summaryrefslogtreecommitdiff
path: root/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp
blob: 1999200c1aa00445934055b3141e7119f36a37b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"


static const unsigned RC_UNSET_HEIGHT = 0xffff;

struct rcHeightPatch
{
	inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {}
	inline ~rcHeightPatch() { rcFree(data); }
	unsigned short* data;
	int xmin, ymin, width, height;
};


inline float vdot2(const float* a, const float* b)
{
	return a[0]*b[0] + a[2]*b[2];
}

inline float vdistSq2(const float* p, const float* q)
{
	const float dx = q[0] - p[0];
	const float dy = q[2] - p[2];
	return dx*dx + dy*dy;
}

inline float vdist2(const float* p, const float* q)
{
	return sqrtf(vdistSq2(p,q));
}

inline float vcross2(const float* p1, const float* p2, const float* p3)
{
	const float u1 = p2[0] - p1[0];
	const float v1 = p2[2] - p1[2];
	const float u2 = p3[0] - p1[0];
	const float v2 = p3[2] - p1[2];
	return u1 * v2 - v1 * u2;
}

static bool circumCircle(const float* p1, const float* p2, const float* p3,
						 float* c, float& r)
{
	static const float EPS = 1e-6f;
	// Calculate the circle relative to p1, to avoid some precision issues.
	const float v1[3] = {0,0,0};
	float v2[3], v3[3];
	rcVsub(v2, p2,p1);
	rcVsub(v3, p3,p1);
	
	const float cp = vcross2(v1, v2, v3);
	if (fabsf(cp) > EPS)
	{
		const float v1Sq = vdot2(v1,v1);
		const float v2Sq = vdot2(v2,v2);
		const float v3Sq = vdot2(v3,v3);
		c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
		c[1] = 0;
		c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
		r = vdist2(c, v1);
		rcVadd(c, c, p1);
		return true;
	}
	
	rcVcopy(c, p1);
	r = 0;
	return false;
}

static float distPtTri(const float* p, const float* a, const float* b, const float* c)
{
	float v0[3], v1[3], v2[3];
	rcVsub(v0, c,a);
	rcVsub(v1, b,a);
	rcVsub(v2, p,a);
	
	const float dot00 = vdot2(v0, v0);
	const float dot01 = vdot2(v0, v1);
	const float dot02 = vdot2(v0, v2);
	const float dot11 = vdot2(v1, v1);
	const float dot12 = vdot2(v1, v2);
	
	// Compute barycentric coordinates
	const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
	const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
	float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
	
	// If point lies inside the triangle, return interpolated y-coord.
	static const float EPS = 1e-4f;
	if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
	{
		const float y = a[1] + v0[1]*u + v1[1]*v;
		return fabsf(y-p[1]);
	}
	return FLT_MAX;
}

static float distancePtSeg(const float* pt, const float* p, const float* q)
{
	float pqx = q[0] - p[0];
	float pqy = q[1] - p[1];
	float pqz = q[2] - p[2];
	float dx = pt[0] - p[0];
	float dy = pt[1] - p[1];
	float dz = pt[2] - p[2];
	float d = pqx*pqx + pqy*pqy + pqz*pqz;
	float t = pqx*dx + pqy*dy + pqz*dz;
	if (d > 0)
		t /= d;
	if (t < 0)
		t = 0;
	else if (t > 1)
		t = 1;
	
	dx = p[0] + t*pqx - pt[0];
	dy = p[1] + t*pqy - pt[1];
	dz = p[2] + t*pqz - pt[2];
	
	return dx*dx + dy*dy + dz*dz;
}

static float distancePtSeg2d(const float* pt, const float* p, const float* q)
{
	float pqx = q[0] - p[0];
	float pqz = q[2] - p[2];
	float dx = pt[0] - p[0];
	float dz = pt[2] - p[2];
	float d = pqx*pqx + pqz*pqz;
	float t = pqx*dx + pqz*dz;
	if (d > 0)
		t /= d;
	if (t < 0)
		t = 0;
	else if (t > 1)
		t = 1;
	
