summaryrefslogtreecommitdiff
path: root/thirdparty/thorvg/src/lib/sw_engine/tvgSwStroke.cpp
blob: fa213cc5d327c5a4cb9ba6960c5c28dc7eb55edd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
/*
 * Copyright (c) 2020 - 2022 Samsung Electronics Co., Ltd. All rights reserved.

 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:

 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.

 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include <string.h>
#include <math.h>
#include "tvgSwCommon.h"

/************************************************************************/
/* Internal Class Implementation                                        */
/************************************************************************/

static constexpr auto SW_STROKE_TAG_POINT = 1;
static constexpr auto SW_STROKE_TAG_CUBIC = 2;
static constexpr auto SW_STROKE_TAG_BEGIN = 4;
static constexpr auto SW_STROKE_TAG_END = 8;

static inline SwFixed SIDE_TO_ROTATE(const int32_t s)
{
    return (SW_ANGLE_PI2 - static_cast<SwFixed>(s) * SW_ANGLE_PI);
}


static inline void SCALE(const SwStroke& stroke, SwPoint& pt)
{
    pt.x = static_cast<SwCoord>(pt.x * stroke.sx);
    pt.y = static_cast<SwCoord>(pt.y * stroke.sy);
}


static void _growBorder(SwStrokeBorder* border, uint32_t newPts)
{
    auto maxOld = border->maxPts;
    auto maxNew = border->ptsCnt + newPts;

    if (maxNew <= maxOld) return;

    auto maxCur = maxOld;

    while (maxCur < maxNew)
        maxCur += (maxCur >> 1) + 16;
    //OPTIMIZE: use mempool!
    border->pts = static_cast<SwPoint*>(realloc(border->pts, maxCur * sizeof(SwPoint)));
    border->tags = static_cast<uint8_t*>(realloc(border->tags, maxCur * sizeof(uint8_t)));
    border->maxPts = maxCur;
}


static void _borderClose(SwStrokeBorder* border, bool reverse)
{
    auto start = border->start;
    auto count = border->ptsCnt;

    //Don't record empty paths!
    if (count <= start + 1U) {
        border->ptsCnt = start;
    } else {
        /* Copy the last point to the start of this sub-path,
           since it contains the adjusted starting coordinates */
        border->ptsCnt = --count;
        border->pts[start] = border->pts[count];

        if (reverse) {
            //reverse the points
            auto pt1 = border->pts + start + 1;
            auto pt2 = border->pts + count - 1;

            while (pt1 < pt2) {
                auto tmp = *pt1;
                *pt1 = *pt2;
                *pt2 = tmp;
                ++pt1;
                --pt2;
            }

            //reverse the tags
            auto tag1 = border->tags + start + 1;
            auto tag2 = border->tags + count - 1;

            while (tag1 < tag2) {
                auto tmp = *tag1;
                *tag1 = *tag2;
                *tag2 = tmp;
                ++tag1;
                --tag2;
            }
        }

        border->tags[start] |= SW_STROKE_TAG_BEGIN;
        border->tags[count - 1] |=  SW_STROKE_TAG_END;
    }

    border->start = -1;
    border->movable = false;
}


static void _borderCubicTo(SwStrokeBorder* border, const SwPoint& ctrl1, const SwPoint& ctrl2, const SwPoint& to)
{
    _growBorder(border, 3);

    auto pt = border->pts + border->ptsCnt;
    auto tag = border->tags + border->ptsCnt;

    pt[0] = ctrl1;
    pt[1] = ctrl2;
    pt[2] = to;

    tag[0] = SW_STROKE_TAG_CUBIC;
    tag[1] = SW_STROKE_TAG_CUBIC;
    tag[2] = SW_STROKE_TAG_POINT;

    border->ptsCnt += 3;

    border->movable = false;
}


static void _borderArcTo(SwStrokeBorder* border, const SwPoint& center, SwFixed radius, SwFixed angleStart, SwFixed angleDiff, SwStroke& stroke)
{
    constexpr SwFixed ARC_CUBIC_ANGLE = SW_ANGLE_PI / 2;
    SwPoint a = {static_cast<SwCoord>(radius), 0};
    mathRotate(a, angleStart);
    SCALE(stroke, a);
    a += center;

    auto total = angleDiff;
    auto angle = angleStart;
    auto rotate = (angleDiff >= 0) ? SW_ANGLE_PI2 : -SW_ANGLE_PI2;

    while (total != 0) {
        auto step = total;
        if (step > ARC_CUBIC_ANGLE) step = ARC_CUBIC_ANGLE;
        else if (step < -ARC_CUBIC_ANGLE) step = -ARC_CUBIC_ANGLE;

        auto next = angle + step;
        auto theta = step;
        if (theta < 0) theta = -theta;

        theta >>= 1;

