: Row<0>::idct(pTemp, pSrc); break;
            case 1: Row<1>::idct(pTemp, pSrc); break;
            case 2: Row<2>::idct(pTemp, pSrc); break;
            case 3: Row<3>::idct(pTemp, pSrc); break;
            case 4: Row<4>::idct(pTemp, pSrc); break;
            case 5: Row<5>::idct(pTemp, pSrc); break;
            case 6: Row<6>::idct(pTemp, pSrc); break;
            case 7: Row<7>::idct(pTemp, pSrc); break;
            case 8: Row<8>::idct(pTemp, pSrc); break;
        }
        pSrc += 8;
        pTemp += 8;
    }

    pTemp = temp;

    const int nonzero_rows = s_idct_col_table[block_max_zag - 1];
    for (i = 8; i > 0; i--) {
        switch (nonzero_rows) {
            case 1: Col<1>::idct(pDst_ptr, pTemp); break;
            case 2: Col<2>::idct(pDst_ptr, pTemp); break;
            case 3: Col<3>::idct(pDst_ptr, pTemp); break;
            case 4: Col<4>::idct(pDst_ptr, pTemp); break;
            case 5: Col<5>::idct(pDst_ptr, pTemp); break;
            case 6: Col<6>::idct(pDst_ptr, pTemp); break;
            case 7: Col<7>::idct(pDst_ptr, pTemp); break;
            case 8: Col<8>::idct(pDst_ptr, pTemp); break;
        }
        pTemp++;
        pDst_ptr++;
    }
}


void idct_4x4(const jpgd_block_t* pSrc_ptr, uint8_t* pDst_ptr)
{
    int temp[64];
    int* pTemp = temp;
    const jpgd_block_t* pSrc = pSrc_ptr;

    for (int i = 4; i > 0; i--) {
        Row<4>::idct(pTemp, pSrc);
        pSrc += 8;
        pTemp += 8;
    }

    pTemp = temp;

    for (int i = 8; i > 0; i--) {
        Col<4>::idct(pDst_ptr, pTemp);
        pTemp++;
        pDst_ptr++;
    }
}


// Retrieve one character from the input stream.
inline uint32_t jpeg_decoder::get_char()
{
    // Any bytes remaining in buffer?
    if (!m_in_buf_left) {
        // Try to get more bytes.
        prep_in_buffer();
        // Still nothing to get?
        if (!m_in_buf_left) {
            // Pad the end of the stream with 0xFF 0xD9 (EOI marker)
            int t = m_tem_flag;
            m_tem_flag ^= 1;
            if (t) return 0xD9;
            else return 0xFF;
        }
    }
    uint32_t c = *m_pIn_buf_ofs++;
    m_in_buf_left--;
    return c;
}


// Same as previous method, except can indicate if the character is a pad character or not.
inline uint32_t jpeg_decoder::get_char(bool *pPadding_flag)
{
    if (!m_in_buf_left) {
        prep_in_buffer();
        if (!m_in_buf_left) {
            *pPadding_flag = true;
            int t = m_tem_flag;
            m_tem_flag ^= 1;
            if (t) return 0xD9;
            else return 0xFF;
        }
    }
    *pPadding_flag = false;
    uint32_t c = *m_pIn_buf_ofs++;
    m_in_buf_left--;

    return c;
}


// Inserts a previously retrieved character back into the input buffer.
inline void jpeg_decoder::stuff_char(uint8_t q)
{
    *(--m_pIn_buf_ofs) = q;
    m_in_buf_left++;
}


// Retrieves one character from the input stream, but does not read past markers. Will continue to return 0xFF when a marker is encountered.
inline uint8_t jpeg_decoder::get_octet()
{
    bool padding_flag;
    int c = get_char(&padding_flag);

    if (c == 0xFF) {
        if (padding_flag) return 0xFF;

        c = get_char(&padding_flag);
        if (padding_flag) {
            stuff_char(0xFF);
            return 0xFF;
        }
        if (c == 0x00) return 0xFF;
        else {
            stuff_char(static_cast<uint8_t>(c));
            stuff_char(0xFF);
            return 0xFF;
        }
    }
    return static_cast<uint8_t>(c);
}


// Retrieves a variable number of bits from the input stream. Does not recognize markers.
inline uint32_t jpeg_decoder::get_bits(int num_bits)
{
    if (!num_bits) return 0;

    uint32_t i = m_bit_buf >> (32 - num_bits);

    if ((m_bits_left -= num_bits) <= 0) {
        m_bit_buf <<= (num_bits += m_bits_left);
        uint32_t c1 = get_char();
        uint32_t c2 = get_char();
        m_bit_buf = (m_bit_buf & 0xFFFF0000) | (c1 << 8) | c2;
        m_bit_buf <<= -m_bits_left;
        m_bits_left += 16;
        JPGD_ASSERT(m_bits_left >= 0);
    }
    else m_bit_buf <<= num_bits;

    return i;
}


// Retrieves a variable number of bits from the input stream. Markers will not be read into the input bit buffer. Instead, an infinite number of all 1's will be returned when a marker is encountered.
inline uint32_t jpeg_decoder::get_bits_no_markers(int num_bits)
{
    if (!num_bits)return 0;

    uint32_t i = m_bit_buf >> (32 - num_bits);

    if ((m_bits_left -= num_bits) <= 0) {
        m_bit_buf <<= (num_bits += m_bits_left);
        if ((m_in_buf_left < 2) || (m_pIn_buf_ofs[0] == 0xFF) || (m_pIn_buf_ofs[1] == 0xFF)) {
            uint32_t c1 = get_octet();
            uint32_t c2 = get_octet();
            m_bit_buf |= (c1 << 8) | c2;
        } else {
            m_bit_buf |= ((uint32_t)m_pIn_buf_ofs[0] << 8) | m_pIn_buf_ofs[1];
            m_in_buf_left -= 2;
            m_pIn_buf_ofs += 2;
        }
        m_bit_buf <<= -m_bits_left;
        m_bits_left += 16;
        JPGD_ASSERT(m_bits_left >= 0);
    } else m_bit_buf <<= num_bits;

    return i;
}


// Decodes a Huffman encoded symbol.
inline int jpeg_decoder::huff_decode(huff_tables *pH)
{
    int symbol;

    // Check first 8-bits: do we have a complete symbol?
    if ((symbol = pH->look_up[m_bit_buf >> 24]) < 0) {
        // Decode more bits, use a tree traversal to find symbol.
        int ofs = 23;
        do {
            symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))];
            ofs--;
        } while (symbol < 0);
        get_bits_no_markers(8 + (23 - ofs));
    } else get_bits_no_markers(pH->code_size[symbol]);

  return symbol;
}


// Decodes a Huffman encoded symbol.
inline int jpeg_decoder::huff_decode(huff_tables *pH, int& extra_bits)
{
    int symbol;

    // Check first 8-bits: do we have a complete symbol?
    if ((symbol = pH->look_up2[m_bit_buf >> 24]) < 0) {
        // Use a tree traversal to find symbol.
        int ofs = 23;
        do {
            symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))];
            ofs--;
        } while (symbol < 0);

        get_bits_no_markers(8 + (23 - ofs));
        extra_bits = get_bits_no_markers(symbol & 0xF);
    } else {
        JPGD_ASSERT(((symbol >> 8) & 31) == pH->code_size[symbol & 255] + ((symbol & 0x8000) ? (symbol & 15) : 0));

        if (symbol & 0x8000) {
            get_bits_no_markers((symbol >> 8) & 31);
            extra_bits = symbol >> 16;
        } else  {
            int code_size = (symbol >> 8) & 31;
            int num_extra_bits = symbol & 0xF;
            int bits = code_size + num_extra_bits;
            if (bits <= (m_bits_left + 16)) extra_bits = get_bits_no_markers(bits) & ((1 << num_extra_bits) - 1);
            else {
                get_bits_no_markers(code_size);
                extra_bits = get_bits_no_markers(num_extra_bits);
            }
        }
        symbol &= 0xFF;
    }
    return symbol;
}


// Tables and macro used to fully decode the DPCM differences.
static const int s_extend_test[16] = { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
static const unsigned int s_extend_offset[16] = { 0, ((~0u)<<1) + 1, ((~0u)<<2) + 1, ((~0u)<<3) + 1, ((~0u)<<4) + 1, ((~0u)<<5) + 1, ((~0u)<<6) + 1, ((~0u)<<7) + 1, ((~0u)<<8) + 1, ((~0u)<<9) + 1, ((~0u)<<10) + 1, ((~0u)<<11) + 1, ((~0u)<<12) + 1, ((~0u)<<13) + 1, ((~0u)<<14) + 1, ((~0u)<<15) + 1 };

// The logical AND's in this macro are to shut up static code analysis (aren't really necessary - couldn't find another way to do this)
#define JPGD_HUFF_EXTEND(x, s) (((x) < s_extend_test[s & 15]) ? ((x) + s_extend_offset[s & 15]) : (x))


// Clamps a value between 0-255.
inline uint8_t jpeg_decoder::clamp(int i)
{
    if (static_cast<uint32_t>(i) > 255) i = (((~i) >> 31) & 0xFF);
    return static_cast<uint8_t>(i);
}


namespace DCT_Upsample
{
    struct Matrix44
    {
        typedef int Element_Type;
        enum { NUM_ROWS = 4, NUM_COLS = 4 };

        Element_Type v[NUM_ROWS][NUM_COLS];

        inline int rows() const { return NUM_ROWS; }
        inline int cols() const { return NUM_COLS; }
        inline const Element_Type & at(int r, int c) const { return v[r][c]; }
        inline       Element_Type & at(int r, int c)       { return v[r][c]; }

        inline Matrix44() {}

        inline Matrix44& operator += (const Matrix44& a)
        {
            for (int r = 0; r < NUM_ROWS; r++) {
                at(r, 0) += a.at(r, 0);
                at(r, 1) += a.at(r, 1);
                at(r, 2) += a.at(r, 2);
                at(r, 3) += a.at(r, 3);
            }
            return *this;
        }

        inline Matrix44& operator -= (const Matrix44& a)
        {
            for (int r = 0; r < NUM_ROWS; r++) {
                at(r, 0) -= a.at(r, 0);
                at(r, 1) -= a.at(r, 1);
                at(r, 2) -= a.at(r, 2);
                at(r, 3) -= a.at(r, 3);
            }
            return *this;
        }

        friend inline Matrix44 operator + (const Matrix44& a, const Matrix44& b)
        {
            Matrix44 ret;
            for (int r = 0; r < NUM_ROWS; r++) {
                ret.at(r, 0) = a.at(r, 0) + b.at(r, 0);
                ret.at(r, 1) = a.at(r, 1) + b.at(r, 1);
                ret.at(r, 2) = a.at(r, 2) + b.at(r, 2);
                ret.at(r, 3) = a.at(r, 3) + b.at(r, 3);
            }
            return ret;
        }

        friend inline Matrix44 operator - (const Matrix44& a, const Matrix44& b)
        {
            Matrix44 ret;
            for (int r = 0; r < NUM_ROWS; r++) {
                ret.at(r, 0) = a.at(r, 0) - b.at(r, 0);
                ret.at(r, 1) = a.at(r, 1) - b.at(r, 1);
                ret.at(r, 2) = a.at(r, 2) - b.at(r, 2);
                ret.at(r, 3) = a.at(r, 3) - b.at(r, 3);
            }
            return ret;
        }

        static inline void add_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b)
        {
            for (int r = 0; r < 4; r++) {
                pDst[0*8 + r] = static_cast<jpgd_block_t>(a.at(r, 0) + b.at(r, 0));
                pDst[1*8 + r] = static_cast<jpgd_block_t>(a.at(r, 1) + b.at(r, 1));
                pDst[2*8 + r] = static_cast<jpgd_block_t>(a.at(r, 2) + b.at(r, 2));
                pDst[3*8 + r] = static_cast<jpgd_block_t>(a.at(r, 3) + b.at(r, 3));
            }
        }

        static inline void sub_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b)
        {
            for (int r = 0; r < 4; r++) {
                pDst[0*8 + r] = static_cast<jpgd_block_t>(a.at(r, 0) - b.at(r, 0));
                pDst[1*8 + r] = static_cast<jpgd_block_t>(a.at(r, 1) - b.at(r, 1));
                pDst[2*8 + r] = static_cast<jpgd_block_t>(a.at(r, 2) - b.at(r, 2));
                pDst[3*8 + r] = static_cast<jpgd_block_t>(a.at(r, 3) - b.at(r, 3));
            }
        }
    };

    const int FRACT_BITS = 10;
    const int SCALE = 1 << FRACT_BITS;

    typedef int Temp_Type;
    #define D(i) (((i) + (SCALE >> 1)) >> FRACT_BITS)
    #define F(i) ((int)((i) * SCALE + .5f))