	dx = p[0] + t*pqx - pt[0];
	dz = p[2] + t*pqz - pt[2];
	
	return dx*dx + dz*dz;
}

static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris)
{
	float dmin = FLT_MAX;
	for (int i = 0; i < ntris; ++i)
	{
		const float* va = &verts[tris[i*4+0]*3];
		const float* vb = &verts[tris[i*4+1]*3];
		const float* vc = &verts[tris[i*4+2]*3];
		float d = distPtTri(p, va,vb,vc);
		if (d < dmin)
			dmin = d;
	}
	if (dmin == FLT_MAX) return -1;
	return dmin;
}

static float distToPoly(int nvert, const float* verts, const float* p)
{
	
	float dmin = FLT_MAX;
	int i, j, c = 0;
	for (i = 0, j = nvert-1; i < nvert; j = i++)
	{
		const float* vi = &verts[i*3];
		const float* vj = &verts[j*3];
		if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
			(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
			c = !c;
		dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
	}
	return c ? -dmin : dmin;
}


static unsigned short getHeight(const float fx, const float fy, const float fz,
								const float /*cs*/, const float ics, const float ch,
								const int radius, const rcHeightPatch& hp)
{
	int ix = (int)floorf(fx*ics + 0.01f);
	int iz = (int)floorf(fz*ics + 0.01f);
	ix = rcClamp(ix-hp.xmin, 0, hp.width - 1);
	iz = rcClamp(iz-hp.ymin, 0, hp.height - 1);
	unsigned short h = hp.data[ix+iz*hp.width];
	if (h == RC_UNSET_HEIGHT)
	{
		// Special case when data might be bad.
		// Walk adjacent cells in a spiral up to 'radius', and look
		// for a pixel which has a valid height.
		int x = 1, z = 0, dx = 1, dz = 0;
		int maxSize = radius * 2 + 1;
		int maxIter = maxSize * maxSize - 1;

		int nextRingIterStart = 8;
		int nextRingIters = 16;

		float dmin = FLT_MAX;
		for (int i = 0; i < maxIter; i++)
		{
			const int nx = ix + x;
			const int nz = iz + z;

			if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height)
			{
				const unsigned short nh = hp.data[nx + nz*hp.width];
				if (nh != RC_UNSET_HEIGHT)
				{
					const float d = fabsf(nh*ch - fy);
					if (d < dmin)
					{
						h = nh;
						dmin = d;
					}
				}
			}

			// We are searching in a grid which looks approximately like this:
			//  __________
			// |2 ______ 2|
			// | |1 __ 1| |
			// | | |__| | |
			// | |______| |
			// |__________|
			// We want to find the best height as close to the center cell as possible. This means that
			// if we find a height in one of the neighbor cells to the center, we don't want to
			// expand further out than the 8 neighbors - we want to limit our search to the closest
			// of these "rings", but the best height in the ring.
			// For example, the center is just 1 cell. We checked that at the entrance to the function.
			// The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell.
			// The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which
			// can be thought of as adding 2 cells around the "center" of each side when we expand the ring.
			// Here we detect if we are about to enter the next ring, and if we are and we have found
			// a height, we abort the search.
			if (i + 1 == nextRingIterStart)
			{
				if (h != RC_UNSET_HEIGHT)
					break;

				nextRingIterStart += nextRingIters;
				nextRingIters += 8;
			}

			if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z)))
			{
				int tmp = dx;
				dx = -dz;
				dz = tmp;
			}
			x += dx;
			z += dz;
		}
	}
	return h;
}


enum EdgeValues
{
	EV_UNDEF = -1,
	EV_HULL = -2,
};

static int findEdge(const int* edges, int nedges, int s, int t)
{
	for (int i = 0; i < nedges; i++)
	{
		const int* e = &edges[i*4];
		if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s))
			return i;
	}
	return EV_UNDEF;
}

static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r)
{
	if (nedges >= maxEdges)
	{
		ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges);
		return EV_UNDEF;
	}
	