        //compute end point
        SwPoint b = {static_cast<SwCoord>(radius), 0};
        mathRotate(b, next);
        SCALE(stroke, b);
        b += center;

        //compute first and second control points
        auto length = mathMulDiv(radius, mathSin(theta) * 4, (0x10000L + mathCos(theta)) * 3);

        SwPoint a2 = {static_cast<SwCoord>(length), 0};
        mathRotate(a2, angle + rotate);
        SCALE(stroke, a2);
        a2 += a;

        SwPoint b2 = {static_cast<SwCoord>(length), 0};
        mathRotate(b2, next - rotate);
        SCALE(stroke, b2);
        b2 += b;

        //add cubic arc
        _borderCubicTo(border, a2, b2, b);

        //process the rest of the arc?
        a = b;
        total -= step;
        angle = next;
    }
}


static void _borderLineTo(SwStrokeBorder* border, const SwPoint& to, bool movable)
{
    if (border->movable) {
        //move last point
        border->pts[border->ptsCnt - 1] = to;
    } else {

        //don't add zero-length line_to
        if (border->ptsCnt > 0 && (border->pts[border->ptsCnt - 1] - to).small()) return;

        _growBorder(border, 1);
        border->pts[border->ptsCnt] = to;
        border->tags[border->ptsCnt] = SW_STROKE_TAG_POINT;
        border->ptsCnt += 1;
    }

    border->movable = movable;
}


static void _borderMoveTo(SwStrokeBorder* border, SwPoint& to)
{
    //close current open path if any?
    if (border->start >= 0) _borderClose(border, false);

    border->start = border->ptsCnt;
    border->movable = false;

    _borderLineTo(border, to, false);
}


static void _arcTo(SwStroke& stroke, int32_t side)
{
    auto border = stroke.borders + side;
    auto rotate = SIDE_TO_ROTATE(side);
    auto total = mathDiff(stroke.angleIn, stroke.angleOut);
    if (total == SW_ANGLE_PI) total = -rotate * 2;

    _borderArcTo(border, stroke.center, stroke.width, stroke.angleIn + rotate, total, stroke);
    border->movable = false;
}


static void _outside(SwStroke& stroke, int32_t side, SwFixed lineLength)
{
    constexpr SwFixed MITER_LIMIT = 4 * (1 << 16);

    auto border = stroke.borders + side;

    if (stroke.join == StrokeJoin::Round) {
        _arcTo(stroke, side);
    } else {
        //this is a mitered (pointed) or beveled (truncated) corner
        auto rotate = SIDE_TO_ROTATE(side);
        auto bevel = (stroke.join == StrokeJoin::Bevel) ? true : false;
        SwFixed phi = 0;
        SwFixed thcos = 0;

        if (!bevel) {
            auto theta = mathDiff(stroke.angleIn, stroke.angleOut);
            if (theta == SW_ANGLE_PI) {
                theta = rotate;
                phi = stroke.angleIn;
            } else {
                theta /= 2;
                phi = stroke.angleIn + theta + rotate;
            }

            thcos = mathCos(theta);
            auto sigma = mathMultiply(MITER_LIMIT, thcos);

            //is miter limit exceeded?
            if (sigma < 0x10000L) bevel = true;
        }

        //this is a bevel (broken angle)
        if (bevel) {
            SwPoint delta = {static_cast<SwCoord>(stroke.width), 0};
            mathRotate(delta, stroke.angleOut + rotate);
            SCALE(stroke, delta);
            delta += stroke.center;
            border->movable = false;
            _borderLineTo(border, delta, false);
        //this is a miter (intersection)
        } else {
            auto length = mathDivide(stroke.width, thcos);
            SwPoint delta = {static_cast<SwCoord>(length), 0};
            mathRotate(delta, phi);
            SCALE(stroke, delta);
            delta += stroke.center;
            _borderLineTo(border, delta, false);