    // Any decent C++ compiler will optimize this at compile time to a 0, or an array access.
    #define AT(c, r) ((((c)>=NUM_COLS)||((r)>=NUM_ROWS)) ? 0 : pSrc[(c)+(r)*8])

    // NUM_ROWS/NUM_COLS = # of non-zero rows/cols in input matrix
    template<int NUM_ROWS, int NUM_COLS>
    struct P_Q
    {
        static void calc(Matrix44& P, Matrix44& Q, const jpgd_block_t* pSrc)
        {
            // 4x8 = 4x8 times 8x8, matrix 0 is constant
            const Temp_Type X000 = AT(0, 0);
            const Temp_Type X001 = AT(0, 1);
            const Temp_Type X002 = AT(0, 2);
            const Temp_Type X003 = AT(0, 3);
            const Temp_Type X004 = AT(0, 4);
            const Temp_Type X005 = AT(0, 5);
            const Temp_Type X006 = AT(0, 6);
            const Temp_Type X007 = AT(0, 7);
            const Temp_Type X010 = D(F(0.415735f) * AT(1, 0) + F(0.791065f) * AT(3, 0) + F(-0.352443f) * AT(5, 0) + F(0.277785f) * AT(7, 0));
            const Temp_Type X011 = D(F(0.415735f) * AT(1, 1) + F(0.791065f) * AT(3, 1) + F(-0.352443f) * AT(5, 1) + F(0.277785f) * AT(7, 1));
            const Temp_Type X012 = D(F(0.415735f) * AT(1, 2) + F(0.791065f) * AT(3, 2) + F(-0.352443f) * AT(5, 2) + F(0.277785f) * AT(7, 2));
            const Temp_Type X013 = D(F(0.415735f) * AT(1, 3) + F(0.791065f) * AT(3, 3) + F(-0.352443f) * AT(5, 3) + F(0.277785f) * AT(7, 3));
            const Temp_Type X014 = D(F(0.415735f) * AT(1, 4) + F(0.791065f) * AT(3, 4) + F(-0.352443f) * AT(5, 4) + F(0.277785f) * AT(7, 4));
            const Temp_Type X015 = D(F(0.415735f) * AT(1, 5) + F(0.791065f) * AT(3, 5) + F(-0.352443f) * AT(5, 5) + F(0.277785f) * AT(7, 5));
            const Temp_Type X016 = D(F(0.415735f) * AT(1, 6) + F(0.791065f) * AT(3, 6) + F(-0.352443f) * AT(5, 6) + F(0.277785f) * AT(7, 6));
            const Temp_Type X017 = D(F(0.415735f) * AT(1, 7) + F(0.791065f) * AT(3, 7) + F(-0.352443f) * AT(5, 7) + F(0.277785f) * AT(7, 7));
            const Temp_Type X020 = AT(4, 0);
            const Temp_Type X021 = AT(4, 1);
            const Temp_Type X022 = AT(4, 2);
            const Temp_Type X023 = AT(4, 3);
            const Temp_Type X024 = AT(4, 4);
            const Temp_Type X025 = AT(4, 5);
            const Temp_Type X026 = AT(4, 6);
            const Temp_Type X027 = AT(4, 7);
            const Temp_Type X030 = D(F(0.022887f) * AT(1, 0) + F(-0.097545f) * AT(3, 0) + F(0.490393f) * AT(5, 0) + F(0.865723f) * AT(7, 0));
            const Temp_Type X031 = D(F(0.022887f) * AT(1, 1) + F(-0.097545f) * AT(3, 1) + F(0.490393f) * AT(5, 1) + F(0.865723f) * AT(7, 1));
            const Temp_Type X032 = D(F(0.022887f) * AT(1, 2) + F(-0.097545f) * AT(3, 2) + F(0.490393f) * AT(5, 2) + F(0.865723f) * AT(7, 2));
            const Temp_Type X033 = D(F(0.022887f) * AT(1, 3) + F(-0.097545f) * AT(3, 3) + F(0.490393f) * AT(5, 3) + F(0.865723f) * AT(7, 3));
            const Temp_Type X034 = D(F(0.022887f) * AT(1, 4) + F(-0.097545f) * AT(3, 4) + F(0.490393f) * AT(5, 4) + F(0.865723f) * AT(7, 4));
            const Temp_Type X035 = D(F(0.022887f) * AT(1, 5) + F(-0.097545f) * AT(3, 5) + F(0.490393f) * AT(5, 5) + F(0.865723f) * AT(7, 5));
            const Temp_Type X036 = D(F(0.022887f) * AT(1, 6) + F(-0.097545f) * AT(3, 6) + F(0.490393f) * AT(5, 6) + F(0.865723f) * AT(7, 6));
            const Temp_Type X037 = D(F(0.022887f) * AT(1, 7) + F(-0.097545f) * AT(3, 7) + F(0.490393f) * AT(5, 7) + F(0.865723f) * AT(7, 7));

            // 4x4 = 4x8 times 8x4, matrix 1 is constant
            P.at(0, 0) = X000;
            P.at(0, 1) = D(X001 * F(0.415735f) + X003 * F(0.791065f) + X005 * F(-0.352443f) + X007 * F(0.277785f));
            P.at(0, 2) = X004;
            P.at(0, 3) = D(X001 * F(0.022887f) + X003 * F(-0.097545f) + X005 * F(0.490393f) + X007 * F(0.865723f));
            P.at(1, 0) = X010;
            P.at(1, 1) = D(X011 * F(0.415735f) + X013 * F(0.791065f) + X015 * F(-0.352443f) + X017 * F(0.277785f));
            P.at(1, 2) = X014;
            P.at(1, 3) = D(X011 * F(0.022887f) + X013 * F(-0.097545f) + X015 * F(0.490393f) + X017 * F(0.865723f));
            P.at(2, 0) = X020;
            P.at(2, 1) = D(X021 * F(0.415735f) + X023 * F(0.791065f) + X025 * F(-0.352443f) + X027 * F(0.277785f));
            P.at(2, 2) = X024;
            P.at(2, 3) = D(X021 * F(0.022887f) + X023 * F(-0.097545f) + X025 * F(0.490393f) + X027 * F(0.865723f));
            P.at(3, 0) = X030;
            P.at(3, 1) = D(X031 * F(0.415735f) + X033 * F(0.791065f) + X035 * F(-0.352443f) + X037 * F(0.277785f));
            P.at(3, 2) = X034;
            P.at(3, 3) = D(X031 * F(0.022887f) + X033 * F(-0.097545f) + X035 * F(0.490393f) + X037 * F(0.865723f));
            // 40 muls 24 adds

            // 4x4 = 4x8 times 8x4, matrix 1 is constant
            Q.at(0, 0) = D(X001 * F(0.906127f) + X003 * F(-0.318190f) + X005 * F(0.212608f) + X007 * F(-0.180240f));
            Q.at(0, 1) = X002;
            Q.at(0, 2) = D(X001 * F(-0.074658f) + X003 * F(0.513280f) + X005 * F(0.768178f) + X007 * F(-0.375330f));
            Q.at(0, 3) = X006;
            Q.at(1, 0) = D(X011 * F(0.906127f) + X013 * F(-0.318190f) + X015 * F(0.212608f) + X017 * F(-0.180240f));
            Q.at(1, 1) = X012;
            Q.at(1, 2) = D(X011 * F(-0.074658f) + X013 * F(0.513280f) + X015 * F(0.768178f) + X017 * F(-0.375330f));
            Q.at(1, 3) = X016;
            Q.at(2, 0) = D(X021 * F(0.906127f) + X023 * F(-0.318190f) + X025 * F(0.212608f) + X027 * F(-0.180240f));
            Q.at(2, 1) = X022;
            Q.at(2, 2) = D(X021 * F(-0.074658f) + X023 * F(0.513280f) + X025 * F(0.768178f) + X027 * F(-0.375330f));
            Q.at(2, 3) = X026;
            Q.at(3, 0) = D(X031 * F(0.906127f) + X033 * F(-0.318190f) + X035 * F(0.212608f) + X037 * F(-0.180240f));
            Q.at(3, 1) = X032;
            Q.at(3, 2) = D(X031 * F(-0.074658f) + X033 * F(0.513280f) + X035 * F(0.768178f) + X037 * F(-0.375330f));
            Q.at(3, 3) = X036;
            // 40 muls 24 adds
        }
    };


    template<int NUM_ROWS, int NUM_COLS>
    struct R_S
    {
        static void calc(Matrix44& R, Matrix44& S, const jpgd_block_t* pSrc)
        {
            // 4x8 = 4x8 times 8x8, matrix 0 is constant
            const Temp_Type X100 = D(F(0.906127f) * AT(1, 0) + F(-0.318190f) * AT(3, 0) + F(0.212608f) * AT(5, 0) + F(-0.180240f) * AT(7, 0));
            const Temp_Type X101 = D(F(0.906127f) * AT(1, 1) + F(-0.318190f) * AT(3, 1) + F(0.212608f) * AT(5, 1) + F(-0.180240f) * AT(7, 1));
            const Temp_Type X102 = D(F(0.906127f) * AT(1, 2) + F(-0.318190f) * AT(3, 2) + F(0.212608f) * AT(5, 2) + F(-0.180240f) * AT(7, 2));
            const Temp_Type X103 = D(F(0.906127f) * AT(1, 3) + F(-0.318190f) * AT(3, 3) + F(0.212608f) * AT(5, 3) + F(-0.180240f) * AT(7, 3));
            const Temp_Type X104 = D(F(0.906127f) * AT(1, 4) + F(-0.318190f) * AT(3, 4) + F(0.212608f) * AT(5, 4) + F(-0.180240f) * AT(7, 4));
            const Temp_Type X105 = D(F(0.906127f) * AT(1, 5) + F(-0.318190f) * AT(3, 5) + F(0.212608f) * AT(5, 5) + F(-0.180240f) * AT(7, 5));
            const Temp_Type X106 = D(F(0.906127f) * AT(1, 6) + F(-0.318190f) * AT(3, 6) + F(0.212608f) * AT(5, 6) + F(-0.180240f) * AT(7, 6));
            const Temp_Type X107 = D(F(0.906127f) * AT(1, 7) + F(-0.318190f) * AT(3, 7) + F(0.212608f) * AT(5, 7) + F(-0.180240f) * AT(7, 7));
            const Temp_Type X110 = AT(2, 0);
            const Temp_Type X111 = AT(2, 1);
            const Temp_Type X112 = AT(2, 2);
            const Temp_Type X113 = AT(2, 3);
            const Temp_Type X114 = AT(2, 4);
            const Temp_Type X115 = AT(2, 5);
            const Temp_Type X116 = AT(2, 6);
            const Temp_Type X117 = AT(2, 7);
            const Temp_Type X120 = D(F(-0.074658f) * AT(1, 0) + F(0.513280f) * AT(3, 0) + F(0.768178f) * AT(5, 0) + F(-0.375330f) * AT(7, 0));
            const Temp_Type X121 = D(F(-0.074658f) * AT(1, 1) + F(0.513280f) * AT(3, 1) + F(0.768178f) * AT(5, 1) + F(-0.375330f) * AT(7, 1));
            const Temp_Type X122 = D(F(-0.074658f) * AT(1, 2) + F(0.513280f) * AT(3, 2) + F(0.768178f) * AT(5, 2) + F(-0.375330f) * AT(7, 2));
            const Temp_Type X123 = D(F(-0.074658f) * AT(1, 3) + F(0.513280f) * AT(3, 3) + F(0.768178f) * AT(5, 3) + F(-0.375330f) * AT(7, 3));
            const Temp_Type X124 = D(F(-0.074658f) * AT(1, 4) + F(0.513280f) * AT(3, 4) + F(0.768178f) * AT(5, 4) + F(-0.375330f) * AT(7, 4));
            const Temp_Type X125 = D(F(-0.074658f) * AT(1, 5) + F(0.513280f) * AT(3, 5) + F(0.768178f) * AT(5, 5) + F(-0.375330f) * AT(7, 5));
            const Temp_Type X126 = D(F(-0.074658f) * AT(1, 6) + F(0.513280f) * AT(3, 6) + F(0.768178f) * AT(5, 6) + F(-0.375330f) * AT(7, 6));
            const Temp_Type X127 = D(F(-0.074658f) * AT(1, 7) + F(0.513280f) * AT(3, 7) + F(0.768178f) * AT(5, 7) + F(-0.375330f) * AT(7, 7));
            const Temp_Type X130 = AT(6, 0);
            const Temp_Type X131 = AT(6, 1);
            const Temp_Type X132 = AT(6, 2);
            const Temp_Type X133 = AT(6, 3);
            const Temp_Type X134 = AT(6, 4);
            const Temp_Type X135 = AT(6, 5);
            const Temp_Type X136 = AT(6, 6);
            const Temp_Type X137 = AT(6, 7);
            // 80 muls 48 adds