	// Add edge if not already in the triangulation.
	int e = findEdge(edges, nedges, s, t);
	if (e == EV_UNDEF)
	{
		int* edge = &edges[nedges*4];
		edge[0] = s;
		edge[1] = t;
		edge[2] = l;
		edge[3] = r;
		return nedges++;
	}
	else
	{
		return EV_UNDEF;
	}
}

static void updateLeftFace(int* e, int s, int t, int f)
{
	if (e[0] == s && e[1] == t && e[2] == EV_UNDEF)
		e[2] = f;
	else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF)
		e[3] = f;
}

static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
{
	const float a1 = vcross2(a, b, d);
	const float a2 = vcross2(a, b, c);
	if (a1*a2 < 0.0f)
	{
		float a3 = vcross2(c, d, a);
		float a4 = a3 + a2 - a1;
		if (a3 * a4 < 0.0f)
			return 1;
	}
	return 0;
}

static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1)
{
	for (int i = 0; i < nedges; ++i)
	{
		const int s0 = edges[i*4+0];
		const int t0 = edges[i*4+1];
		// Same or connected edges do not overlap.
		if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1)
			continue;
		if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3]))
			return true;
	}
	return false;
}

static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
{
	static const float EPS = 1e-5f;
	
	int* edge = &edges[e*4];
	
	// Cache s and t.
	int s,t;
	if (edge[2] == EV_UNDEF)
	{
		s = edge[0];
		t = edge[1];
	}
	else if (edge[3] == EV_UNDEF)
	{
		s = edge[1];
		t = edge[0];
	}
	else
	{
	    // Edge already completed.
	    return;
	}
    
	// Find best point on left of edge.
	int pt = npts;
	float c[3] = {0,0,0};
	float r = -1;
	for (int u = 0; u < npts; ++u)
	{
		if (u == s || u == t) continue;
		if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS)
		{
			if (r < 0)
			{
				// The circle is not updated yet, do it now.
				pt = u;
				circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
				continue;
			}
			const float d = vdist2(c, &pts[u*3]);
			const float tol = 0.001f;
			if (d > r*(1+tol))
			{
				// Outside current circumcircle, skip.
				continue;
			}
			else if (d < r*(1-tol))
			{
				// Inside safe circumcircle, update circle.
				pt = u;
				circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
			}
			else
			{
				// Inside epsilon circum circle, do extra tests to make sure the edge is valid.
				// s-u and t-u cannot overlap with s-pt nor t-pt if they exists.
				if (overlapEdges(pts, edges, nedges, s,u))
					continue;
				if (overlapEdges(pts, edges, nedges, t,u))
					continue;
				// Edge is valid.
				pt = u;
				circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
			}
		}
	}
	
	// Add new triangle or update edge info if s-t is on hull.
	if (pt < npts)
	{
		// Update face information of edge being completed.
		updateLeftFace(&edges[e*4], s, t, nfaces);
		
		// Add new edge or update face info of old edge.
		e = findEdge(edges, nedges, pt, s);
		if (e == EV_UNDEF)
		    addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF);
		else
		    updateLeftFace(&edges[e*4], pt, s, nfaces);
		
		// Add new edge or update face info of old edge.
		e = findEdge(edges, nedges, t, pt);
		if (e == EV_UNDEF)
		    addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF);
		else
		    updateLeftFace(&edges[e*4], t, pt, nfaces);
		
		nfaces++;
	}
	else
	{
		updateLeftFace(&edges[e*4], s, t, EV_HULL);
	}
}

static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
						 const int nhull, const int* hull,
						 rcIntArray& tris, rcIntArray& edges)
{
	int nfaces = 0;
	int nedges = 0;
	const int maxEdges = npts*10;
	edges.resize(maxEdges*4);
	
	for (int i = 0, j = nhull-1; i < nhull; j=i++)
		addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF);
	
	int currentEdge = 0;
	while (currentEdge < nedges)
	{
		if (edges[currentEdge*4+2] == EV_UNDEF)
			completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
		if (edges[currentEdge*4+3] == EV_UNDEF)
			completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
		currentEdge++;
	}
	