            /* Now add and end point
               Only needed if not lineto (lineLength is zero for curves) */
            if (lineLength == 0) {
                delta = {static_cast<SwCoord>(stroke.width), 0};
                mathRotate(delta, stroke.angleOut + rotate);
                SCALE(stroke, delta);
                delta += stroke.center;
                _borderLineTo(border, delta, false);
            }
        }
    }
}


static void _inside(SwStroke& stroke, int32_t side, SwFixed lineLength)
{
    auto border = stroke.borders + side;
    auto theta = mathDiff(stroke.angleIn, stroke.angleOut) / 2;
    SwPoint delta;
    bool intersect = false;

    /* Only intersect borders if between two line_to's and both
       lines are long enough (line length is zero fur curves). */
    if (border->movable && lineLength > 0) {
        //compute minimum required length of lines
        SwFixed minLength = abs(mathMultiply(stroke.width, mathTan(theta)));
        if (stroke.lineLength >= minLength && lineLength >= minLength) intersect = true;
    }

    auto rotate = SIDE_TO_ROTATE(side);

    if (!intersect) {
        delta = {static_cast<SwCoord>(stroke.width), 0};
        mathRotate(delta, stroke.angleOut + rotate);
        SCALE(stroke, delta);
        delta += stroke.center;
        border->movable = false;
    } else {
        //compute median angle
        auto phi = stroke.angleIn + theta;
        auto thcos = mathCos(theta);
        delta = {static_cast<SwCoord>(mathDivide(stroke.width, thcos)), 0};
        mathRotate(delta, phi + rotate);
        SCALE(stroke, delta);
        delta += stroke.center;
    }

    _borderLineTo(border, delta, false);
}


void _processCorner(SwStroke& stroke, SwFixed lineLength)
{
    auto turn = mathDiff(stroke.angleIn, stroke.angleOut);

    //no specific corner processing is required if the turn is 0
    if (turn == 0) return;

    //when we turn to the right, the inside side is 0
    int32_t inside = 0;

    //otherwise, the inside is 1
    if (turn < 0) inside = 1;

    //process the inside
    _inside(stroke, inside, lineLength);

    //process the outside
    _outside(stroke, 1 - inside, lineLength);
}


void _firstSubPath(SwStroke& stroke, SwFixed startAngle, SwFixed lineLength)
{
    SwPoint delta = {static_cast<SwCoord>(stroke.width), 0};
    mathRotate(delta, startAngle + SW_ANGLE_PI2);
    SCALE(stroke, delta);

    auto pt = stroke.center + delta;
    auto border = stroke.borders;
    _borderMoveTo(border, pt);

    pt = stroke.center - delta;
    ++border;
    _borderMoveTo(border, pt);

    /* Save angle, position and line length for last join
       lineLength is zero for curves */
    stroke.subPathAngle = startAngle;
    stroke.firstPt = false;
    stroke.subPathLineLength = lineLength;
}


static void _lineTo(SwStroke& stroke, const SwPoint& to)
{
    auto delta = to - stroke.center;

    //a zero-length lineto is a no-op; avoid creating a spurious corner
    if (delta.zero()) return;

    //compute length of line
    auto lineLength =  mathLength(delta);
    auto angle = mathAtan(delta);

    delta = {static_cast<SwCoord>(stroke.width), 0};
    mathRotate(delta, angle + SW_ANGLE_PI2);
    SCALE(stroke, delta);

    //process corner if necessary
    if (stroke.firstPt) {
        /* This is the first segment of a subpath. We need to add a point to each border
        at their respective starting point locations. */
        _firstSubPath(stroke, angle, lineLength);
    } else {
        //process the current corner
        stroke.angleOut = angle;
        _processCorner(stroke, lineLength);
    }

    //now add a line segment to both the inside and outside paths
    auto border = stroke.borders;
    auto side = 1;

    while (side >= 0) {
        auto pt = to + delta;

        //the ends of lineto borders are movable
        _borderLineTo(border, pt, true);

        delta.x = -delta.x;
        delta.y = -delta.y;