            // 4x4 = 4x8 times 8x4, matrix 1 is constant
            R.at(0, 0) = X100;
            R.at(0, 1) = D(X101 * F(0.415735f) + X103 * F(0.791065f) + X105 * F(-0.352443f) + X107 * F(0.277785f));
            R.at(0, 2) = X104;
            R.at(0, 3) = D(X101 * F(0.022887f) + X103 * F(-0.097545f) + X105 * F(0.490393f) + X107 * F(0.865723f));
            R.at(1, 0) = X110;
            R.at(1, 1) = D(X111 * F(0.415735f) + X113 * F(0.791065f) + X115 * F(-0.352443f) + X117 * F(0.277785f));
            R.at(1, 2) = X114;
            R.at(1, 3) = D(X111 * F(0.022887f) + X113 * F(-0.097545f) + X115 * F(0.490393f) + X117 * F(0.865723f));
            R.at(2, 0) = X120;
            R.at(2, 1) = D(X121 * F(0.415735f) + X123 * F(0.791065f) + X125 * F(-0.352443f) + X127 * F(0.277785f));
            R.at(2, 2) = X124;
            R.at(2, 3) = D(X121 * F(0.022887f) + X123 * F(-0.097545f) + X125 * F(0.490393f) + X127 * F(0.865723f));
            R.at(3, 0) = X130;
            R.at(3, 1) = D(X131 * F(0.415735f) + X133 * F(0.791065f) + X135 * F(-0.352443f) + X137 * F(0.277785f));
            R.at(3, 2) = X134;
            R.at(3, 3) = D(X131 * F(0.022887f) + X133 * F(-0.097545f) + X135 * F(0.490393f) + X137 * F(0.865723f));
            // 40 muls 24 adds
            // 4x4 = 4x8 times 8x4, matrix 1 is constant
            S.at(0, 0) = D(X101 * F(0.906127f) + X103 * F(-0.318190f) + X105 * F(0.212608f) + X107 * F(-0.180240f));
            S.at(0, 1) = X102;
            S.at(0, 2) = D(X101 * F(-0.074658f) + X103 * F(0.513280f) + X105 * F(0.768178f) + X107 * F(-0.375330f));
            S.at(0, 3) = X106;
            S.at(1, 0) = D(X111 * F(0.906127f) + X113 * F(-0.318190f) + X115 * F(0.212608f) + X117 * F(-0.180240f));
            S.at(1, 1) = X112;
            S.at(1, 2) = D(X111 * F(-0.074658f) + X113 * F(0.513280f) + X115 * F(0.768178f) + X117 * F(-0.375330f));
            S.at(1, 3) = X116;
            S.at(2, 0) = D(X121 * F(0.906127f) + X123 * F(-0.318190f) + X125 * F(0.212608f) + X127 * F(-0.180240f));
            S.at(2, 1) = X122;
            S.at(2, 2) = D(X121 * F(-0.074658f) + X123 * F(0.513280f) + X125 * F(0.768178f) + X127 * F(-0.375330f));
            S.at(2, 3) = X126;
            S.at(3, 0) = D(X131 * F(0.906127f) + X133 * F(-0.318190f) + X135 * F(0.212608f) + X137 * F(-0.180240f));
            S.at(3, 1) = X132;
            S.at(3, 2) = D(X131 * F(-0.074658f) + X133 * F(0.513280f) + X135 * F(0.768178f) + X137 * F(-0.375330f));
            S.at(3, 3) = X136;
            // 40 muls 24 adds
        }
    };
} // end namespace DCT_Upsample


// Unconditionally frees all allocated m_blocks.
void jpeg_decoder::free_all_blocks()
{
    delete(m_pStream);
    m_pStream = nullptr;

    for (mem_block *b = m_pMem_blocks; b; ) {
        mem_block *n = b->m_pNext;
        free(b);
        b = n;
    }
    m_pMem_blocks = nullptr;
}


// This method handles all errors. It will never return.
// It could easily be changed to use C++ exceptions.
JPGD_NORETURN void jpeg_decoder::stop_decoding(jpgd_status status)
{
    m_error_code = status;
    free_all_blocks();
    longjmp(m_jmp_state, status);
}


void *jpeg_decoder::alloc(size_t nSize, bool zero)
{
    nSize = (JPGD_MAX(nSize, 1) + 3) & ~3;
    char *rv = nullptr;
    for (mem_block *b = m_pMem_blocks; b; b = b->m_pNext) {
        if ((b->m_used_count + nSize) <= b->m_size) {
            rv = b->m_data + b->m_used_count;
            b->m_used_count += nSize;
            break;
        }
    }
    if (!rv) {
        int capacity = JPGD_MAX(32768 - 256, (nSize + 2047) & ~2047);
        mem_block *b = (mem_block*)malloc(sizeof(mem_block) + capacity);
        if (!b) stop_decoding(JPGD_NOTENOUGHMEM);
        b->m_pNext = m_pMem_blocks; m_pMem_blocks = b;
        b->m_used_count = nSize;
        b->m_size = capacity;
        rv = b->m_data;
    }
    if (zero) memset(rv, 0, nSize);
    return rv;
}


void jpeg_decoder::word_clear(void *p, uint16_t c, uint32_t n)
{
    uint8_t *pD = (uint8_t*)p;
    const uint8_t l = c & 0xFF, h = (c >> 8) & 0xFF;
    while (n) {
        pD[0] = l; pD[1] = h; pD += 2;
        n--;
    }
}


// Refill the input buffer.
// This method will sit in a loop until (A) the buffer is full or (B)
// the stream's read() method reports and end of file condition.
void jpeg_decoder::prep_in_buffer()
{
    m_in_buf_left = 0;
    m_pIn_buf_ofs = m_in_buf;

    if (m_eof_flag) return;

    do {
        int bytes_read = m_pStream->read(m_in_buf + m_in_buf_left, JPGD_IN_BUF_SIZE - m_in_buf_left, &m_eof_flag);
        if (bytes_read == -1) stop_decoding(JPGD_STREAM_READ);
        m_in_buf_left += bytes_read;
    } while ((m_in_buf_left < JPGD_IN_BUF_SIZE) && (!m_eof_flag));

    m_total_bytes_read += m_in_buf_left;

    // Pad the end of the block with M_EOI (prevents the decompressor from going off the rails if the stream is invalid).
    // (This dates way back to when this decompressor was written in C/asm, and the all-asm Huffman decoder did some fancy things to increase perf.)
    word_clear(m_pIn_buf_ofs + m_in_buf_left, 0xD9FF, 64);
}


// Read a Huffman code table.
void jpeg_decoder::read_dht_marker()
{
    int i, index, count;
    uint8_t huff_num[17];
    uint8_t huff_val[256];
    uint32_t num_left = get_bits(16);

    if (num_left < 2) stop_decoding(JPGD_BAD_DHT_MARKER);
    num_left -= 2;

    while (num_left) {
        index = get_bits(8);
        huff_num[0] = 0;
        count = 0;

        for (i = 1; i <= 16; i++) {
            huff_num[i] = static_cast<uint8_t>(get_bits(8));
            count += huff_num[i];
        }

        if (count > 255) stop_decoding(JPGD_BAD_DHT_COUNTS);

        for (i = 0; i < count; i++)
            huff_val[i] = static_cast<uint8_t>(get_bits(8));

        i = 1 + 16 + count;

        if (num_left < (uint32_t)i) stop_decoding(JPGD_BAD_DHT_MARKER);
        num_left -= i;

        if ((index & 0x10) > 0x10) stop_decoding(JPGD_BAD_DHT_INDEX);
        index = (index & 0x0F) + ((index & 0x10) >> 4) * (JPGD_MAX_HUFF_TABLES >> 1);
        if (index >= JPGD_MAX_HUFF_TABLES) stop_decoding(JPGD_BAD_DHT_INDEX);

        if (!m_huff_num[index]) m_huff_num[index] = (uint8_t *)alloc(17);
        if (!m_huff_val[index]) m_huff_val[index] = (uint8_t *)alloc(256);

        m_huff_ac[index] = (index & 0x10) != 0;
        memcpy(m_huff_num[index], huff_num, 17);
        memcpy(m_huff_val[index], huff_val, 256);
    }
}


// Read a quantization table.
void jpeg_decoder::read_dqt_marker()
{
    int n, i, prec;
    uint32_t temp;
    uint32_t num_left = get_bits(16);
    if (num_left < 2) stop_decoding(JPGD_BAD_DQT_MARKER);
    num_left -= 2;

    while (num_left) {
        n = get_bits(8);
        prec = n >> 4;
        n &= 0x0F;

        if (n >= JPGD_MAX_QUANT_TABLES) stop_decoding(JPGD_BAD_DQT_TABLE);

        if (!m_quant[n]) m_quant[n] = (jpgd_quant_t *)alloc(64 * sizeof(jpgd_quant_t));

        // read quantization entries, in zag order
        for (i = 0; i < 64; i++) {
            temp = get_bits(8);
            if (prec) temp = (temp << 8) + get_bits(8);
            m_quant[n][i] = static_cast<jpgd_quant_t>(temp);
        }
        i = 64 + 1;
        if (prec) i += 64;
        if (num_left < (uint32_t)i) stop_decoding(JPGD_BAD_DQT_LENGTH);
        num_left -= i;
    }
}