	// Create tris
	tris.resize(nfaces*4);
	for (int i = 0; i < nfaces*4; ++i)
		tris[i] = -1;
	
	for (int i = 0; i < nedges; ++i)
	{
		const int* e = &edges[i*4];
		if (e[3] >= 0)
		{
			// Left face
			int* t = &tris[e[3]*4];
			if (t[0] == -1)
			{
				t[0] = e[0];
				t[1] = e[1];
			}
			else if (t[0] == e[1])
				t[2] = e[0];
			else if (t[1] == e[0])
				t[2] = e[1];
		}
		if (e[2] >= 0)
		{
			// Right
			int* t = &tris[e[2]*4];
			if (t[0] == -1)
			{
				t[0] = e[1];
				t[1] = e[0];
			}
			else if (t[0] == e[0])
				t[2] = e[1];
			else if (t[1] == e[1])
				t[2] = e[0];
		}
	}
	
	for (int i = 0; i < tris.size()/4; ++i)
	{
		int* t = &tris[i*4];
		if (t[0] == -1 || t[1] == -1 || t[2] == -1)
		{
			ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]);
			t[0] = tris[tris.size()-4];
			t[1] = tris[tris.size()-3];
			t[2] = tris[tris.size()-2];
			t[3] = tris[tris.size()-1];
			tris.resize(tris.size()-4);
			--i;
		}
	}
}

// Calculate minimum extend of the polygon.
static float polyMinExtent(const float* verts, const int nverts)
{
	float minDist = FLT_MAX;
	for (int i = 0; i < nverts; i++)
	{
		const int ni = (i+1) % nverts;
		const float* p1 = &verts[i*3];
		const float* p2 = &verts[ni*3];
		float maxEdgeDist = 0;
		for (int j = 0; j < nverts; j++)
		{
			if (j == i || j == ni) continue;
			float d = distancePtSeg2d(&verts[j*3], p1,p2);
			maxEdgeDist = rcMax(maxEdgeDist, d);
		}
		minDist = rcMin(minDist, maxEdgeDist);
	}
	return rcSqrt(minDist);
}

// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }

static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris)
{
	int start = 0, left = 1, right = nhull-1;
	
	// Start from an ear with shortest perimeter.
	// This tends to favor well formed triangles as starting point.
	float dmin = FLT_MAX;
	for (int i = 0; i < nhull; i++)
	{
		if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges
		int pi = prev(i, nhull);
		int ni = next(i, nhull);
		const float* pv = &verts[hull[pi]*3];
		const float* cv = &verts[hull[i]*3];
		const float* nv = &verts[hull[ni]*3];
		const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
		if (d < dmin)
		{
			start = i;
			left = ni;
			right = pi;
			dmin = d;
		}
	}
	
	// Add first triangle
	tris.push(hull[start]);
	tris.push(hull[left]);
	tris.push(hull[right]);
	tris.push(0);
	
	// Triangulate the polygon by moving left or right,
	// depending on which triangle has shorter perimeter.
	// This heuristic was chose emprically, since it seems
	// handle tesselated straight edges well.
	while (next(left, nhull) != right)
	{
		// Check to see if se should advance left or right.
		int nleft = next(left, nhull);
		int nright = prev(right, nhull);
		
		const float* cvleft = &verts[hull[left]*3];
		const float* nvleft = &verts[hull[nleft]*3];
		const float* cvright = &verts[hull[right]*3];
		const float* nvright = &verts[hull[nright]*3];
		const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
		const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
		
		if (dleft < dright)
		{
			tris.push(hull[left]);
			tris.push(hull[nleft]);
			tris.push(hull[right]);
			tris.push(0);
			left = nleft;
		}
		else
		{
			tris.push(hull[left]);
			tris.push(hull[nright]);
			tris.push(hull[right]);
			tris.push(0);
			right = nright;
		}
	}
}


inline float getJitterX(const int i)
{
	return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
}

inline float getJitterY(const int i)
{
	return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
}

