summaryrefslogtreecommitdiff
path: root/thirdparty/thorvg/src/lib/sw_engine/tvgSwFill.cpp
blob: 0bf051c17fd55621636810f1a019065daf163c9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*
 * Copyright (c) 2020-2021 Samsung Electronics Co., Ltd. All rights reserved.

 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:

 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.

 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "tvgMath.h"
#include "tvgSwCommon.h"


/************************************************************************/
/* Internal Class Implementation                                        */
/************************************************************************/

#define GRADIENT_STOP_SIZE 1024
#define FIXPT_BITS 8
#define FIXPT_SIZE (1<<FIXPT_BITS)


static bool _updateColorTable(SwFill* fill, const Fill* fdata, const SwSurface* surface, uint32_t opacity)
{
    if (!fill->ctable) {
        fill->ctable = static_cast<uint32_t*>(malloc(GRADIENT_STOP_SIZE * sizeof(uint32_t)));
        if (!fill->ctable) return false;
    }

    const Fill::ColorStop* colors;
    auto cnt = fdata->colorStops(&colors);
    if (cnt == 0 || !colors) return false;

    auto pColors = colors;

    auto a = (pColors->a * opacity) / 255;
    if (a < 255) fill->translucent = true;

    auto r = pColors->r;
    auto g = pColors->g;
    auto b = pColors->b;
    auto rgba = surface->blender.join(r, g, b, a);

    auto inc = 1.0f / static_cast<float>(GRADIENT_STOP_SIZE);
    auto pos = 1.5f * inc;
    uint32_t i = 0;

    fill->ctable[i++] = ALPHA_BLEND(rgba | 0xff000000, a);

    while (pos <= pColors->offset) {
        fill->ctable[i] = fill->ctable[i - 1];
        ++i;
        pos += inc;
    }

    for (uint32_t j = 0; j < cnt - 1; ++j) {
        auto curr = colors + j;
        auto next = curr + 1;
        auto delta = 1.0f / (next->offset - curr->offset);
        auto a2 = (next->a * opacity) / 255;
        if (!fill->translucent && a2 < 255) fill->translucent = true;

        auto rgba2 = surface->blender.join(next->r, next->g, next->b, a2);

        while (pos < next->offset && i < GRADIENT_STOP_SIZE) {
            auto t = (pos - curr->offset) * delta;
            auto dist = static_cast<int32_t>(255 * t);
            auto dist2 = 255 - dist;

            auto color = INTERPOLATE(dist2, rgba, rgba2);
            fill->ctable[i] = ALPHA_BLEND((color | 0xff000000), (color >> 24));

            ++i;
            pos += inc;
        }
        rgba = rgba2;
        a = a2;
    }
    rgba = ALPHA_BLEND((rgba | 0xff000000), a);

    for (; i < GRADIENT_STOP_SIZE; ++i)
        fill->ctable[i] = rgba;

    //Make sure the last color stop is represented at the end of the table
    fill->ctable[GRADIENT_STOP_SIZE - 1] = rgba;

    return true;
}


bool _prepareLinear(SwFill* fill, const LinearGradient* linear, const Matrix* transform)
{
    float x1, x2, y1, y2;
    if (linear->linear(&x1, &y1, &x2, &y2) != Result::Success) return false;

    fill->linear.dx = x2 - x1;
    fill->linear.dy = y2 - y1;
    fill->linear.len = fill->linear.dx * fill->linear.dx + fill->linear.dy * fill->linear.dy;

    if (fill->linear.len < FLT_EPSILON) return true;

    fill->linear.dx /= fill->linear.len;
    fill->linear.dy /= fill->linear.len;
    fill->linear.offset = -fill->linear.dx * x1 - fill->linear.dy * y1;

    auto gradTransform = linear->transform();
    bool isTransformation = !mathIdentity((const Matrix*)(&gradTransform));

    if (isTransformation) {
        if (transform) gradTransform = mathMultiply(transform, &gradTransform);
    } else if (transform) {
        gradTransform = *transform;
        isTransformation = true;
    }

    if (isTransformation) {
        Matrix invTransform;
        if (!mathInverse(&gradTransform, &invTransform)) return false;

        fill->linear.offset += fill->linear.dx * invTransform.e13 + fill->linear.dy * invTransform.e23;

        auto dx = fill->linear.dx;
        fill->linear.dx = dx * invTransform.e11 + fill->linear.dy * invTransform.e21;
        fill->linear.dy = dx * invTransform.e12 + fill->linear.dy * invTransform.e22;

        fill->linear.len = fill->linear.dx * fill->linear.dx + fill->linear.dy * fill->linear.dy;
        if (fill->linear.len < FLT_EPSILON) return true;
    }

    return true;
}


bool _prepareRadial(SwFill* fill, const RadialGradient* radial, const Matrix* transform)
{
    float radius, cx, cy;
    if (radial->radial(&cx, &cy, &radius) != Result::Success) return false;
    if (radius < FLT_EPSILON) return true;

    float invR = 1.0f / radius;
    fill->radial.shiftX = -cx;
    fill->radial.shiftY = -cy;
    fill->radial.a = radius;

    auto gradTransform = radial->transform();
    bool isTransformation = !mathIdentity((const Matrix*)(&gradTransform));

    if (isTransformation) {
        if (transform) gradTransform = mathMultiply(transform, &gradTransform);
    } else if (transform) {
        gradTransform = *transform;
        isTransformation = true;
    }

    if (isTransformation) {
        Matrix invTransform;
        if (!mathInverse(&gradTransform, &invTransform)) return false;