// Read the start of frame (SOF) marker.
void jpeg_decoder::read_sof_marker()
{
    int i;
    uint32_t num_left = get_bits(16);

    if (get_bits(8) != 8) stop_decoding(JPGD_BAD_PRECISION);   /* precision: sorry, only 8-bit precision is supported right now */

    m_image_y_size = get_bits(16);
    if ((m_image_y_size < 1) || (m_image_y_size > JPGD_MAX_HEIGHT)) stop_decoding(JPGD_BAD_HEIGHT);

    m_image_x_size = get_bits(16);
    if ((m_image_x_size < 1) || (m_image_x_size > JPGD_MAX_WIDTH)) stop_decoding(JPGD_BAD_WIDTH);

    m_comps_in_frame = get_bits(8);
    if (m_comps_in_frame > JPGD_MAX_COMPONENTS) stop_decoding(JPGD_TOO_MANY_COMPONENTS);

    if (num_left != (uint32_t)(m_comps_in_frame * 3 + 8)) stop_decoding(JPGD_BAD_SOF_LENGTH);

    for (i = 0; i < m_comps_in_frame; i++) {
        m_comp_ident[i]  = get_bits(8);
        m_comp_h_samp[i] = get_bits(4);
        m_comp_v_samp[i] = get_bits(4);
        m_comp_quant[i]  = get_bits(8);
    }
}


// Used to skip unrecognized markers.
void jpeg_decoder::skip_variable_marker()
{
    uint32_t num_left = get_bits(16);
    if (num_left < 2) stop_decoding(JPGD_BAD_VARIABLE_MARKER);
    num_left -= 2;

    while (num_left) {
        get_bits(8);
        num_left--;
    }
}


// Read a define restart interval (DRI) marker.
void jpeg_decoder::read_dri_marker()
{
    if (get_bits(16) != 4) stop_decoding(JPGD_BAD_DRI_LENGTH);
    m_restart_interval = get_bits(16);
}


// Read a start of scan (SOS) marker.
void jpeg_decoder::read_sos_marker()
{
    int i, ci, c, cc;
    uint32_t num_left = get_bits(16);
    int n = get_bits(8);

    m_comps_in_scan = n;
    num_left -= 3;

    if ( (num_left != (uint32_t)(n * 2 + 3)) || (n < 1) || (n > JPGD_MAX_COMPS_IN_SCAN) ) stop_decoding(JPGD_BAD_SOS_LENGTH);

    for (i = 0; i < n; i++) {
        cc = get_bits(8);
        c = get_bits(8);
        num_left -= 2;

        for (ci = 0; ci < m_comps_in_frame; ci++)
          if (cc == m_comp_ident[ci]) break;

        if (ci >= m_comps_in_frame) stop_decoding(JPGD_BAD_SOS_COMP_ID);

        m_comp_list[i]    = ci;
        m_comp_dc_tab[ci] = (c >> 4) & 15;
        m_comp_ac_tab[ci] = (c & 15) + (JPGD_MAX_HUFF_TABLES >> 1);
    }
    m_spectral_start  = get_bits(8);
    m_spectral_end    = get_bits(8);
    m_successive_high = get_bits(4);
    m_successive_low  = get_bits(4);

    if (!m_progressive_flag) {
        m_spectral_start = 0;
        m_spectral_end = 63;
    }
    num_left -= 3;

    while (num_left) {    /* read past whatever is num_left */
        get_bits(8);
        num_left--;
    }
}


// Finds the next marker.
int jpeg_decoder::next_marker()
{
    uint32_t c, bytes = 0;

    do {
        do {
            bytes++;
            c = get_bits(8);
        } while (c != 0xFF);

        do {
            c = get_bits(8);
        } while (c == 0xFF);
    } while (c == 0);

    // If bytes > 0 here, there where extra bytes before the marker (not good).
    return c;
}


// Process markers. Returns when an SOFx, SOI, EOI, or SOS marker is
// encountered.
int jpeg_decoder::process_markers()
{
    int c;

    for ( ; ; ) {
        c = next_marker();
        switch (c) {
            case M_SOF0:
            case M_SOF1:
            case M_SOF2:
            case M_SOF3:
            case M_SOF5:
            case M_SOF6:
            case M_SOF7:
      //      case M_JPG:
            case M_SOF9:
            case M_SOF10:
            case M_SOF11:
            case M_SOF13:
            case M_SOF14:
            case M_SOF15:
            case M_SOI:
            case M_EOI:
            case M_SOS: return c;
            case M_DHT: {
                read_dht_marker();
                break;
            }
            // No arithmitic support - dumb patents!
            case M_DAC: {
                stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT);
                break;
            }
            case M_DQT: {
                read_dqt_marker();
                break;
            }
            case M_DRI: {
                read_dri_marker();
                break;
            }
            //case M_APP0:  /* no need to read the JFIF marker */
            case M_JPG:
            case M_RST0:    /* no parameters */
            case M_RST1:
            case M_RST2:
            case M_RST3:
            case M_RST4:
            case M_RST5:
            case M_RST6:
            case M_RST7:
            case M_TEM: {
                stop_decoding(JPGD_UNEXPECTED_MARKER);
                break;
            }
            default: {   /* must be DNL, DHP, EXP, APPn, JPGn, COM, or RESn or APP0 */
                skip_variable_marker();
                break;
            }
        }
    }
}


// Finds the start of image (SOI) marker.
// This code is rather defensive: it only checks the first 512 bytes to avoid
// false positives.
void jpeg_decoder::locate_soi_marker()
{
    uint32_t lastchar = get_bits(8);
    uint32_t thischar = get_bits(8);

    /* ok if it's a normal JPEG file without a special header */
    if ((lastchar == 0xFF) && (thischar == M_SOI)) return;

    uint32_t bytesleft = 4096; //512;

    while (true) {
        if (--bytesleft == 0) stop_decoding(JPGD_NOT_JPEG);

        lastchar = thischar;
        thischar = get_bits(8);

        if (lastchar == 0xFF) {
          if (thischar == M_SOI) break;
          else if (thischar == M_EOI) stop_decoding(JPGD_NOT_JPEG); // get_bits will keep returning M_EOI if we read past the end
        }
    }

    // Check the next character after marker: if it's not 0xFF, it can't be the start of the next marker, so the file is bad.
    thischar = (m_bit_buf >> 24) & 0xFF;
    if (thischar != 0xFF) stop_decoding(JPGD_NOT_JPEG);
}


// Find a start of frame (SOF) marker.
void jpeg_decoder::locate_sof_marker()
{
    locate_soi_marker();
    int c = process_markers();

    switch (c) {
        case M_SOF2: m_progressive_flag = true;
        case M_SOF0:  /* baseline DCT */
        case M_SOF1: { /* extended sequential DCT */
          read_sof_marker();
          break;
        }
        case M_SOF9: {  /* Arithmitic coding */
          stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT);
          break;
        }
        default: {
          stop_decoding(JPGD_UNSUPPORTED_MARKER);
          break;
        }
    }
}


// Find a start of scan (SOS) marker.
int jpeg_decoder::locate_sos_marker()
{
    int c = process_markers();
    if (c == M_EOI) return false;
    else if (c != M_SOS) stop_decoding(JPGD_UNEXPECTED_MARKER);
    read_sos_marker();
    return true;
}


// Reset everything to default/uninitialized state.
void jpeg_decoder::init(jpeg_decoder_stream *pStream)
{
    m_pMem_blocks = nullptr;
    m_error_code = JPGD_SUCCESS;
    m_ready_flag = false;
    m_image_x_size = m_image_y_size = 0;
    m_pStream = pStream;
    m_progressive_flag = false;

    memset(m_huff_ac, 0, sizeof(m_huff_ac));
    memset(m_huff_num, 0, sizeof(m_huff_num));
    memset(m_huff_val, 0, sizeof(m_huff_val));
    memset(m_quant, 0, sizeof(m_quant));

    m_scan_type = 0;
    m_comps_in_frame = 0;

    memset(m_comp_h_samp, 0, sizeof(m_comp_h_samp));
    memset(m_comp_v_samp, 0, sizeof(m_comp_v_samp));
    memset(m_comp_quant, 0, sizeof(m_comp_quant));
    memset(m_comp_ident, 0, sizeof(m_comp_ident));
    memset(m_comp_h_blocks, 0, sizeof(m_comp_h_blocks));
    memset(m_comp_v_blocks, 0, sizeof(m_comp_v_blocks));

    m_comps_in_scan = 0;
    memset(m_comp_list, 0, sizeof(m_comp_list));
    memset(m_comp_dc_tab, 0, sizeof(m_comp_dc_tab));
    memset(m_comp_ac_tab, 0, sizeof(m_comp_ac_tab));

    m_spectral_start = 0;
    m_spectral_end = 0;
    m_successive_low = 0;
    m_successive_high = 0;
    m_max_mcu_x_size = 0;
    m_max_mcu_y_size = 0;
    m_blocks_per_mcu = 0;
    m_max_blocks_per_row = 0;
    m_mcus_per_row = 0;
    m_mcus_per_col = 0;
    m_expanded_blocks_per_component = 0;
    m_expanded_blocks_per_mcu = 0;
    m_expanded_blocks_per_row = 0;
    m_freq_domain_chroma_upsample = false;

    memset(m_mcu_org, 0, sizeof(m_mcu_org));

    m_total_lines_left = 0;
    m_mcu_lines_left = 0;
    m_real_dest_bytes_per_scan_line = 0;
    m_dest_bytes_per_scan_line = 0;
    m_dest_bytes_per_pixel = 0;

    memset(m_pHuff_tabs, 0, sizeof(m_pHuff_tabs));

    memset(m_dc_coeffs, 0, sizeof(m_dc_coeffs));
    memset(m_ac_coeffs, 0, sizeof(m_ac_coeffs));
    memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu));

    m_eob_run = 0;

    memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu));

    m_pIn_buf_ofs = m_in_buf;
    m_in_buf_left = 0;
    m_eof_flag = false;
    m_tem_flag = 0;

    memset(m_in_buf_pad_start, 0, sizeof(m_in_buf_pad_start));
    memset(m_in_buf, 0, sizeof(m_in_buf));
    memset(m_in_buf_pad_end, 0, sizeof(m_in_buf_pad_end));

    m_restart_interval = 0;
    m_restarts_left    = 0;
    m_next_restart_num = 0;

    m_max_mcus_per_row = 0;
    m_max_blocks_per_mcu = 0;
    m_max_mcus_per_col = 0;

    memset(m_last_dc_val, 0, sizeof(m_last_dc_val));
    m_pMCU_coefficients = nullptr;
    m_pSample_buf = nullptr;

    m_total_bytes_read = 0;

    m_pScan_line_0 = nullptr;
    m_pScan_line_1 = nullptr;

    // Ready the input buffer.
    prep_in_buffer();

    // Prime the bit buffer.
    m_bits_left = 16;
    m_bit_buf = 0;

    get_bits(16);
    get_bits(16);

    for (int i = 0; i < JPGD_MAX_BLOCKS_PER_MCU; i++) {
        m_mcu_block_max_zag[i] = 64;
    }
}

#define SCALEBITS 16
#define ONE_HALF  ((int) 1 << (SCALEBITS-1))
#define FIX(x)    ((int) ((x) * (1L<<SCALEBITS) + 0.5f))


// Create a few tables that allow us to quickly convert YCbCr to RGB.
void jpeg_decoder::create_look_ups()
{
  for (int i = 0; i <= 255; i++) {
      int k = i - 128;
      m_crr[i] = ( FIX(1.40200f)  * k + ONE_HALF) >> SCALEBITS;
      m_cbb[i] = ( FIX(1.77200f)  * k + ONE_HALF) >> SCALEBITS;
      m_crg[i] = (-FIX(0.71414f)) * k;
      m_cbg[i] = (-FIX(0.34414f)) * k + ONE_HALF;
  }
}