static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
							const float sampleDist, const float sampleMaxError,
							const int heightSearchRadius, const rcCompactHeightfield& chf,
							const rcHeightPatch& hp, float* verts, int& nverts,
							rcIntArray& tris, rcIntArray& edges, rcIntArray& samples)
{
	static const int MAX_VERTS = 127;
	static const int MAX_TRIS = 255;	// Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts).
	static const int MAX_VERTS_PER_EDGE = 32;
	float edge[(MAX_VERTS_PER_EDGE+1)*3];
	int hull[MAX_VERTS];
	int nhull = 0;
	
	nverts = nin;
	
	for (int i = 0; i < nin; ++i)
		rcVcopy(&verts[i*3], &in[i*3]);
	
	edges.clear();
	tris.clear();
	
	const float cs = chf.cs;
	const float ics = 1.0f/cs;
	
	// Calculate minimum extents of the polygon based on input data.
	float minExtent = polyMinExtent(verts, nverts);
	
	// Tessellate outlines.
	// This is done in separate pass in order to ensure
	// seamless height values across the ply boundaries.
	if (sampleDist > 0)
	{
		for (int i = 0, j = nin-1; i < nin; j=i++)
		{
			const float* vj = &in[j*3];
			const float* vi = &in[i*3];
			bool swapped = false;
			// Make sure the segments are always handled in same order
			// using lexological sort or else there will be seams.
			if (fabsf(vj[0]-vi[0]) < 1e-6f)
			{
				if (vj[2] > vi[2])
				{
					rcSwap(vj,vi);
					swapped = true;
				}
			}
			else
			{
				if (vj[0] > vi[0])
				{
					rcSwap(vj,vi);
					swapped = true;
				}
			}
			// Create samples along the edge.
			float dx = vi[0] - vj[0];
			float dy = vi[1] - vj[1];
			float dz = vi[2] - vj[2];
			float d = sqrtf(dx*dx + dz*dz);
			int nn = 1 + (int)floorf(d/sampleDist);
			if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1;
			if (nverts+nn >= MAX_VERTS)
				nn = MAX_VERTS-1-nverts;
			
			for (int k = 0; k <= nn; ++k)
			{
				float u = (float)k/(float)nn;
				float* pos = &edge[k*3];
				pos[0] = vj[0] + dx*u;
				pos[1] = vj[1] + dy*u;
				pos[2] = vj[2] + dz*u;
				pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch;
			}
			// Simplify samples.
			int idx[MAX_VERTS_PER_EDGE] = {0,nn};
			int nidx = 2;
			for (int k = 0; k < nidx-1; )
			{
				const int a = idx[k];
				const int b = idx[k+1];
				const float* va = &edge[a*3];
				const float* vb = &edge[b*3];
				// Find maximum deviation along the segment.
				float maxd = 0;
				int maxi = -1;
				for (int m = a+1; m < b; ++m)
				{
					float dev = distancePtSeg(&edge[m*3],va,vb);
					if (dev > maxd)
					{
						maxd = dev;
						maxi = m;
					}
				}
				// If the max deviation is larger than accepted error,
				// add new point, else continue to next segment.
				if (maxi != -1 && maxd > rcSqr(sampleMaxError))
				{
					for (int m = nidx; m > k; --m)
						idx[m] = idx[m-1];
					idx[k+1] = maxi;
					nidx++;
				}
				else
				{
					++k;
				}
			}
			
			hull[nhull++] = j;
			// Add new vertices.
			if (swapped)
			{
				for (int k = nidx-2; k > 0; --k)
				{
					rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
					hull[nhull++] = nverts;
					nverts++;
				}
			}
			else
			{
				for (int k = 1; k < nidx-1; ++k)
				{
					rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
					hull[nhull++] = nverts;
					nverts++;
				}
			}
		}
	}
	
	// If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
	if (minExtent < sampleDist*2)
	{
		triangulateHull(nverts, verts, nhull, hull, nin, tris);
		return true;
	}
	