        --side;
        ++border;
    }

    stroke.angleIn = angle;
    stroke.center = to;
    stroke.lineLength = lineLength;
}


static void _cubicTo(SwStroke& stroke, const SwPoint& ctrl1, const SwPoint& ctrl2, const SwPoint& to)
{
    /* if all control points are coincident, this is a no-op;
       avoid creating a spurious corner */
    if ((stroke.center - ctrl1).small() && (ctrl1 - ctrl2).small() && (ctrl2 - to).small()) {
        stroke.center = to;
        return;
    }

    SwPoint bezStack[37];   //TODO: static?
    auto limit = bezStack + 32;
    auto arc = bezStack;
    auto firstArc = true;
    arc[0] = to;
    arc[1] = ctrl2;
    arc[2] = ctrl1;
    arc[3] = stroke.center;

    while (arc >= bezStack) {
        SwFixed angleIn, angleOut, angleMid;

        //initialize with current direction
        angleIn = angleOut = angleMid = stroke.angleIn;

        if (arc < limit && !mathSmallCubic(arc, angleIn, angleMid, angleOut)) {
            if (stroke.firstPt) stroke.angleIn = angleIn;
            mathSplitCubic(arc);
            arc += 3;
            continue;
        }

        if (firstArc) {
            firstArc = false;
            //process corner if necessary
            if (stroke.firstPt) {
                _firstSubPath(stroke, angleIn, 0);
            } else {
                stroke.angleOut = angleIn;
                _processCorner(stroke, 0);
            }
        } else if (abs(mathDiff(stroke.angleIn, angleIn)) > (SW_ANGLE_PI / 8) / 4) {
            //if the deviation from one arc to the next is too great add a round corner
            stroke.center = arc[3];
            stroke.angleOut = angleIn;
            stroke.join = StrokeJoin::Round;

            _processCorner(stroke, 0);

            //reinstate line join style
            stroke.join = stroke.joinSaved;
        }

        //the arc's angle is small enough; we can add it directly to each border
        auto theta1 = mathDiff(angleIn, angleMid) / 2;
        auto theta2 = mathDiff(angleMid, angleOut) / 2;
        auto phi1 = mathMean(angleIn, angleMid);
        auto phi2 = mathMean(angleMid, angleOut);
        auto length1 = mathDivide(stroke.width, mathCos(theta1));
        auto length2 = mathDivide(stroke.width, mathCos(theta2));
        SwFixed alpha0 = 0;

        //compute direction of original arc
        if (stroke.handleWideStrokes) {
            alpha0 = mathAtan(arc[0] - arc[3]);
        }

        auto border = stroke.borders;
        int32_t side = 0;

        while (side <= 1)
        {
            auto rotate = SIDE_TO_ROTATE(side);

            //compute control points
            SwPoint _ctrl1 = {static_cast<SwCoord>(length1), 0};
            mathRotate(_ctrl1, phi1 + rotate);
            SCALE(stroke, _ctrl1);
            _ctrl1 += arc[2];

            SwPoint _ctrl2 = {static_cast<SwCoord>(length2), 0};
            mathRotate(_ctrl2, phi2 + rotate);
            SCALE(stroke, _ctrl2);
            _ctrl2 += arc[1];

            //compute end point
            SwPoint _end = {static_cast<SwCoord>(stroke.width), 0};
            mathRotate(_end, angleOut + rotate);
            SCALE(stroke, _end);
            _end += arc[0];

            if (stroke.handleWideStrokes) {

                /* determine whether the border radius is greater than the radius of
                   curvature of the original arc */
                auto _start = border->pts[border->ptsCnt - 1];
                auto alpha1 = mathAtan(_end - _start);

                //is the direction of the border arc opposite to that of the original arc?
                if (abs(mathDiff(alpha0, alpha1)) > SW_ANGLE_PI / 2) {

                    //use the sine rule to find the intersection point
                    auto beta = mathAtan(arc[3] - _start);
                    auto gamma = mathAtan(arc[0] - _end);
                    auto bvec = _end - _start;
                    auto blen = mathLength(bvec);
                    auto sinA = abs(mathSin(alpha1 - gamma));
                    auto sinB = abs(mathSin(beta - gamma));
                    auto alen = mathMulDiv(blen, sinA, sinB);

