1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
/*
* Vector3.h
* RVO2-3D Library
*
* Copyright 2008 University of North Carolina at Chapel Hill
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Please send all bug reports to <geom@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
* Dept. of Computer Science
* 201 S. Columbia St.
* Frederick P. Brooks, Jr. Computer Science Bldg.
* Chapel Hill, N.C. 27599-3175
* United States of America
*
* <http://gamma.cs.unc.edu/RVO2/>
*/
/**
* \file Vector3.h
* \brief Contains the Vector3 class.
*/
#ifndef RVO_VECTOR3_H_
#define RVO_VECTOR3_H_
#include "API.h"
#include <cmath>
#include <cstddef>
#include <ostream>
namespace RVO {
/**
* \brief Defines a three-dimensional vector.
*/
class Vector3 {
public:
/**
* \brief Constructs and initializes a three-dimensional vector instance to zero.
*/
RVO_API inline Vector3()
{
val_[0] = 0.0f;
val_[1] = 0.0f;
val_[2] = 0.0f;
}
/**
* \brief Constructs and initializes a three-dimensional vector from the specified three-element array.
* \param val The three-element array containing the xyz-coordinates.
*/
RVO_API inline explicit Vector3(const float val[3])
{
val_[0] = val[0];
val_[1] = val[1];
val_[2] = val[2];
}
/**
* \brief Constructs and initializes a three-dimensional vector from the specified xyz-coordinates.
* \param x The x-coordinate of the three-dimensional vector.
* \param y The y-coordinate of the three-dimensional vector.
* \param z The z-coordinate of the three-dimensional vector.
*/
RVO_API inline Vector3(float x, float y, float z)
{
val_[0] = x;
val_[1] = y;
val_[2] = z;
}
/**
* \brief Returns the x-coordinate of this three-dimensional vector.
* \return The x-coordinate of the three-dimensional vector.
*/
RVO_API inline float x() const { return val_[0]; }
/**
* \brief Returns the y-coordinate of this three-dimensional vector.
* \return The y-coordinate of the three-dimensional vector.
*/
RVO_API inline float y() const { return val_[1]; }
/**
* \brief Returns the z-coordinate of this three-dimensional vector.
* \return The z-coordinate of the three-dimensional vector.
*/
RVO_API inline float z() const { return val_[2]; }
/**
* \brief Returns the specified coordinate of this three-dimensional vector.
* \param i The coordinate that should be returned (0 <= i < 3).
* \return The specified coordinate of the three-dimensional vector.
*/
RVO_API inline float operator[](size_t i) const { return val_[i]; }
/**
* \brief Returns a reference to the specified coordinate of this three-dimensional vector.
* \param i The coordinate to which a reference should be returned (0 <= i < 3).
* \return A reference to the specified coordinate of the three-dimensional vector.
*/
RVO_API inline float &operator[](size_t i) { return val_[i]; }
/**
* \brief Computes the negation of this three-dimensional vector.
* \return The negation of this three-dimensional vector.
*/
RVO_API inline Vector3 operator-() const
{
return Vector3(-val_[0], -val_[1], -val_[2]);
}
/**
* \brief Computes the dot product of this three-dimensional vector with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the dot product should be computed.
* \return The dot product of this three-dimensional vector with a specified three-dimensional vector.
*/
RVO_API inline float operator*(const Vector3 &vector) const
{
return val_[0] * vector[0] + val_[1] * vector[1] + val_[2] * vector[2];
}
/**
* \brief Computes the scalar multiplication of this three-dimensional vector with the specified scalar value.
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return The scalar multiplication of this three-dimensional vector with a specified scalar value.
*/
RVO_API inline Vector3 operator*(float scalar) const
{
return Vector3(val_[0] * scalar, val_[1] * scalar, val_[2] * scalar);
}
/**
* \brief Computes the scalar division of this three-dimensional vector with the specified scalar value.
* \param scalar The scalar value with which the scalar division should be computed.
* \return The scalar division of this three-dimensional vector with a specified scalar value.
*/
RVO_API inline Vector3 operator/(float scalar) const
{
const float invScalar = 1.0f / scalar;
return Vector3(val_[0] * invScalar, val_[1] * invScalar, val_[2] * invScalar);
}
/**
* \brief Computes the vector sum of this three-dimensional vector with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return The vector sum of this three-dimensional vector with a specified three-dimensional vector.