	// Tessellate the base mesh.
	// We're using the triangulateHull instead of delaunayHull as it tends to
	// create a bit better triangulation for long thin triangles when there
	// are no internal points.
	triangulateHull(nverts, verts, nhull, hull, nin, tris);
	
	if (tris.size() == 0)
	{
		// Could not triangulate the poly, make sure there is some valid data there.
		ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
		return true;
	}
	
	if (sampleDist > 0)
	{
		// Create sample locations in a grid.
		float bmin[3], bmax[3];
		rcVcopy(bmin, in);
		rcVcopy(bmax, in);
		for (int i = 1; i < nin; ++i)
		{
			rcVmin(bmin, &in[i*3]);
			rcVmax(bmax, &in[i*3]);
		}
		int x0 = (int)floorf(bmin[0]/sampleDist);
		int x1 = (int)ceilf(bmax[0]/sampleDist);
		int z0 = (int)floorf(bmin[2]/sampleDist);
		int z1 = (int)ceilf(bmax[2]/sampleDist);
		samples.clear();
		for (int z = z0; z < z1; ++z)
		{
			for (int x = x0; x < x1; ++x)
			{
				float pt[3];
				pt[0] = x*sampleDist;
				pt[1] = (bmax[1]+bmin[1])*0.5f;
				pt[2] = z*sampleDist;
				// Make sure the samples are not too close to the edges.
				if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
				samples.push(x);
				samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp));
				samples.push(z);
				samples.push(0); // Not added
			}
		}
		
		// Add the samples starting from the one that has the most
		// error. The procedure stops when all samples are added
		// or when the max error is within treshold.
		const int nsamples = samples.size()/4;
		for (int iter = 0; iter < nsamples; ++iter)
		{
			if (nverts >= MAX_VERTS)
				break;
			
			// Find sample with most error.
			float bestpt[3] = {0,0,0};
			float bestd = 0;
			int besti = -1;
			for (int i = 0; i < nsamples; ++i)
			{
				const int* s = &samples[i*4];
				if (s[3]) continue; // skip added.
				float pt[3];
				// The sample location is jittered to get rid of some bad triangulations
				// which are cause by symmetrical data from the grid structure.
				pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f;
				pt[1] = s[1]*chf.ch;
				pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f;
				float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
				if (d < 0) continue; // did not hit the mesh.
				if (d > bestd)
				{
					bestd = d;
					besti = i;
					rcVcopy(bestpt,pt);
				}
			}
			// If the max error is within accepted threshold, stop tesselating.
			if (bestd <= sampleMaxError || besti == -1)
				break;
			// Mark sample as added.
			samples[besti*4+3] = 1;
			// Add the new sample point.
			rcVcopy(&verts[nverts*3],bestpt);
			nverts++;
			
			// Create new triangulation.
			// TODO: Incremental add instead of full rebuild.
			edges.clear();
			tris.clear();
			delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
		}
	}
	
	const int ntris = tris.size()/4;
	if (ntris > MAX_TRIS)
	{
		tris.resize(MAX_TRIS*4);
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
	}
	
	return true;
}

static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf,
									const unsigned short* poly, const int npoly,
									const unsigned short* verts, const int bs,
									rcHeightPatch& hp, rcIntArray& array)
{
	// Note: Reads to the compact heightfield are offset by border size (bs)
	// since border size offset is already removed from the polymesh vertices.
	
	static const int offset[9*2] =
	{
		0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0,
	};
	
	// Find cell closest to a poly vertex
	int startCellX = 0, startCellY = 0, startSpanIndex = -1;
	int dmin = RC_UNSET_HEIGHT;
	for (int j = 0; j < npoly && dmin > 0; ++j)
	{
		for (int k = 0; k < 9 && dmin > 0; ++k)
		{
			const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0];
			const int ay = (int)verts[poly[j]*3+1];
			const int az = (int)verts[poly[j]*3+2] + offset[k*2+1];
			if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
				az < hp.ymin || az >= hp.ymin+hp.height)
				continue;
			
			const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				int d = rcAbs(ay - (int)s.y);
				if (d < dmin)
				{
					startCellX = ax;
					startCellY = az;
					startSpanIndex = i;
					dmin = d;
				}
			}
		}
	}
	
	rcAssert(startSpanIndex != -1);
	// Find center of the polygon
	int pcx = 0, pcy = 0;
	for (int j = 0; j < npoly; ++j)
	{
		pcx += (int)verts[poly[j]*3+0];
		pcy += (int)verts[poly[j]*3+2];
	}
	pcx /= npoly;
	pcy /= npoly;
	