                    SwPoint delta = {static_cast<SwCoord>(alen), 0};
                    mathRotate(delta, beta);
                    delta += _start;

                    //circumnavigate the negative sector backwards
                    border->movable = false;
                    _borderLineTo(border, delta, false);
                    _borderLineTo(border, _end, false);
                    _borderCubicTo(border, _ctrl2, _ctrl1, _start);

                    //and then move to the endpoint
                    _borderLineTo(border, _end, false);

                    ++side;
                    ++border;
                    continue;
                }

            //else fall through
            }
            _borderCubicTo(border, _ctrl1, _ctrl2, _end);
            ++side;
            ++border;
        }
        arc -= 3;
        stroke.angleIn = angleOut;
    }
    stroke.center = to;
}


static void _addCap(SwStroke& stroke, SwFixed angle, int32_t side)
{
    if (stroke.cap == StrokeCap::Square) {
        auto rotate = SIDE_TO_ROTATE(side);
        auto border = stroke.borders + side;

        SwPoint delta = {static_cast<SwCoord>(stroke.width), 0};
        mathRotate(delta, angle);
        SCALE(stroke, delta);

        SwPoint delta2 = {static_cast<SwCoord>(stroke.width), 0};
        mathRotate(delta2, angle + rotate);
        SCALE(stroke, delta2);
        delta += stroke.center + delta2;

        _borderLineTo(border, delta, false);

        delta = {static_cast<SwCoord>(stroke.width), 0};
        mathRotate(delta, angle);
        SCALE(stroke, delta);

        delta2 = {static_cast<SwCoord>(stroke.width), 0};
        mathRotate(delta2, angle - rotate);
        SCALE(stroke, delta2);
        delta += delta2 + stroke.center;

        _borderLineTo(border, delta, false);

    } else if (stroke.cap == StrokeCap::Round) {

        stroke.angleIn = angle;
        stroke.angleOut = angle + SW_ANGLE_PI;
        _arcTo(stroke, side);
        return;

    } else {  //Butt
        auto rotate = SIDE_TO_ROTATE(side);
        auto border = stroke.borders + side;

        SwPoint delta = {static_cast<SwCoord>(stroke.width), 0};
        mathRotate(delta, angle + rotate);
        SCALE(stroke, delta);
        delta += stroke.center;

        _borderLineTo(border, delta, false);

        delta = {static_cast<SwCoord>(stroke.width), 0};
        mathRotate(delta, angle - rotate);
        SCALE(stroke, delta);
        delta += stroke.center;

        _borderLineTo(border, delta, false);
    }
}


static void _addReverseLeft(SwStroke& stroke, bool opened)
{
    auto right = stroke.borders + 0;
    auto left = stroke.borders + 1;
    auto newPts = left->ptsCnt - left->start;

    if (newPts <= 0) return;

    _growBorder(right, newPts);

    auto dstPt = right->pts + right->ptsCnt;
    auto dstTag = right->tags + right->ptsCnt;
    auto srcPt = left->pts + left->ptsCnt - 1;
    auto srcTag = left->tags + left->ptsCnt - 1;

    while (srcPt >= left->pts + left->start) {
        *dstPt = *srcPt;
        *dstTag = *srcTag;

        if (opened) {
             dstTag[0] &= ~(SW_STROKE_TAG_BEGIN | SW_STROKE_TAG_END);
        } else {
            //switch begin/end tags if necessary
            auto ttag = dstTag[0] & (SW_STROKE_TAG_BEGIN | SW_STROKE_TAG_END);
            if (ttag == SW_STROKE_TAG_BEGIN || ttag == SW_STROKE_TAG_END)
              dstTag[0] ^= (SW_STROKE_TAG_BEGIN | SW_STROKE_TAG_END);
        }

        --srcPt;
        --srcTag;
        ++dstPt;
        ++dstTag;
    }

    left->ptsCnt = left->start;
    right->ptsCnt += newPts;
    right->movable = false;
    left->movable = false;
}


static void _beginSubPath(SwStroke& stroke, const SwPoint& to, bool closed)
{
    /* We cannot process the first point because there is not enough
       information regarding its corner/cap. Later, it will be processed
       in the _endSubPath() */

    stroke.firstPt = true;
    stroke.center = to;
    stroke.closedSubPath = closed;

