1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
// Copyright NVIDIA Corporation 2008 -- Ignacio Castano <icastano@nvidia.com>
#include "nvmesh.h" // pch
#include "LeastSquaresConformalMap.h"
#include "ParameterizationQuality.h"
#include "Util.h"
#include "nvmesh/halfedge/Mesh.h"
#include "nvmesh/halfedge/Vertex.h"
#include "nvmesh/halfedge/Face.h"
#include "nvmath/Sparse.h"
#include "nvmath/Solver.h"
#include "nvmath/Vector.inl"
#include "nvcore/Array.inl"
using namespace nv;
using namespace HalfEdge;
namespace
{
// Test all pairs of vertices in the boundary and check distance.
static void findDiameterVertices(HalfEdge::Mesh * mesh, HalfEdge::Vertex ** a, HalfEdge::Vertex ** b)
{
nvDebugCheck(mesh != NULL);
nvDebugCheck(a != NULL);
nvDebugCheck(b != NULL);
const uint vertexCount = mesh->vertexCount();
float maxLength = 0.0f;
for (uint v0 = 1; v0 < vertexCount; v0++)
{
HalfEdge::Vertex * vertex0 = mesh->vertexAt(v0);
nvDebugCheck(vertex0 != NULL);
if (!vertex0->isBoundary()) continue;
for (uint v1 = 0; v1 < v0; v1++)
{
HalfEdge::Vertex * vertex1 = mesh->vertexAt(v1);
nvDebugCheck(vertex1 != NULL);
if (!vertex1->isBoundary()) continue;
float len = length(vertex0->pos - vertex1->pos);
if (len > maxLength)
{
maxLength = len;
*a = vertex0;
*b = vertex1;
}
}
}
nvDebugCheck(*a != NULL && *b != NULL);
}
// Fast sweep in 3 directions
static bool findApproximateDiameterVertices(HalfEdge::Mesh * mesh, HalfEdge::Vertex ** a, HalfEdge::Vertex ** b)
{
nvDebugCheck(mesh != NULL);
nvDebugCheck(a != NULL);
nvDebugCheck(b != NULL);
const uint vertexCount = mesh->vertexCount();
HalfEdge::Vertex * minVertex[3];
HalfEdge::Vertex * maxVertex[3];
minVertex[0] = minVertex[1] = minVertex[2] = NULL;
maxVertex[0] = maxVertex[1] = maxVertex[2] = NULL;
for (uint v = 1; v < vertexCount; v++)
{
HalfEdge::Vertex * vertex = mesh->vertexAt(v);
nvDebugCheck(vertex != NULL);
if (vertex->isBoundary())
{
minVertex[0] = minVertex[1] = minVertex[2] = vertex;
maxVertex[0] = maxVertex[1] = maxVertex[2] = vertex;
break;
}
}
if (minVertex[0] == NULL)
{
// Input mesh has not boundaries.
return false;
}
for (uint v = 1; v < vertexCount; v++)
{
HalfEdge::Vertex * vertex = mesh->vertexAt(v);
nvDebugCheck(vertex != NULL);
if (!vertex->isBoundary())
{
// Skip interior vertices.
continue;
}
if (vertex->pos.x < minVertex[0]->pos.x) minVertex[0] = vertex;
else if (vertex->pos.x > maxVertex[0]->pos.x) maxVertex[0] = vertex;
if (vertex->pos.y < minVertex[1]->pos.y) minVertex[1] = vertex;
else if (vertex->pos.y > maxVertex[1]->pos.y) maxVertex[1] = vertex;
if (vertex->pos.z < minVertex[2]->pos.z) minVertex[2] = vertex;
else if (vertex->pos.z > maxVertex[2]->pos.z) maxVertex[2] = vertex;
}
float lengths[3];
for (int i = 0; i < 3; i++)
{
lengths[i] = length(minVertex[i]->pos - maxVertex[i]->pos);
}
if (lengths[0] > lengths[1] && lengths[0] > lengths[2])
{
*a = minVertex[0];
*b = maxVertex[0];
}
else if (lengths[1] > lengths[2])
{
*a = minVertex[1];
*b = maxVertex[1];
}
else
{
*a = minVertex[2];
*b = maxVertex[2];
}
return true;
}
// Conformal relations from Bruno Levy:
// Computes the coordinates of the vertices of a triangle
// in a local 2D orthonormal basis of the triangle's plane.
static void project_triangle(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector2 * z0, Vector2 * z1, Vector2 * z2)
{
Vector3 X = normalize(p1 - p0, 0.0f);
Vector3 Z = normalize(cross(X, (p2 - p0)), 0.0f);
Vector3 Y = normalize(cross(Z, X), 0.0f);
float x0 = 0.0f;
float y0 = 0.0f;
float x1 = length(p1 - p0);
float y1 = 0.0f;
float x2 = dot((p2 - p0), X);
float y2 = dot((p2 - p0), Y);
*z0 = Vector2(x0, y0);
*z1 = Vector2(x1, y1);
*z2 = Vector2(x2, y2);
}
// LSCM equation, geometric form :
// (Z1 - Z0)(U2 - U0) = (Z2 - Z0)(U1 - U0)
// Where Uk = uk + i.vk is the complex number
// corresponding to (u,v) coords
// Zk = xk + i.yk is the complex number
// corresponding to local (x,y) coords
// cool: no divide with this expression,
// makes it more numerically stable in
// the presence of degenerate triangles.