	// Use seeds array as a stack for DFS
	array.clear();
	array.push(startCellX);
	array.push(startCellY);
	array.push(startSpanIndex);

	int dirs[] = { 0, 1, 2, 3 };
	memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
	// DFS to move to the center. Note that we need a DFS here and can not just move
	// directly towards the center without recording intermediate nodes, even though the polygons
	// are convex. In very rare we can get stuck due to contour simplification if we do not
	// record nodes.
	int cx = -1, cy = -1, ci = -1;
	while (true)
	{
		if (array.size() < 3)
		{
			ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center");
			break;
		}

		ci = array.pop();
		cy = array.pop();
		cx = array.pop();

		if (cx == pcx && cy == pcy)
			break;

		// If we are already at the correct X-position, prefer direction
		// directly towards the center in the Y-axis; otherwise prefer
		// direction in the X-axis
		int directDir;
		if (cx == pcx)
			directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1);
		else
			directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0);

		// Push the direct dir last so we start with this on next iteration
		rcSwap(dirs[directDir], dirs[3]);

		const rcCompactSpan& cs = chf.spans[ci];
		for (int i = 0; i < 4; i++)
		{
			int dir = dirs[i];
			if (rcGetCon(cs, dir) == RC_NOT_CONNECTED)
				continue;

			int newX = cx + rcGetDirOffsetX(dir);
			int newY = cy + rcGetDirOffsetY(dir);

			int hpx = newX - hp.xmin;
			int hpy = newY - hp.ymin;
			if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height)
				continue;

			if (hp.data[hpx+hpy*hp.width] != 0)
				continue;

			hp.data[hpx+hpy*hp.width] = 1;
			array.push(newX);
			array.push(newY);
			array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir));
		}

		rcSwap(dirs[directDir], dirs[3]);
	}

	array.clear();
	// getHeightData seeds are given in coordinates with borders
	array.push(cx+bs);
	array.push(cy+bs);
	array.push(ci);

	memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
	const rcCompactSpan& cs = chf.spans[ci];
	hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y;
}


static void push3(rcIntArray& queue, int v1, int v2, int v3)
{
	queue.resize(queue.size() + 3);
	queue[queue.size() - 3] = v1;
	queue[queue.size() - 2] = v2;
	queue[queue.size() - 1] = v3;
}

static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
						  const unsigned short* poly, const int npoly,
						  const unsigned short* verts, const int bs,
						  rcHeightPatch& hp, rcIntArray& queue,
						  int region)
{
	// Note: Reads to the compact heightfield are offset by border size (bs)
	// since border size offset is already removed from the polymesh vertices.
	
	queue.clear();
	// Set all heights to RC_UNSET_HEIGHT.
	memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);

	bool empty = true;
	
	// We cannot sample from this poly if it was created from polys
	// of different regions. If it was then it could potentially be overlapping
	// with polys of that region and the heights sampled here could be wrong.
	if (region != RC_MULTIPLE_REGS)
	{
		// Copy the height from the same region, and mark region borders
		// as seed points to fill the rest.
		for (int hy = 0; hy < hp.height; hy++)
		{
			int y = hp.ymin + hy + bs;
			for (int hx = 0; hx < hp.width; hx++)
			{
				int x = hp.xmin + hx + bs;
				const rcCompactCell& c = chf.cells[x + y*chf.width];
				for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
				{
					const rcCompactSpan& s = chf.spans[i];
					if (s.reg == region)
					{
						// Store height
						hp.data[hx + hy*hp.width] = s.y;
						empty = false;