    /* Determine if we need to check whether the border radius is greater
       than the radius of curvature of a curve, to handle this case specially.
       This is only required if bevel joins or butt caps may be created because
       round & miter joins and round & square caps cover the nagative sector
       created with wide strokes. */
    if ((stroke.join != StrokeJoin::Round) || (!stroke.closedSubPath && stroke.cap == StrokeCap::Butt))
        stroke.handleWideStrokes = true;
    else
        stroke.handleWideStrokes = false;

    stroke.ptStartSubPath = to;
    stroke.angleIn = 0;
}


static void _endSubPath(SwStroke& stroke)
{
    if (stroke.closedSubPath) {
        //close the path if needed
        if (stroke.center != stroke.ptStartSubPath)
            _lineTo(stroke, stroke.ptStartSubPath);

        //process the corner
        stroke.angleOut = stroke.subPathAngle;
        auto turn = mathDiff(stroke.angleIn, stroke.angleOut);

        //No specific corner processing is required if the turn is 0
        if (turn != 0) {

            //when we turn to the right, the inside is 0
            int32_t inside = 0;

            //otherwise, the inside is 1
            if (turn < 0) inside = 1;

            _inside(stroke, inside, stroke.subPathLineLength);        //inside
            _outside(stroke, 1 - inside, stroke.subPathLineLength);   //outside
        }

        _borderClose(stroke.borders + 0, false);
        _borderClose(stroke.borders + 1, true);
    } else {
        auto right = stroke.borders;

        /* all right, this is an opened path, we need to add a cap between
           right & left, add the reverse of left, then add a final cap
           between left & right */
        _addCap(stroke, stroke.angleIn, 0);

        //add reversed points from 'left' to 'right'
        _addReverseLeft(stroke, true);

        //now add the final cap
        stroke.center = stroke.ptStartSubPath;
        _addCap(stroke, stroke.subPathAngle + SW_ANGLE_PI, 0);

        /* now end the right subpath accordingly. The left one is rewind
           and deosn't need further processing */
        _borderClose(right, false);
    }
}


static void _getCounts(SwStrokeBorder* border, uint32_t& ptsCnt, uint32_t& cntrsCnt)
{
    auto count = border->ptsCnt;
    auto tags = border->tags;
    uint32_t _ptsCnt = 0;
    uint32_t _cntrsCnt = 0;
    bool inCntr = false;

    while (count > 0) {
        if (tags[0] & SW_STROKE_TAG_BEGIN) {
            if (inCntr) goto fail;
            inCntr = true;
        } else if (!inCntr) goto fail;

        if (tags[0] & SW_STROKE_TAG_END) {
            inCntr = false;
            ++_cntrsCnt;
        }
        --count;
        ++_ptsCnt;
        ++tags;
    }

    if (inCntr) goto fail;

    ptsCnt = _ptsCnt;
    cntrsCnt = _cntrsCnt;

    return;

fail:
    ptsCnt = 0;
    cntrsCnt = 0;
}


static void _exportBorderOutline(const SwStroke& stroke, SwOutline* outline, uint32_t side)
{
    auto border = stroke.borders + side;

    if (border->ptsCnt == 0) return;  //invalid border

    memcpy(outline->pts + outline->ptsCnt, border->pts, border->ptsCnt * sizeof(SwPoint));

    auto cnt = border->ptsCnt;
    auto src = border->tags;
    auto tags = outline->types + outline->ptsCnt;
    auto cntrs = outline->cntrs + outline->cntrsCnt;
    auto idx = outline->ptsCnt;

    while (cnt > 0) {

        if (*src & SW_STROKE_TAG_POINT) *tags = SW_CURVE_TYPE_POINT;
        else if (*src & SW_STROKE_TAG_CUBIC) *tags = SW_CURVE_TYPE_CUBIC;
        else {
            //LOG: What type of stroke outline??
        }

        if (*src & SW_STROKE_TAG_END) {
            *cntrs = idx;
            ++cntrs;
            ++outline->cntrsCnt;
        }
        ++src;
        ++tags;
        ++idx;
        --cnt;
    }
    outline->ptsCnt = outline->ptsCnt + border->ptsCnt;
}