// This method throws back into the stream any bytes that where read
// into the bit buffer during initial marker scanning.
void jpeg_decoder::fix_in_buffer()
{
    // In case any 0xFF's where pulled into the buffer during marker scanning.
    JPGD_ASSERT((m_bits_left & 7) == 0);

    if (m_bits_left == 16) stuff_char( (uint8_t)(m_bit_buf & 0xFF));
    if (m_bits_left >= 8) stuff_char( (uint8_t)((m_bit_buf >> 8) & 0xFF));

    stuff_char((uint8_t)((m_bit_buf >> 16) & 0xFF));
    stuff_char((uint8_t)((m_bit_buf >> 24) & 0xFF));

    m_bits_left = 16;
    get_bits_no_markers(16);
    get_bits_no_markers(16);
}


void jpeg_decoder::transform_mcu(int mcu_row)
{
    jpgd_block_t* pSrc_ptr = m_pMCU_coefficients;
    uint8_t* pDst_ptr = m_pSample_buf + mcu_row * m_blocks_per_mcu * 64;

    for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) {
        idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]);
        pSrc_ptr += 64;
        pDst_ptr += 64;
    }
}


static const uint8_t s_max_rc[64] =
{
    17, 18, 34, 50, 50, 51, 52, 52, 52, 68, 84, 84, 84, 84, 85, 86, 86, 86, 86, 86,
    102, 118, 118, 118, 118, 118, 118, 119, 120, 120, 120, 120, 120, 120, 120, 136,
    136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136,
    136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136
};


void jpeg_decoder::transform_mcu_expand(int mcu_row)
{
    jpgd_block_t* pSrc_ptr = m_pMCU_coefficients;
    uint8_t* pDst_ptr = m_pSample_buf + mcu_row * m_expanded_blocks_per_mcu * 64;

    // Y IDCT
    int mcu_block;
    for (mcu_block = 0; mcu_block < m_expanded_blocks_per_component; mcu_block++) {
        idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]);
        pSrc_ptr += 64;
        pDst_ptr += 64;
    }

    // Chroma IDCT, with upsampling
    jpgd_block_t temp_block[64];

    for (int i = 0; i < 2; i++) {
        DCT_Upsample::Matrix44 P, Q, R, S;
        JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] >= 1);
        JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] <= 64);

        int max_zag = m_mcu_block_max_zag[mcu_block++] - 1;
        if (max_zag <= 0) max_zag = 0; // should never happen, only here to shut up static analysis

        switch (s_max_rc[max_zag]) {
            case 1*16+1:
                DCT_Upsample::P_Q<1, 1>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<1, 1>::calc(R, S, pSrc_ptr);
                break;
            case 1*16+2:
                DCT_Upsample::P_Q<1, 2>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<1, 2>::calc(R, S, pSrc_ptr);
                break;
            case 2*16+2:
                DCT_Upsample::P_Q<2, 2>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<2, 2>::calc(R, S, pSrc_ptr);
                break;
            case 3*16+2:
                DCT_Upsample::P_Q<3, 2>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<3, 2>::calc(R, S, pSrc_ptr);
                break;
            case 3*16+3:
                DCT_Upsample::P_Q<3, 3>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<3, 3>::calc(R, S, pSrc_ptr);
                break;
            case 3*16+4:
                DCT_Upsample::P_Q<3, 4>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<3, 4>::calc(R, S, pSrc_ptr);
                break;
            case 4*16+4:
                DCT_Upsample::P_Q<4, 4>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<4, 4>::calc(R, S, pSrc_ptr);
                break;
            case 5*16+4:
                DCT_Upsample::P_Q<5, 4>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<5, 4>::calc(R, S, pSrc_ptr);
                break;
            case 5*16+5:
                DCT_Upsample::P_Q<5, 5>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<5, 5>::calc(R, S, pSrc_ptr);
                break;
            case 5*16+6:
                DCT_Upsample::P_Q<5, 6>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<5, 6>::calc(R, S, pSrc_ptr);
                break;
            case 6*16+6:
                DCT_Upsample::P_Q<6, 6>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<6, 6>::calc(R, S, pSrc_ptr);
                break;
            case 7*16+6:
                DCT_Upsample::P_Q<7, 6>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<7, 6>::calc(R, S, pSrc_ptr);
                break;
            case 7*16+7:
                DCT_Upsample::P_Q<7, 7>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<7, 7>::calc(R, S, pSrc_ptr);
                break;
            case 7*16+8:
                DCT_Upsample::P_Q<7, 8>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<7, 8>::calc(R, S, pSrc_ptr);
                break;
            case 8*16+8:
                DCT_Upsample::P_Q<8, 8>::calc(P, Q, pSrc_ptr);
                DCT_Upsample::R_S<8, 8>::calc(R, S, pSrc_ptr);
                break;
            default:
                JPGD_ASSERT(false);
        }
        DCT_Upsample::Matrix44 a(P + Q); P -= Q;
        DCT_Upsample::Matrix44& b = P;
        DCT_Upsample::Matrix44 c(R + S); R -= S;
        DCT_Upsample::Matrix44& d = R;

        DCT_Upsample::Matrix44::add_and_store(temp_block, a, c);
        idct_4x4(temp_block, pDst_ptr);
        pDst_ptr += 64;

        DCT_Upsample::Matrix44::sub_and_store(temp_block, a, c);
        idct_4x4(temp_block, pDst_ptr);
        pDst_ptr += 64;

        DCT_Upsample::Matrix44::add_and_store(temp_block, b, d);
        idct_4x4(temp_block, pDst_ptr);
        pDst_ptr += 64;

        DCT_Upsample::Matrix44::sub_and_store(temp_block, b, d);
        idct_4x4(temp_block, pDst_ptr);
        pDst_ptr += 64;
        pSrc_ptr += 64;
    }
}


// Loads and dequantizes the next row of (already decoded) coefficients.
// Progressive images only.
void jpeg_decoder::load_next_row()
{
    int i;
    jpgd_block_t *p;
    jpgd_quant_t *q;
    int mcu_row, mcu_block, row_block = 0;
    int component_num, component_id;
    int block_x_mcu[JPGD_MAX_COMPONENTS];

    memset(block_x_mcu, 0, JPGD_MAX_COMPONENTS * sizeof(int));

    for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) {
        int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0;

        for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) {
            component_id = m_mcu_org[mcu_block];
            q = m_quant[m_comp_quant[component_id]];
            p = m_pMCU_coefficients + 64 * mcu_block;

            jpgd_block_t* pAC = coeff_buf_getp(m_ac_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs);
            jpgd_block_t* pDC = coeff_buf_getp(m_dc_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs);
            p[0] = pDC[0];
            memcpy(&p[1], &pAC[1], 63 * sizeof(jpgd_block_t));

            for (i = 63; i > 0; i--) {
                if (p[g_ZAG[i]]) break;
            }

            m_mcu_block_max_zag[mcu_block] = i + 1;

            for ( ; i >= 0; i--) {
                if (p[g_ZAG[i]]) {
                    p[g_ZAG[i]] = static_cast<jpgd_block_t>(p[g_ZAG[i]] * q[i]);
                }
            }

            row_block++;

            if (m_comps_in_scan == 1) block_x_mcu[component_id]++;
            else {
                if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) block_x_mcu_ofs = 0;
                if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) {
                    block_y_mcu_ofs = 0;
                    block_x_mcu[component_id] += m_comp_h_samp[component_id];
                }
            }
        }
        if (m_freq_domain_chroma_upsample) transform_mcu_expand(mcu_row);
        else transform_mcu(mcu_row);
    }
    if (m_comps_in_scan == 1) m_block_y_mcu[m_comp_list[0]]++;
    else {
        for (component_num = 0; component_num < m_comps_in_scan; component_num++) {
            component_id = m_comp_list[component_num];
            m_block_y_mcu[component_id] += m_comp_v_samp[component_id];
        }
    }
}


// Restart interval processing.
void jpeg_decoder::process_restart()
{
    int i;
    int c = 0;

    // Align to a byte boundry
    // FIXME: Is this really necessary? get_bits_no_markers() never reads in markers!
    //get_bits_no_markers(m_bits_left & 7);

    // Let's scan a little bit to find the marker, but not _too_ far.
    // 1536 is a "fudge factor" that determines how much to scan.
    for (i = 1536; i > 0; i--) {
        if (get_char() == 0xFF) break;
    }
    if (i == 0) stop_decoding(JPGD_BAD_RESTART_MARKER);

    for ( ; i > 0; i--) {
        if ((c = get_char()) != 0xFF) break;
    }
    if (i == 0) stop_decoding(JPGD_BAD_RESTART_MARKER);

    // Is it the expected marker? If not, something bad happened.
    if (c != (m_next_restart_num + M_RST0)) stop_decoding(JPGD_BAD_RESTART_MARKER);

    // Reset each component's DC prediction values.
    memset(&m_last_dc_val, 0, m_comps_in_frame * sizeof(uint32_t));

    m_eob_run = 0;
    m_restarts_left = m_restart_interval;
    m_next_restart_num = (m_next_restart_num + 1) & 7;

    // Get the bit buffer going again...
    m_bits_left = 16;
    get_bits_no_markers(16);
    get_bits_no_markers(16);
}


static inline int dequantize_ac(int c, int q)
{
    c *= q;
    return c;
}

// Decodes and dequantizes the next row of coefficients.
void jpeg_decoder::decode_next_row()
{
    int row_block = 0;

    for (int mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) {
        if ((m_restart_interval) && (m_restarts_left == 0)) process_restart();

        jpgd_block_t* p = m_pMCU_coefficients;

        for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++, p += 64) {
            int component_id = m_mcu_org[mcu_block];
            jpgd_quant_t* q = m_quant[m_comp_quant[component_id]];

            int r, s;
            s = huff_decode(m_pHuff_tabs[m_comp_dc_tab[component_id]], r);
            s = JPGD_HUFF_EXTEND(r, s);

            m_last_dc_val[component_id] = (s += m_last_dc_val[component_id]);

            p[0] = static_cast<jpgd_block_t>(s * q[0]);

            int prev_num_set = m_mcu_block_max_zag[mcu_block];
            huff_tables *pH = m_pHuff_tabs[m_comp_ac_tab[component_id]];
            int k;
            for (k = 1; k < 64; k++) {
                int extra_bits;
                s = huff_decode(pH, extra_bits);
                r = s >> 4;
                s &= 15;

                if (s) {
                    if (r) {
                        if ((k + r) > 63) stop_decoding(JPGD_DECODE_ERROR);
                        if (k < prev_num_set) {
                            int n = JPGD_MIN(r, prev_num_set - k);
                            int kt = k;
                            while (n--) p[g_ZAG[kt++]] = 0;
                        }
                        k += r;
                    }
                    s = JPGD_HUFF_EXTEND(extra_bits, s);
                    JPGD_ASSERT(k < 64);
                    p[g_ZAG[k]] = static_cast<jpgd_block_t>(dequantize_ac(s, q[k])); //s * q[k];
                } else {
                    if (r == 15) {
                        if ((k + 16) > 64) stop_decoding(JPGD_DECODE_ERROR);
                        if (k < prev_num_set) {
                            int n = JPGD_MIN(16, prev_num_set - k);
                            int kt = k;
                            while (n--) {
                                JPGD_ASSERT(kt <= 63);
                                p[g_ZAG[kt++]] = 0;
                            }
                        }
                        k += 16 - 1; // - 1 because the loop counter is k
                        JPGD_ASSERT(p[g_ZAG[k]] == 0);
                    } else  break;
                }
            }

            if (k < prev_num_set) {
                int kt = k;
                while (kt < prev_num_set) p[g_ZAG[kt++]] = 0;
            }

            m_mcu_block_max_zag[mcu_block] = k;
            row_block++;
        }
        if (m_freq_domain_chroma_upsample) transform_mcu_expand(mcu_row);
        else transform_mcu(mcu_row);
        m_restarts_left--;
    }
}


// YCbCr H1V1 (1x1:1:1, 3 m_blocks per MCU) to RGB
void jpeg_decoder::H1V1Convert()
{
    int row = m_max_mcu_y_size - m_mcu_lines_left;
    uint8_t *d = m_pScan_line_0;
    uint8_t *s = m_pSample_buf + row * 8;

    for (int i = m_max_mcus_per_row; i > 0; i--) {
        for (int j = 0; j < 8; j++) {
            int y = s[j];
            int cb = s[64+j];
            int cr = s[128+j];

            d[0] = clamp(y + m_crr[cr]);
            d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16));
            d[2] = clamp(y + m_cbb[cb]);
            d[3] = 255;
            d += 4;
        }
        s += 64*3;
    }
}