*/
RVO_API inline Vector3 operator+(const Vector3 &vector) const
{
return Vector3(val_[0] + vector[0], val_[1] + vector[1], val_[2] + vector[2]);
}
/**
* \brief Computes the vector difference of this three-dimensional vector with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return The vector difference of this three-dimensional vector with a specified three-dimensional vector.
*/
RVO_API inline Vector3 operator-(const Vector3 &vector) const
{
return Vector3(val_[0] - vector[0], val_[1] - vector[1], val_[2] - vector[2]);
}
/**
* \brief Tests this three-dimensional vector for equality with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which to test for equality.
* \return True if the three-dimensional vectors are equal.
*/
RVO_API inline bool operator==(const Vector3 &vector) const
{
return val_[0] == vector[0] && val_[1] == vector[1] && val_[2] == vector[2];
}
/**
* \brief Tests this three-dimensional vector for inequality with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which to test for inequality.
* \return True if the three-dimensional vectors are not equal.
*/
RVO_API inline bool operator!=(const Vector3 &vector) const
{
return val_[0] != vector[0] || val_[1] != vector[1] || val_[2] != vector[2];
}
/**
* \brief Sets the value of this three-dimensional vector to the scalar multiplication of itself with the specified scalar value.
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator*=(float scalar)
{
val_[0] *= scalar;
val_[1] *= scalar;
val_[2] *= scalar;
return *this;
}
/**
* \brief Sets the value of this three-dimensional vector to the scalar division of itself with the specified scalar value.
* \param scalar The scalar value with which the scalar division should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator/=(float scalar)
{
const float invScalar = 1.0f / scalar;
val_[0] *= invScalar;
val_[1] *= invScalar;
val_[2] *= invScalar;
return *this;
}
/**
* \brief Sets the value of this three-dimensional vector to the vector
* sum of itself with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator+=(const Vector3 &vector)
{
val_[0] += vector[0];
val_[1] += vector[1];
val_[2] += vector[2];
return *this;
}
/**
* \brief Sets the value of this three-dimensional vector to the vector difference of itself with the specified three-dimensional vector.
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return A reference to this three-dimensional vector.
*/
RVO_API inline Vector3 &operator-=(const Vector3 &vector)
{
val_[0] -= vector[0];
val_[1] -= vector[1];
val_[2] -= vector[2];
return *this;
}
private:
float val_[3];
};
/**
* \relates Vector3
* \brief Computes the scalar multiplication of the specified three-dimensional vector with the specified scalar value.
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \param vector The three-dimensional vector with which the scalar multiplication should be computed.
* \return The scalar multiplication of the three-dimensional vector with the scalar value.
*/
inline Vector3 operator*(float scalar, const Vector3 &vector)
{
return Vector3(scalar * vector[0], scalar * vector[1], scalar * vector[2]);
}
/**
* \relates Vector3
* \brief Computes the cross product of the specified three-dimensional vectors.
* \param vector1 The first vector with which the cross product should be computed.
* \param vector2 The second vector with which the cross product should be computed.
* \return The cross product of the two specified vectors.
*/
inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2)
{
return Vector3(vector1[1] * vector2[2] - vector1[2] * vector2[1], vector1[2] * vector2[0] - vector1[0] * vector2[2], vector1[0] * vector2[1] - vector1[1] * vector2[0]);
}
/**
* \relates Vector3
* \brief Inserts the specified three-dimensional vector into the specified output stream.
* \param os The output stream into which the three-dimensional vector should be inserted.
* \param vector The three-dimensional vector which to insert into the output stream.
* \return A reference to the output stream.
*/
inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector)
{
os << "(" << vector[0] << "," << vector[1] << "," << vector[2] << ")";
return os;
}
/**
* \relates Vector3
* \brief Computes the length of a specified three-dimensional vector.
* \param vector The three-dimensional vector whose length is to be computed.
* \return The length of the three-dimensional vector.
*/
inline float abs(const Vector3 &vector)
{
return std::sqrt(vector * vector);
}
/**
* \relates Vector3
* \brief Computes the squared length of a specified three-dimensional vector.
* \param vector The three-dimensional vector whose squared length is to be computed.
* \return The squared length of the three-dimensional vector.
*/
inline float absSq(const Vector3 &vector)
{
return vector * vector;
}
/**
* \relates Vector3
* \brief Computes the normalization of the specified three-dimensional vector.
* \param vector The three-dimensional vector whose normalization is to be computed.
* \return The normalization of the three-dimensional vector.
*/
inline Vector3 normalize(const Vector3 &vector)
{
return vector / abs(vector);
}
}
#endif
|