static void setup_conformal_map_relations(SparseMatrix & A, int row, const HalfEdge::Vertex * v0, const HalfEdge::Vertex * v1, const HalfEdge::Vertex * v2)
{
int id0 = v0->id;
int id1 = v1->id;
int id2 = v2->id;
Vector3 p0 = v0->pos;
Vector3 p1 = v1->pos;
Vector3 p2 = v2->pos;
Vector2 z0, z1, z2;
project_triangle(p0, p1, p2, &z0, &z1, &z2);
Vector2 z01 = z1 - z0;
Vector2 z02 = z2 - z0;
float a = z01.x;
float b = z01.y;
float c = z02.x;
float d = z02.y;
nvCheck(b == 0.0f);
// Note : 2*id + 0 --> u
// 2*id + 1 --> v
int u0_id = 2 * id0 + 0;
int v0_id = 2 * id0 + 1;
int u1_id = 2 * id1 + 0;
int v1_id = 2 * id1 + 1;
int u2_id = 2 * id2 + 0;
int v2_id = 2 * id2 + 1;
// Note : b = 0
// Real part
A.setCoefficient(u0_id, 2 * row + 0, -a+c);
A.setCoefficient(v0_id, 2 * row + 0, b-d);
A.setCoefficient(u1_id, 2 * row + 0, -c);
A.setCoefficient(v1_id, 2 * row + 0, d);
A.setCoefficient(u2_id, 2 * row + 0, a);
// Imaginary part
A.setCoefficient(u0_id, 2 * row + 1, -b+d);
A.setCoefficient(v0_id, 2 * row + 1, -a+c);
A.setCoefficient(u1_id, 2 * row + 1, -d);
A.setCoefficient(v1_id, 2 * row + 1, -c);
A.setCoefficient(v2_id, 2 * row + 1, a);
}
// Conformal relations from Brecht Van Lommel (based on ABF):
static float vec_angle_cos(Vector3::Arg v1, Vector3::Arg v2, Vector3::Arg v3)
{
Vector3 d1 = v1 - v2;
Vector3 d2 = v3 - v2;
return clamp(dot(d1, d2) / (length(d1) * length(d2)), -1.0f, 1.0f);
}
static float vec_angle(Vector3::Arg v1, Vector3::Arg v2, Vector3::Arg v3)
{
float dot = vec_angle_cos(v1, v2, v3);
return acosf(dot);
}
static void triangle_angles(Vector3::Arg v1, Vector3::Arg v2, Vector3::Arg v3, float *a1, float *a2, float *a3)
{
*a1 = vec_angle(v3, v1, v2);
*a2 = vec_angle(v1, v2, v3);
*a3 = PI - *a2 - *a1;
}
static void triangle_cosines(Vector3::Arg v1, Vector3::Arg v2, Vector3::Arg v3, float *a1, float *a2, float *a3)
{
*a1 = vec_angle_cos(v3, v1, v2);
*a2 = vec_angle_cos(v1, v2, v3);
*a3 = vec_angle_cos(v2, v3, v1);
}
static void setup_abf_relations(SparseMatrix & A, int row, const HalfEdge::Vertex * v0, const HalfEdge::Vertex * v1, const HalfEdge::Vertex * v2)
{
int id0 = v0->id;
int id1 = v1->id;
int id2 = v2->id;
Vector3 p0 = v0->pos;
Vector3 p1 = v1->pos;
Vector3 p2 = v2->pos;
#if 1
// @@ IC: Wouldn't it be more accurate to return cos and compute 1-cos^2?
// It does indeed seem to be a little bit more robust.
// @@ Need to revisit this more carefully!
float a0, a1, a2;
triangle_angles(p0, p1, p2, &a0, &a1, &a2);
float s0 = sinf(a0);
float s1 = sinf(a1);
float s2 = sinf(a2);
/*// Hack for degenerate triangles.