// YCbCr H2V1 (2x1:1:1, 4 m_blocks per MCU) to RGB
void jpeg_decoder::H2V1Convert()
{
    int row = m_max_mcu_y_size - m_mcu_lines_left;
    uint8_t *d0 = m_pScan_line_0;
    uint8_t *y = m_pSample_buf + row * 8;
    uint8_t *c = m_pSample_buf + 2*64 + row * 8;

    for (int i = m_max_mcus_per_row; i > 0; i--) {
        for (int l = 0; l < 2; l++) {
            for (int j = 0; j < 4; j++) {
                int cb = c[0];
                int cr = c[64];

                int rc = m_crr[cr];
                int gc = ((m_crg[cr] + m_cbg[cb]) >> 16);
                int bc = m_cbb[cb];

                int yy = y[j<<1];
                d0[0] = clamp(yy+rc);
                d0[1] = clamp(yy+gc);
                d0[2] = clamp(yy+bc);
                d0[3] = 255;

                yy = y[(j<<1)+1];
                d0[4] = clamp(yy+rc);
                d0[5] = clamp(yy+gc);
                d0[6] = clamp(yy+bc);
                d0[7] = 255;
                d0 += 8;
                c++;
            }
            y += 64;
        }
        y += 64*4 - 64*2;
        c += 64*4 - 8;
    }
}


// YCbCr H2V1 (1x2:1:1, 4 m_blocks per MCU) to RGB
void jpeg_decoder::H1V2Convert()
{
    int row = m_max_mcu_y_size - m_mcu_lines_left;
    uint8_t *d0 = m_pScan_line_0;
    uint8_t *d1 = m_pScan_line_1;
    uint8_t *y;
    uint8_t *c;

    if (row < 8) y = m_pSample_buf + row * 8;
    else y = m_pSample_buf + 64*1 + (row & 7) * 8;

    c = m_pSample_buf + 64*2 + (row >> 1) * 8;

    for (int i = m_max_mcus_per_row; i > 0; i--) {
        for (int j = 0; j < 8; j++) {
            int cb = c[0+j];
            int cr = c[64+j];

            int rc = m_crr[cr];
            int gc = ((m_crg[cr] + m_cbg[cb]) >> 16);
            int bc = m_cbb[cb];

            int yy = y[j];
            d0[0] = clamp(yy+rc);
            d0[1] = clamp(yy+gc);
            d0[2] = clamp(yy+bc);
            d0[3] = 255;

            yy = y[8+j];
            d1[0] = clamp(yy+rc);
            d1[1] = clamp(yy+gc);
            d1[2] = clamp(yy+bc);
            d1[3] = 255;

            d0 += 4;
            d1 += 4;
        }
        y += 64*4;
        c += 64*4;
    }
}


// YCbCr H2V2 (2x2:1:1, 6 m_blocks per MCU) to RGB
void jpeg_decoder::H2V2Convert()
{
    int row = m_max_mcu_y_size - m_mcu_lines_left;
    uint8_t *d0 = m_pScan_line_0;
    uint8_t *d1 = m_pScan_line_1;
    uint8_t *y;
    uint8_t *c;

    if (row < 8) y = m_pSample_buf + row * 8;
    else y = m_pSample_buf + 64*2 + (row & 7) * 8;

    c = m_pSample_buf + 64*4 + (row >> 1) * 8;

    for (int i = m_max_mcus_per_row; i > 0; i--) {
        for (int l = 0; l < 2; l++) {
            for (int j = 0; j < 8; j += 2) {
                int cb = c[0];
                int cr = c[64];

                int rc = m_crr[cr];
                int gc = ((m_crg[cr] + m_cbg[cb]) >> 16);
                int bc = m_cbb[cb];

                int yy = y[j];
                d0[0] = clamp(yy+rc);
                d0[1] = clamp(yy+gc);
                d0[2] = clamp(yy+bc);
                d0[3] = 255;

                yy = y[j+1];
                d0[4] = clamp(yy+rc);
                d0[5] = clamp(yy+gc);
                d0[6] = clamp(yy+bc);
                d0[7] = 255;

                yy = y[j+8];
                d1[0] = clamp(yy+rc);
                d1[1] = clamp(yy+gc);
                d1[2] = clamp(yy+bc);
                d1[3] = 255;

                yy = y[j+8+1];
                d1[4] = clamp(yy+rc);
                d1[5] = clamp(yy+gc);
                d1[6] = clamp(yy+bc);
                d1[7] = 255;

                d0 += 8;
                d1 += 8;

                c++;
            }
            y += 64;
        }
        y += 64*6 - 64*2;
        c += 64*6 - 8;
    }
}


// Y (1 block per MCU) to 8-bit grayscale
void jpeg_decoder::gray_convert()
{
    int row = m_max_mcu_y_size - m_mcu_lines_left;
    uint8_t *d = m_pScan_line_0;
    uint8_t *s = m_pSample_buf + row * 8;

    for (int i = m_max_mcus_per_row; i > 0; i--) {
        *(uint32_t *)d = *(uint32_t *)s;
        *(uint32_t *)(&d[4]) = *(uint32_t *)(&s[4]);
        s += 64;
        d += 8;
    }
}


void jpeg_decoder::expanded_convert()
{
    int row = m_max_mcu_y_size - m_mcu_lines_left;
    uint8_t* Py = m_pSample_buf + (row / 8) * 64 * m_comp_h_samp[0] + (row & 7) * 8;
    uint8_t* d = m_pScan_line_0;

    for (int i = m_max_mcus_per_row; i > 0; i--) {
        for (int k = 0; k < m_max_mcu_x_size; k += 8) {
            const int Y_ofs = k * 8;
            const int Cb_ofs = Y_ofs + 64 * m_expanded_blocks_per_component;
            const int Cr_ofs = Y_ofs + 64 * m_expanded_blocks_per_component * 2;
            for (int j = 0; j < 8; j++) {
                int y = Py[Y_ofs + j];
                int cb = Py[Cb_ofs + j];
                int cr = Py[Cr_ofs + j];

                d[0] = clamp(y + m_crr[cr]);
                d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16));
                d[2] = clamp(y + m_cbb[cb]);
                d[3] = 255;

                d += 4;
            }
        }
        Py += 64 * m_expanded_blocks_per_mcu;
    }
}


// Find end of image (EOI) marker, so we can return to the user the exact size of the input stream.
void jpeg_decoder::find_eoi()
{
    if (!m_progressive_flag) {
        // Attempt to read the EOI marker.
        //get_bits_no_markers(m_bits_left & 7);

        // Prime the bit buffer
        m_bits_left = 16;
        get_bits(16);
        get_bits(16);

        // The next marker _should_ be EOI
        process_markers();
    }
    m_total_bytes_read -= m_in_buf_left;
}


int jpeg_decoder::decode(const void** pScan_line, uint32_t* pScan_line_len)
{
    if ((m_error_code) || (!m_ready_flag)) return JPGD_FAILED;
    if (m_total_lines_left == 0) return JPGD_DONE;
    if (m_mcu_lines_left == 0) {
        if (setjmp(m_jmp_state)) return JPGD_FAILED;
        if (m_progressive_flag) load_next_row();
        else decode_next_row();
        // Find the EOI marker if that was the last row.
        if (m_total_lines_left <= m_max_mcu_y_size) find_eoi();
        m_mcu_lines_left = m_max_mcu_y_size;
    }

    if (m_freq_domain_chroma_upsample) {
        expanded_convert();
        *pScan_line = m_pScan_line_0;
    } else {
        switch (m_scan_type) {
            case JPGD_YH2V2: {
                if ((m_mcu_lines_left & 1) == 0) {
                    H2V2Convert();
                    *pScan_line = m_pScan_line_0;
                }
              else *pScan_line = m_pScan_line_1;
              break;
            }
            case JPGD_YH2V1: {
                H2V1Convert();
                *pScan_line = m_pScan_line_0;
                break;
            }
            case JPGD_YH1V2: {
                if ((m_mcu_lines_left & 1) == 0) {
                    H1V2Convert();
                    *pScan_line = m_pScan_line_0;
                } else *pScan_line = m_pScan_line_1;
                break;
            }
            case JPGD_YH1V1: {
                H1V1Convert();
                *pScan_line = m_pScan_line_0;
                break;
            }
            case JPGD_GRAYSCALE: {
                gray_convert();
                *pScan_line = m_pScan_line_0;
                break;
            }
        }
    }

    *pScan_line_len = m_real_dest_bytes_per_scan_line;
    m_mcu_lines_left--;
    m_total_lines_left--;

    return JPGD_SUCCESS;
}


// Creates the tables needed for efficient Huffman decoding.
void jpeg_decoder::make_huff_table(int index, huff_tables *pH)
{
    int p, i, l, si;
    uint8_t huffsize[257];
    uint32_t huffcode[257];
    uint32_t code;
    uint32_t subtree;
    int code_size;
    int lastp;
    int nextfreeentry;
    int currententry;

    pH->ac_table = m_huff_ac[index] != 0;
    p = 0;

    for (l = 1; l <= 16; l++)  {
        for (i = 1; i <= m_huff_num[index][l]; i++) {
            huffsize[p++] = static_cast<uint8_t>(l);
        }
    }

    huffsize[p] = 0;
    lastp = p;
    code = 0;
    si = huffsize[0];
    p = 0;

    while (huffsize[p]) {
        while (huffsize[p] == si) {
            huffcode[p++] = code;
            code++;
        }
        code <<= 1;
        si++;
    }

    memset(pH->look_up, 0, sizeof(pH->look_up));
    memset(pH->look_up2, 0, sizeof(pH->look_up2));
    memset(pH->tree, 0, sizeof(pH->tree));
    memset(pH->code_size, 0, sizeof(pH->code_size));

    nextfreeentry = -1;
    p = 0;

    while (p < lastp) {
        i = m_huff_val[index][p];
        code = huffcode[p];
        code_size = huffsize[p];
        pH->code_size[i] = static_cast<uint8_t>(code_size);

        if (code_size <= 8) {
            code <<= (8 - code_size);
            for (l = 1 << (8 - code_size); l > 0; l--) {
                JPGD_ASSERT(i < 256);
                pH->look_up[code] = i;
                bool has_extrabits = false;
                int extra_bits = 0;
                int num_extra_bits = i & 15;
                int bits_to_fetch = code_size;

                if (num_extra_bits) {
                    int total_codesize = code_size + num_extra_bits;
                    if (total_codesize <= 8) {
                        has_extrabits = true;
                        extra_bits = ((1 << num_extra_bits) - 1) & (code >> (8 - total_codesize));
                        JPGD_ASSERT(extra_bits <= 0x7FFF);
                        bits_to_fetch += num_extra_bits;
                    }
                }
                if (!has_extrabits) pH->look_up2[code] = i | (bits_to_fetch << 8);
                else pH->look_up2[code] = i | 0x8000 | (extra_bits << 16) | (bits_to_fetch << 8);
                code++;
            }
        } else {
            subtree = (code >> (code_size - 8)) & 0xFF;
            currententry = pH->look_up[subtree];

            if (currententry == 0) {
                pH->look_up[subtree] = currententry = nextfreeentry;
                pH->look_up2[subtree] = currententry = nextfreeentry;
                nextfreeentry -= 2;
            }

            code <<= (16 - (code_size - 8));

            for (l = code_size; l > 9; l--) {
                if ((code & 0x8000) == 0) currententry--;
                if (pH->tree[-currententry - 1] == 0) {
                    pH->tree[-currententry - 1] = nextfreeentry;
                    currententry = nextfreeentry;
                    nextfreeentry -= 2;
                } else currententry = pH->tree[-currententry - 1];
                code <<= 1;
            }
            if ((code & 0x8000) == 0) currententry--;
            pH->tree[-currententry - 1] = i;
        }
        p++;
    }
}