        fill->radial.a11 = invTransform.e11 * invR;
        fill->radial.a12 = invTransform.e12 * invR;
        fill->radial.shiftX += invTransform.e13;
        fill->radial.a21 = invTransform.e21 * invR;
        fill->radial.a22 = invTransform.e22 * invR;
        fill->radial.shiftY += invTransform.e23;
        fill->radial.detSecDeriv = 2.0f * fill->radial.a11 * fill->radial.a11 + 2 * fill->radial.a21 * fill->radial.a21;

        fill->radial.a *= sqrt(pow(invTransform.e11, 2) + pow(invTransform.e21, 2));
    } else {
        fill->radial.a11 = fill->radial.a22 = invR;
        fill->radial.a12 = fill->radial.a21 = 0.0f;
        fill->radial.detSecDeriv = 2.0f * invR * invR;
    }
    fill->radial.shiftX *= invR;
    fill->radial.shiftY *= invR;

    return true;
}


static inline uint32_t _clamp(const SwFill* fill, int32_t pos)
{
    switch (fill->spread) {
        case FillSpread::Pad: {
            if (pos >= GRADIENT_STOP_SIZE) pos = GRADIENT_STOP_SIZE - 1;
            else if (pos < 0) pos = 0;
            break;
        }
        case FillSpread::Repeat: {
            pos = pos % GRADIENT_STOP_SIZE;
            if (pos < 0) pos = GRADIENT_STOP_SIZE + pos;
            break;
        }
        case FillSpread::Reflect: {
            auto limit = GRADIENT_STOP_SIZE * 2;
            pos = pos % limit;
            if (pos < 0) pos = limit + pos;
            if (pos >= GRADIENT_STOP_SIZE) pos = (limit - pos - 1);
            break;
        }
    }
    return pos;
}


static inline uint32_t _fixedPixel(const SwFill* fill, int32_t pos)
{
    int32_t i = (pos + (FIXPT_SIZE / 2)) >> FIXPT_BITS;
    return fill->ctable[_clamp(fill, i)];
}


static inline uint32_t _pixel(const SwFill* fill, float pos)
{
    auto i = static_cast<int32_t>(pos * (GRADIENT_STOP_SIZE - 1) + 0.5f);
    return fill->ctable[_clamp(fill, i)];
}


/************************************************************************/
/* External Class Implementation                                        */
/************************************************************************/

void fillFetchRadial(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len)
{
    auto rx = (x + 0.5f) * fill->radial.a11 + (y + 0.5f) * fill->radial.a12 + fill->radial.shiftX;
    auto ry = (x + 0.5f) * fill->radial.a21 + (y + 0.5f) * fill->radial.a22 + fill->radial.shiftY;

    // detSecondDerivative = d(detFirstDerivative)/dx = d( d(det)/dx )/dx
    auto detSecondDerivative = fill->radial.detSecDeriv;
    // detFirstDerivative = d(det)/dx
    auto detFirstDerivative = 2.0f * (fill->radial.a11 * rx + fill->radial.a21 * ry) + 0.5f * detSecondDerivative;
    auto det = rx * rx + ry * ry;

    for (uint32_t i = 0 ; i < len ; ++i) {
        *dst = _pixel(fill, sqrtf(det));
        ++dst;
        det += detFirstDerivative;
        detFirstDerivative += detSecondDerivative;
    }
}


void fillFetchLinear(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len)
{
    //Rotation
    float rx = x + 0.5f;
    float ry = y + 0.5f;
    float t = (fill->linear.dx * rx + fill->linear.dy * ry + fill->linear.offset) * (GRADIENT_STOP_SIZE - 1);
    float inc = (fill->linear.dx) * (GRADIENT_STOP_SIZE - 1);

    if (mathZero(inc)) {
        auto color = _fixedPixel(fill, static_cast<int32_t>(t * FIXPT_SIZE));
        rasterRGBA32(dst, color, 0, len);
        return;
    }

    auto vMax = static_cast<float>(INT32_MAX >> (FIXPT_BITS + 1));
    auto vMin = -vMax;
    auto v = t + (inc * len);

    //we can use fixed point math
    if (v < vMax && v > vMin) {
        auto t2 = static_cast<int32_t>(t * FIXPT_SIZE);
        auto inc2 = static_cast<int32_t>(inc * FIXPT_SIZE);
        for (uint32_t j = 0; j < len; ++j) {
            *dst = _fixedPixel(fill, t2);
            ++dst;
            t2 += inc2;
        }
    //we have to fallback to float math
    } else {
        uint32_t counter = 0;
        while (counter++ < len) {
            *dst = _pixel(fill, t / GRADIENT_STOP_SIZE);
            ++dst;
            t += inc;
        }
    }
}


bool fillGenColorTable(SwFill* fill, const Fill* fdata, const Matrix* transform, SwSurface* surface, uint32_t opacity, bool ctable)
{
    if (!fill) return false;

    fill->spread = fdata->spread();

    if (ctable) {
        if (!_updateColorTable(fill, fdata, surface, opacity)) return false;
    }

    if (fdata->identifier() == TVG_CLASS_ID_LINEAR) {
        return _prepareLinear(fill, static_cast<const LinearGradient*>(fdata), transform);
    } else if (fdata->identifier() == TVG_CLASS_ID_RADIAL) {
        return _prepareRadial(fill, static_cast<const RadialGradient*>(fdata), transform);
    }

    //LOG: What type of gradient?!

    return false;
}


void fillReset(SwFill* fill)
{
    if (fill->ctable) {
        free(fill->ctable);
        fill->ctable = nullptr;
    }
    fill->translucent = false;
}


void fillFree(SwFill* fill)
{
    if (!fill) return;

    if (fill->ctable) free(fill->ctable);

    free(fill);
}