/************************************************************************/
/* External Class Implementation                                        */
/************************************************************************/

void strokeFree(SwStroke* stroke)
{
    if (!stroke) return;

    //free borders
    if (stroke->borders[0].pts) free(stroke->borders[0].pts);
    if (stroke->borders[0].tags) free(stroke->borders[0].tags);
    if (stroke->borders[1].pts) free(stroke->borders[1].pts);
    if (stroke->borders[1].tags) free(stroke->borders[1].tags);

    fillFree(stroke->fill);
    stroke->fill = nullptr;

    free(stroke);
}


void strokeReset(SwStroke* stroke, const Shape* sdata, const Matrix* transform)
{
    if (transform) {
        stroke->sx = sqrtf(powf(transform->e11, 2.0f) + powf(transform->e21, 2.0f));
        stroke->sy = sqrtf(powf(transform->e12, 2.0f) + powf(transform->e22, 2.0f));
    } else {
        stroke->sx = stroke->sy = 1.0f;
    }

    stroke->width = HALF_STROKE(sdata->strokeWidth());
    stroke->cap = sdata->strokeCap();

    //Save line join: it can be temporarily changed when stroking curves...
    stroke->joinSaved = stroke->join = sdata->strokeJoin();

    stroke->borders[0].ptsCnt = 0;
    stroke->borders[0].start = -1;
    stroke->borders[1].ptsCnt = 0;
    stroke->borders[1].start = -1;
}


bool strokeParseOutline(SwStroke* stroke, const SwOutline& outline)
{
    uint32_t first = 0;

    for (uint32_t i = 0; i < outline.cntrsCnt; ++i) {
        auto last = outline.cntrs[i];  //index of last point in contour
        auto limit = outline.pts + last;

        //Skip empty points
        if (last <= first) {
            first = last + 1;
            continue;
        }

        auto start = outline.pts[first];
        auto pt = outline.pts + first;
        auto types = outline.types + first;
        auto type = types[0];

        //A contour cannot start with a cubic control point
        if (type == SW_CURVE_TYPE_CUBIC) return false;

        auto closed =  outline.closed ? outline.closed[i]: false;

        _beginSubPath(*stroke, start, closed);

        while (pt < limit) {
            ++pt;
            ++types;

            //emit a signel line_to
            if (types[0] == SW_CURVE_TYPE_POINT) {
                _lineTo(*stroke, *pt);
            //types cubic
            } else {
                if (pt + 1 > limit || types[1] != SW_CURVE_TYPE_CUBIC) return false;

                pt += 2;
                types += 2;

                if (pt <= limit) {
                    _cubicTo(*stroke, pt[-2], pt[-1], pt[0]);
                    continue;
                }
                _cubicTo(*stroke, pt[-2], pt[-1], start);
                goto close;
            }
        }

    close:
        if (!stroke->firstPt) _endSubPath(*stroke);
        first = last + 1;
    }
    return true;
}


SwOutline* strokeExportOutline(SwStroke* stroke, SwMpool* mpool, unsigned tid)
{
    uint32_t count1, count2, count3, count4;

    _getCounts(stroke->borders + 0, count1, count2);
    _getCounts(stroke->borders + 1, count3, count4);

    auto ptsCnt = count1 + count3;
    auto cntrsCnt = count2 + count4;

    auto outline = mpoolReqStrokeOutline(mpool, tid);
    if (outline->reservedPtsCnt < ptsCnt) {
        outline->pts = static_cast<SwPoint*>(realloc(outline->pts, sizeof(SwPoint) * ptsCnt));
        outline->types = static_cast<uint8_t*>(realloc(outline->types, sizeof(uint8_t) * ptsCnt));
        outline->reservedPtsCnt = ptsCnt;
    }
    if (outline->reservedCntrsCnt < cntrsCnt) {
        outline->cntrs = static_cast<uint32_t*>(realloc(outline->cntrs, sizeof(uint32_t) * cntrsCnt));
        outline->reservedCntrsCnt = cntrsCnt;
    }

    _exportBorderOutline(*stroke, outline, 0);  //left
    _exportBorderOutline(*stroke, outline, 1);  //right

    return outline;
}