// Verifies the quantization tables needed for this scan are available.
void jpeg_decoder::check_quant_tables()
{
    for (int i = 0; i < m_comps_in_scan; i++) {
        if (m_quant[m_comp_quant[m_comp_list[i]]] == nullptr) stop_decoding(JPGD_UNDEFINED_QUANT_TABLE);
    }
}


// Verifies that all the Huffman tables needed for this scan are available.
void jpeg_decoder::check_huff_tables()
{
    for (int i = 0; i < m_comps_in_scan; i++) {
      if ((m_spectral_start == 0) && (m_huff_num[m_comp_dc_tab[m_comp_list[i]]] == nullptr)) stop_decoding(JPGD_UNDEFINED_HUFF_TABLE);
      if ((m_spectral_end > 0) && (m_huff_num[m_comp_ac_tab[m_comp_list[i]]] == nullptr)) stop_decoding(JPGD_UNDEFINED_HUFF_TABLE);
    }

    for (int i = 0; i < JPGD_MAX_HUFF_TABLES; i++) {
        if (m_huff_num[i]) {
            if (!m_pHuff_tabs[i]) m_pHuff_tabs[i] = (huff_tables *)alloc(sizeof(huff_tables));
            make_huff_table(i, m_pHuff_tabs[i]);
        }
    }
}


// Determines the component order inside each MCU.
// Also calcs how many MCU's are on each row, etc.
void jpeg_decoder::calc_mcu_block_order()
{
    int component_num, component_id;
    int max_h_samp = 0, max_v_samp = 0;

    for (component_id = 0; component_id < m_comps_in_frame; component_id++) {
        if (m_comp_h_samp[component_id] > max_h_samp) {
          max_h_samp = m_comp_h_samp[component_id];
        }
        if (m_comp_v_samp[component_id] > max_v_samp) {
          max_v_samp = m_comp_v_samp[component_id];
        }
    }

    for (component_id = 0; component_id < m_comps_in_frame; component_id++) {
        m_comp_h_blocks[component_id] = ((((m_image_x_size * m_comp_h_samp[component_id]) + (max_h_samp - 1)) / max_h_samp) + 7) / 8;
        m_comp_v_blocks[component_id] = ((((m_image_y_size * m_comp_v_samp[component_id]) + (max_v_samp - 1)) / max_v_samp) + 7) / 8;
    }

    if (m_comps_in_scan == 1) {
        m_mcus_per_row = m_comp_h_blocks[m_comp_list[0]];
        m_mcus_per_col = m_comp_v_blocks[m_comp_list[0]];
    } else {
        m_mcus_per_row = (((m_image_x_size + 7) / 8) + (max_h_samp - 1)) / max_h_samp;
        m_mcus_per_col = (((m_image_y_size + 7) / 8) + (max_v_samp - 1)) / max_v_samp;
    }

    if (m_comps_in_scan == 1) {
        m_mcu_org[0] = m_comp_list[0];
        m_blocks_per_mcu = 1;
    } else {
        m_blocks_per_mcu = 0;

        for (component_num = 0; component_num < m_comps_in_scan; component_num++) {
            int num_blocks;
            component_id = m_comp_list[component_num];
            num_blocks = m_comp_h_samp[component_id] * m_comp_v_samp[component_id];
            while (num_blocks--) m_mcu_org[m_blocks_per_mcu++] = component_id;
        }
    }
}


// Starts a new scan.
int jpeg_decoder::init_scan()
{
    if (!locate_sos_marker()) return false;

    calc_mcu_block_order();
    check_huff_tables();
    check_quant_tables();

    memset(m_last_dc_val, 0, m_comps_in_frame * sizeof(uint32_t));

    m_eob_run = 0;

    if (m_restart_interval) {
        m_restarts_left = m_restart_interval;
        m_next_restart_num = 0;
    }
    fix_in_buffer();
    return true;
}


// Starts a frame. Determines if the number of components or sampling factors
// are supported.
void jpeg_decoder::init_frame()
{
    int i;

    if (m_comps_in_frame == 1) {
        if ((m_comp_h_samp[0] != 1) || (m_comp_v_samp[0] != 1)) stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);
        m_scan_type = JPGD_GRAYSCALE;
        m_max_blocks_per_mcu = 1;
        m_max_mcu_x_size = 8;
        m_max_mcu_y_size = 8;
    } else if (m_comps_in_frame == 3) {
        if (((m_comp_h_samp[1] != 1) || (m_comp_v_samp[1] != 1)) || ((m_comp_h_samp[2] != 1) || (m_comp_v_samp[2] != 1)))
            stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);

        if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1)) {
            m_scan_type = JPGD_YH1V1;
            m_max_blocks_per_mcu = 3;
            m_max_mcu_x_size = 8;
            m_max_mcu_y_size = 8;
        } else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1)) {
            m_scan_type = JPGD_YH2V1;
            m_max_blocks_per_mcu = 4;
            m_max_mcu_x_size = 16;
            m_max_mcu_y_size = 8;
        } else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 2)) {
            m_scan_type = JPGD_YH1V2;
            m_max_blocks_per_mcu = 4;
            m_max_mcu_x_size = 8;
            m_max_mcu_y_size = 16;
        } else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2)) {
            m_scan_type = JPGD_YH2V2;
            m_max_blocks_per_mcu = 6;
            m_max_mcu_x_size = 16;
            m_max_mcu_y_size = 16;
        } else stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS);
    } else stop_decoding(JPGD_UNSUPPORTED_COLORSPACE);

    m_max_mcus_per_row = (m_image_x_size + (m_max_mcu_x_size - 1)) / m_max_mcu_x_size;
    m_max_mcus_per_col = (m_image_y_size + (m_max_mcu_y_size - 1)) / m_max_mcu_y_size;

    // These values are for the *destination* pixels: after conversion.
    if (m_scan_type == JPGD_GRAYSCALE) m_dest_bytes_per_pixel = 1;
    else m_dest_bytes_per_pixel = 4;

    m_dest_bytes_per_scan_line = ((m_image_x_size + 15) & 0xFFF0) * m_dest_bytes_per_pixel;
    m_real_dest_bytes_per_scan_line = (m_image_x_size * m_dest_bytes_per_pixel);

    // Initialize two scan line buffers.
    m_pScan_line_0 = (uint8_t *)alloc(m_dest_bytes_per_scan_line, true);
    if ((m_scan_type == JPGD_YH1V2) || (m_scan_type == JPGD_YH2V2)) {
        m_pScan_line_1 = (uint8_t *)alloc(m_dest_bytes_per_scan_line, true);
    }

    m_max_blocks_per_row = m_max_mcus_per_row * m_max_blocks_per_mcu;

    // Should never happen
    if (m_max_blocks_per_row > JPGD_MAX_BLOCKS_PER_ROW) stop_decoding(JPGD_ASSERTION_ERROR);

    // Allocate the coefficient buffer, enough for one MCU
    m_pMCU_coefficients = (jpgd_block_t*)alloc(m_max_blocks_per_mcu * 64 * sizeof(jpgd_block_t));

    for (i = 0; i < m_max_blocks_per_mcu; i++) {
        m_mcu_block_max_zag[i] = 64;
    }

    m_expanded_blocks_per_component = m_comp_h_samp[0] * m_comp_v_samp[0];
    m_expanded_blocks_per_mcu = m_expanded_blocks_per_component * m_comps_in_frame;
    m_expanded_blocks_per_row = m_max_mcus_per_row * m_expanded_blocks_per_mcu;
    // Freq. domain chroma upsampling is only supported for H2V2 subsampling factor (the most common one I've seen).
    m_freq_domain_chroma_upsample = false;
#if JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING
    m_freq_domain_chroma_upsample = (m_expanded_blocks_per_mcu == 4*3);
#endif

    if (m_freq_domain_chroma_upsample)
        m_pSample_buf = (uint8_t *)alloc(m_expanded_blocks_per_row * 64);
    else
        m_pSample_buf = (uint8_t *)alloc(m_max_blocks_per_row * 64);

    m_total_lines_left = m_image_y_size;
    m_mcu_lines_left = 0;
    create_look_ups();
}


// The coeff_buf series of methods originally stored the coefficients
// into a "virtual" file which was located in EMS, XMS, or a disk file. A cache
// was used to make this process more efficient. Now, we can store the entire
// thing in RAM.
jpeg_decoder::coeff_buf* jpeg_decoder::coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y)
{
    coeff_buf* cb = (coeff_buf*)alloc(sizeof(coeff_buf));
    cb->block_num_x = block_num_x;
    cb->block_num_y = block_num_y;
    cb->block_len_x = block_len_x;
    cb->block_len_y = block_len_y;
    cb->block_size = (block_len_x * block_len_y) * sizeof(jpgd_block_t);
    cb->pData = (uint8_t *)alloc(cb->block_size * block_num_x * block_num_y, true);
    return cb;
}


inline jpgd_block_t *jpeg_decoder::coeff_buf_getp(coeff_buf *cb, int block_x, int block_y)
{
    JPGD_ASSERT((block_x < cb->block_num_x) && (block_y < cb->block_num_y));
    return (jpgd_block_t *)(cb->pData + block_x * cb->block_size + block_y * (cb->block_size * cb->block_num_x));
}


// The following methods decode the various types of m_blocks encountered
// in progressively encoded images.
void jpeg_decoder::decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y)
{
    int s, r;
    jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y);

    if ((s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_dc_tab[component_id]])) != 0) {
        r = pD->get_bits_no_markers(s);
        s = JPGD_HUFF_EXTEND(r, s);
    }
    pD->m_last_dc_val[component_id] = (s += pD->m_last_dc_val[component_id]);
    p[0] = static_cast<jpgd_block_t>(static_cast<unsigned int>(s) << pD->m_successive_low);
}


void jpeg_decoder::decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y)
{
    if (pD->get_bits_no_markers(1)) {
        jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y);
        p[0] |= (1 << pD->m_successive_low);
    }
}


void jpeg_decoder::decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y)
{
    int k, s, r;

    if (pD->m_eob_run) {
        pD->m_eob_run--;
        return;
    }
    jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y);

    for (k = pD->m_spectral_start; k <= pD->m_spectral_end; k++) {
        s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]);
        r = s >> 4;
        s &= 15;
        if (s) {
            if ((k += r) > 63) pD->stop_decoding(JPGD_DECODE_ERROR);
            r = pD->get_bits_no_markers(s);
            s = JPGD_HUFF_EXTEND(r, s);
            p[g_ZAG[k]] = static_cast<jpgd_block_t>(static_cast<unsigned int>(s) << pD->m_successive_low);
        } else {
            if (r == 15) {
                if ((k += 15) > 63) pD->stop_decoding(JPGD_DECODE_ERROR);
            } else {
                pD->m_eob_run = 1 << r;
                if (r) pD->m_eob_run += pD->get_bits_no_markers(r);
                pD->m_eob_run--;
                break;
            }
        }
    }
}


void jpeg_decoder::decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y)
{
    int s, k, r;
    int p1 = 1 << pD->m_successive_low;
    int m1 = static_cast<unsigned int>(-1) << pD->m_successive_low;
    jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y);