if (equal(s0, 0) && equal(s1, 0) && equal(s2, 0)) {
if (equal(a0, 0)) a0 += 0.001f;
if (equal(a1, 0)) a1 += 0.001f;
if (equal(a2, 0)) a2 += 0.001f;
if (equal(a0, PI)) a0 = PI - a1 - a2;
if (equal(a1, PI)) a1 = PI - a0 - a2;
if (equal(a2, PI)) a2 = PI - a0 - a1;
s0 = sinf(a0);
s1 = sinf(a1);
s2 = sinf(a2);
}*/
if (s1 > s0 && s1 > s2)
{
swap(s1, s2);
swap(s0, s1);
swap(a1, a2);
swap(a0, a1);
swap(id1, id2);
swap(id0, id1);
}
else if (s0 > s1 && s0 > s2)
{
swap(s0, s2);
swap(s0, s1);
swap(a0, a2);
swap(a0, a1);
swap(id0, id2);
swap(id0, id1);
}
float c0 = cosf(a0);
#else
float c0, c1, c2;
triangle_cosines(p0, p1, p2, &c0, &c1, &c2);
float s0 = 1 - c0*c0;
float s1 = 1 - c1*c1;
float s2 = 1 - c2*c2;
nvDebugCheck(s0 != 0 || s1 != 0 || s2 != 0);
if (s1 > s0 && s1 > s2)
{
swap(s1, s2);
swap(s0, s1);
swap(c1, c2);
swap(c0, c1);
swap(id1, id2);
swap(id0, id1);
}
else if (s0 > s1 && s0 > s2)
{
swap(s0, s2);
swap(s0, s1);
swap(c0, c2);
swap(c0, c1);
swap(id0, id2);
swap(id0, id1);
}
#endif
float ratio = (s2 == 0.0f) ? 1.0f: s1/s2;
float cosine = c0 * ratio;
float sine = s0 * ratio;
// Note : 2*id + 0 --> u
// 2*id + 1 --> v
int u0_id = 2 * id0 + 0;
int v0_id = 2 * id0 + 1;
int u1_id = 2 * id1 + 0;
int v1_id = 2 * id1 + 1;
int u2_id = 2 * id2 + 0;
int v2_id = 2 * id2 + 1;
// Real part
A.setCoefficient(u0_id, 2 * row + 0, cosine - 1.0f);
A.setCoefficient(v0_id, 2 * row + 0, -sine);
A.setCoefficient(u1_id, 2 * row + 0, -cosine);
A.setCoefficient(v1_id, 2 * row + 0, sine);
A.setCoefficient(u2_id, 2 * row + 0, 1);
// Imaginary part
A.setCoefficient(u0_id, 2 * row + 1, sine);
A.setCoefficient(v0_id, 2 * row + 1, cosine - 1.0f);
A.setCoefficient(u1_id, 2 * row + 1, -sine);
A.setCoefficient(v1_id, 2 * row + 1, -cosine);
A.setCoefficient(v2_id, 2 * row + 1, 1);
}
} // namespace
bool nv::computeLeastSquaresConformalMap(HalfEdge::Mesh * mesh)
{
nvDebugCheck(mesh != NULL);
// For this to work properly, mesh should not have colocals that have the same
// attributes, unless you want the vertices to actually have different texcoords.
const uint vertexCount = mesh->vertexCount();
const uint D = 2 * vertexCount;
const uint N = 2 * countMeshTriangles(mesh);
// N is the number of equations (one per triangle)
// D is the number of variables (one per vertex; there are 2 pinned vertices).
if (N < D - 4) {
return false;
}
SparseMatrix A(D, N);
FullVector b(N);
FullVector x(D);
// Fill b:
b.fill(0.0f);
// Fill x:
HalfEdge::Vertex * v0;
HalfEdge::Vertex * v1;
if (!findApproximateDiameterVertices(mesh, &v0, &v1))
{
// Mesh has no boundaries.
return false;
}
if (v0->tex == v1->tex)
{
// LSCM expects an existing parameterization.
return false;
}
for (uint v = 0; v < vertexCount; v++)
{
HalfEdge::Vertex * vertex = mesh->vertexAt(v);
nvDebugCheck(vertex != NULL);
// Initial solution.
x[2 * v + 0] = vertex->tex.x;
x[2 * v + 1] = vertex->tex.y;
}
// Fill A:
const uint faceCount = mesh->faceCount();
for (uint f = 0, t = 0; f < faceCount; f++)
{
const HalfEdge::Face * face = mesh->faceAt(f);
nvDebugCheck(face != NULL);
nvDebugCheck(face->edgeCount() == 3);
const HalfEdge::Vertex * vertex0 = NULL;
for (HalfEdge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance())
{
const HalfEdge::Edge * edge = it.current();
nvCheck(edge != NULL);
if (vertex0 == NULL)
{
vertex0 = edge->vertex;
}
else if (edge->next->vertex != vertex0)
{
const HalfEdge::Vertex * vertex1 = edge->from();
const HalfEdge::Vertex * vertex2 = edge->to();
setup_abf_relations(A, t, vertex0, vertex1, vertex2);
//setup_conformal_map_relations(A, t, vertex0, vertex1, vertex2);
t++;
}
}
}
const uint lockedParameters[] =
{
2 * v0->id + 0,
2 * v0->id + 1,
2 * v1->id + 0,
2 * v1->id + 1
};
// Solve
LeastSquaresSolver(A, b, x, lockedParameters, 4, 0.000001f);
// Map x back to texcoords:
for (uint v = 0; v < vertexCount; v++)
{
HalfEdge::Vertex * vertex = mesh->vertexAt(v);
nvDebugCheck(vertex != NULL);
vertex->tex = Vector2(x[2 * v + 0], x[2 * v + 1]);
}
return true;
}
|