    JPGD_ASSERT(pD->m_spectral_end <= 63);

    k = pD->m_spectral_start;

    if (pD->m_eob_run == 0) {
        for ( ; k <= pD->m_spectral_end; k++) {
            s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]);
            r = s >> 4;
            s &= 15;
            if (s) {
                if (s != 1) pD->stop_decoding(JPGD_DECODE_ERROR);
                if (pD->get_bits_no_markers(1)) s = p1;
                else s = m1;
            } else {
                if (r != 15) {
                    pD->m_eob_run = 1 << r;
                    if (r) pD->m_eob_run += pD->get_bits_no_markers(r);
                    break;
                }
            }

            do {
                jpgd_block_t *this_coef = p + g_ZAG[k & 63];

                if (*this_coef != 0) {
                    if (pD->get_bits_no_markers(1)) {
                        if ((*this_coef & p1) == 0) {
                            if (*this_coef >= 0) *this_coef = static_cast<jpgd_block_t>(*this_coef + p1);
                            else *this_coef = static_cast<jpgd_block_t>(*this_coef + m1);
                        }
                    }
                } else {
                    if (--r < 0) break;
                }
                k++;
            } while (k <= pD->m_spectral_end);

            if ((s) && (k < 64)) {
              p[g_ZAG[k]] = static_cast<jpgd_block_t>(s);
            }
        }
    }

    if (pD->m_eob_run > 0) {
        for ( ; k <= pD->m_spectral_end; k++) {
            jpgd_block_t *this_coef = p + g_ZAG[k & 63]; // logical AND to shut up static code analysis

            if (*this_coef != 0) {
                if (pD->get_bits_no_markers(1)) {
                    if ((*this_coef & p1) == 0) {
                        if (*this_coef >= 0) *this_coef = static_cast<jpgd_block_t>(*this_coef + p1);
                        else *this_coef = static_cast<jpgd_block_t>(*this_coef + m1);
                    }
                }
            }
        }
        pD->m_eob_run--;
    }
}


// Decode a scan in a progressively encoded image.
void jpeg_decoder::decode_scan(pDecode_block_func decode_block_func)
{
    int mcu_row, mcu_col, mcu_block;
    int block_x_mcu[JPGD_MAX_COMPONENTS], m_block_y_mcu[JPGD_MAX_COMPONENTS];

    memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu));

    for (mcu_col = 0; mcu_col < m_mcus_per_col; mcu_col++) {
        int component_num, component_id;
        memset(block_x_mcu, 0, sizeof(block_x_mcu));

        for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) {
            int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0;

            if ((m_restart_interval) && (m_restarts_left == 0)) process_restart();

            for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) {
                component_id = m_mcu_org[mcu_block];
                decode_block_func(this, component_id, block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs);

                if (m_comps_in_scan == 1) block_x_mcu[component_id]++;
                else {
                    if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) {
                        block_x_mcu_ofs = 0;

                        if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) {
                            block_y_mcu_ofs = 0;
                            block_x_mcu[component_id] += m_comp_h_samp[component_id];
                        }
                    }
                }
            }
            m_restarts_left--;
        }

        if (m_comps_in_scan == 1) m_block_y_mcu[m_comp_list[0]]++;
        else {
            for (component_num = 0; component_num < m_comps_in_scan; component_num++) {
                component_id = m_comp_list[component_num];
                m_block_y_mcu[component_id] += m_comp_v_samp[component_id];
            }
        }
    }
}


// Decode a progressively encoded image.
void jpeg_decoder::init_progressive()
{
    int i;

    if (m_comps_in_frame == 4) stop_decoding(JPGD_UNSUPPORTED_COLORSPACE);

    // Allocate the coefficient buffers.
    for (i = 0; i < m_comps_in_frame; i++) {
        m_dc_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 1, 1);
        m_ac_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 8, 8);
    }

    while (true) {
        int dc_only_scan, refinement_scan;
        pDecode_block_func decode_block_func;

        if (!init_scan()) break;

        dc_only_scan = (m_spectral_start == 0);
        refinement_scan = (m_successive_high != 0);

        if ((m_spectral_start > m_spectral_end) || (m_spectral_end > 63)) stop_decoding(JPGD_BAD_SOS_SPECTRAL);

        if (dc_only_scan) {
            if (m_spectral_end) stop_decoding(JPGD_BAD_SOS_SPECTRAL);
        } else if (m_comps_in_scan != 1) {  /* AC scans can only contain one component */
            stop_decoding(JPGD_BAD_SOS_SPECTRAL);
        }

        if ((refinement_scan) && (m_successive_low != m_successive_high - 1)) stop_decoding(JPGD_BAD_SOS_SUCCESSIVE);

        if (dc_only_scan) {
            if (refinement_scan) decode_block_func = decode_block_dc_refine;
            else decode_block_func = decode_block_dc_first;
        } else {
            if (refinement_scan) decode_block_func = decode_block_ac_refine;
            else decode_block_func = decode_block_ac_first;
        }
        decode_scan(decode_block_func);
        m_bits_left = 16;
        get_bits(16);
        get_bits(16);
    }

    m_comps_in_scan = m_comps_in_frame;

    for (i = 0; i < m_comps_in_frame; i++) {
        m_comp_list[i] = i;
    }

    calc_mcu_block_order();
}


void jpeg_decoder::init_sequential()
{
    if (!init_scan()) stop_decoding(JPGD_UNEXPECTED_MARKER);
}


void jpeg_decoder::decode_start()
{
    init_frame();
    if (m_progressive_flag) init_progressive();
    else init_sequential();
}


void jpeg_decoder::decode_init(jpeg_decoder_stream *pStream)
{
    init(pStream);
    locate_sof_marker();
}


jpeg_decoder::jpeg_decoder(jpeg_decoder_stream *pStream)
{
    if (setjmp(m_jmp_state)) return;
    decode_init(pStream);
}


int jpeg_decoder::begin_decoding()
{
    if (m_ready_flag) return JPGD_SUCCESS;
    if (m_error_code) return JPGD_FAILED;
    if (setjmp(m_jmp_state)) return JPGD_FAILED;

    decode_start();
    m_ready_flag = true;

    return JPGD_SUCCESS;
}


jpeg_decoder::~jpeg_decoder()
{
    free_all_blocks();
}


void jpeg_decoder_file_stream::close()
{
    if (m_pFile) {
        fclose(m_pFile);
        m_pFile = nullptr;
    }
    m_eof_flag = false;
    m_error_flag = false;
}


jpeg_decoder_file_stream::~jpeg_decoder_file_stream()
{
    close();
}


bool jpeg_decoder_file_stream::open(const char *Pfilename)
{
    close();

    m_eof_flag = false;
    m_error_flag = false;

#if defined(_MSC_VER)
    m_pFile = nullptr;
    fopen_s(&m_pFile, Pfilename, "rb");
#else
    m_pFile = fopen(Pfilename, "rb");
#endif
    return m_pFile != nullptr;
}


int jpeg_decoder_file_stream::read(uint8_t *pBuf, int max_bytes_to_read, bool *pEOF_flag)
{
    if (!m_pFile) return -1;

    if (m_eof_flag) {
        *pEOF_flag = true;
        return 0;
    }

    if (m_error_flag) return -1;

    int bytes_read = static_cast<int>(fread(pBuf, 1, max_bytes_to_read, m_pFile));
    if (bytes_read < max_bytes_to_read) {
        if (ferror(m_pFile)) {
            m_error_flag = true;
            return -1;
        }
        m_eof_flag = true;
        *pEOF_flag = true;
    }
    return bytes_read;
}


bool jpeg_decoder_mem_stream::open(const uint8_t *pSrc_data, uint32_t size)
{
    close();
    m_pSrc_data = pSrc_data;
    m_ofs = 0;
    m_size = size;
    return true;
}


int jpeg_decoder_mem_stream::read(uint8_t *pBuf, int max_bytes_to_read, bool *pEOF_flag)
{
    *pEOF_flag = false;
    if (!m_pSrc_data) return -1;

    uint32_t bytes_remaining = m_size - m_ofs;
    if ((uint32_t)max_bytes_to_read > bytes_remaining) {
        max_bytes_to_read = bytes_remaining;
        *pEOF_flag = true;
    }
    memcpy(pBuf, m_pSrc_data + m_ofs, max_bytes_to_read);
    m_ofs += max_bytes_to_read;

    return max_bytes_to_read;
}


/************************************************************************/
/* External Class Implementation                                        */
/************************************************************************/


jpeg_decoder* jpgdHeader(const char* data, int size, int* width, int* height)
{
    auto decoder = new jpeg_decoder(new jpeg_decoder_mem_stream((const uint8_t*)data, size));
    if (decoder->get_error_code() != JPGD_SUCCESS) {
        delete(decoder);
        return nullptr;
    }

    if (width) *width = decoder->get_width();
    if (height) *height = decoder->get_height();

    return decoder;
}


jpeg_decoder* jpgdHeader(const char* filename, int* width, int* height)
{
    auto fileStream = new jpeg_decoder_file_stream();
    if (!fileStream->open(filename)) return nullptr;

    auto decoder = new jpeg_decoder(fileStream);
    if (decoder->get_error_code() != JPGD_SUCCESS) {
        delete(decoder);
        return nullptr;
    }

    if (width) *width = decoder->get_width();
    if (height) *height = decoder->get_height();

    return decoder;
}


void jpgdDelete(jpeg_decoder* decoder)
{
    delete(decoder);
}


unsigned char* jpgdDecompress(jpeg_decoder* decoder)
{
    if (!decoder) return nullptr;

    int req_comps = 4;  //TODO: fixed 4 channel components now?
    if ((req_comps != 1) && (req_comps != 3) && (req_comps != 4)) return nullptr;

    auto image_width = decoder->get_width();
    auto image_height = decoder->get_height();
    //auto actual_comps = decoder->get_num_components();

    if (decoder->begin_decoding() != JPGD_SUCCESS) return nullptr;

    const int dst_bpl = image_width * req_comps;
    uint8_t *pImage_data = (uint8_t*)malloc(dst_bpl * image_height);
    if (!pImage_data) return nullptr;

    for (int y = 0; y < image_height; y++) {
        const uint8_t* pScan_line;
        uint32_t scan_line_len;
        if (decoder->decode((const void**)&pScan_line, &scan_line_len) != JPGD_SUCCESS) {
            free(pImage_data);
            return nullptr;
        }

        uint8_t *pDst = pImage_data + y * dst_bpl;

        //Return as BGRA
        if ((req_comps == 4) && (decoder->get_num_components() == 3)) {
            for (int x = 0; x < image_width; x++) {
                pDst[0] = pScan_line[x*4+2];
                pDst[1] = pScan_line[x*4+1];
                pDst[2] = pScan_line[x*4+0];
                pDst[3] = 255;
                pDst += 4;
            }
        } else if (((req_comps == 1) && (decoder->get_num_components() == 1)) || ((req_comps == 4) && (decoder->get_num_components() == 3))) {
            memcpy(pDst, pScan_line, dst_bpl);
        } else if (decoder->get_num_components() == 1) {
            if (req_comps == 3) {
                for (int x = 0; x < image_width; x++) {
                    uint8_t luma = pScan_line[x];
                    pDst[0] = luma;
                    pDst[1] = luma;
                    pDst[2] = luma;
                    pDst += 3;
                }
            } else {
                for (int x = 0; x < image_width; x++) {
                    uint8_t luma = pScan_line[x];
                    pDst[0] = luma;
                    pDst[1] = luma;
                    pDst[2] = luma;
                    pDst[3] = 255;
                    pDst += 4;
                }
            }
        } else if (decoder->get_num_components() == 3) {
            if (req_comps == 1) {
                const int YR = 19595, YG = 38470, YB = 7471;
                for (int x = 0; x < image_width; x++) {
                    int r = pScan_line[x*4+0];
                    int g = pScan_line[x*4+1];
                    int b = pScan_line[x*4+2];
                    *pDst++ = static_cast<uint8_t>((r * YR + g * YG + b * YB + 32768) >> 16);
                }
            } else {
                for (int x = 0; x < image_width; x++) {
                    pDst[0] = pScan_line[x*4+0];
                    pDst[1] = pScan_line[x*4+1];
                    pDst[2] = pScan_line[x*4+2];
                    pDst += 3;
                }
            }
        }
    }
    return pImage_data;
}