						// If any of the neighbours is not in same region,
						// add the current location as flood fill start
						bool border = false;
						for (int dir = 0; dir < 4; ++dir)
						{
							if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
							{
								const int ax = x + rcGetDirOffsetX(dir);
								const int ay = y + rcGetDirOffsetY(dir);
								const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir);
								const rcCompactSpan& as = chf.spans[ai];
								if (as.reg != region)
								{
									border = true;
									break;
								}
							}
						}
						if (border)
							push3(queue, x, y, i);
						break;
					}
				}
			}
		}
	}
	
	// if the polygon does not contain any points from the current region (rare, but happens)
	// or if it could potentially be overlapping polygons of the same region,
	// then use the center as the seed point.
	if (empty)
		seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue);
	
	static const int RETRACT_SIZE = 256;
	int head = 0;
	
	// We assume the seed is centered in the polygon, so a BFS to collect
	// height data will ensure we do not move onto overlapping polygons and
	// sample wrong heights.
	while (head*3 < queue.size())
	{
		int cx = queue[head*3+0];
		int cy = queue[head*3+1];
		int ci = queue[head*3+2];
		head++;
		if (head >= RETRACT_SIZE)
		{
			head = 0;
			if (queue.size() > RETRACT_SIZE*3)
				memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3));
			queue.resize(queue.size()-RETRACT_SIZE*3);
		}
		
		const rcCompactSpan& cs = chf.spans[ci];
		for (int dir = 0; dir < 4; ++dir)
		{
			if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue;
			
			const int ax = cx + rcGetDirOffsetX(dir);
			const int ay = cy + rcGetDirOffsetY(dir);
			const int hx = ax - hp.xmin - bs;
			const int hy = ay - hp.ymin - bs;
			
			if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height)
				continue;
			
			if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT)
				continue;
			
			const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
			const rcCompactSpan& as = chf.spans[ai];
			
			hp.data[hx + hy*hp.width] = as.y;
			
			push3(queue, ax, ay, ai);
		}
	}
}

static unsigned char getEdgeFlags(const float* va, const float* vb,
								  const float* vpoly, const int npoly)
{
	// The flag returned by this function matches dtDetailTriEdgeFlags in Detour.
	// Figure out if edge (va,vb) is part of the polygon boundary.
	static const float thrSqr = rcSqr(0.001f);
	for (int i = 0, j = npoly-1; i < npoly; j=i++)
	{
		if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
			distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
			return 1;
	}
	return 0;
}

static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
								 const float* vpoly, const int npoly)
{
	unsigned char flags = 0;
	flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
	flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
	flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
	return flags;
}

/// @par
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
						   const float sampleDist, const float sampleMaxError,
						   rcPolyMeshDetail& dmesh)
{
	rcAssert(ctx);
	
	rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL);
	
	if (mesh.nverts == 0 || mesh.npolys == 0)
		return true;
	
	const int nvp = mesh.nvp;
	const float cs = mesh.cs;
	const float ch = mesh.ch;
	const float* orig = mesh.bmin;
	const int borderSize = mesh.borderSize;
	const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError));
	
	rcIntArray edges(64);
	rcIntArray tris(512);
	rcIntArray arr(512);
	rcIntArray samples(512);
	float verts[256*3];
	rcHeightPatch hp;
	int nPolyVerts = 0;
	int maxhw = 0, maxhh = 0;
	
	rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP));
	if (!bounds)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
		return false;
	}
	rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP));
	if (!poly)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
		return false;
	}
	
	// Find max size for a polygon area.
	for (int i = 0; i < mesh.npolys; ++i)
	{
		const unsigned short* p = &mesh.polys[i*nvp*2];
		int& xmin = bounds[i*4+0];
		int& xmax = bounds[i*4+1];
		int& ymin = bounds[i*4+2];
		int& ymax = bounds[i*4+3];
		xmin = chf.width;
		xmax = 0;
		ymin = chf.height;
		ymax = 0;
		for (int j = 0; j < nvp; ++j)
		{
			if(p[j] == RC_MESH_NULL_IDX) break;
			const unsigned short* v = &mesh.verts[p[j]*3];
			xmin = rcMin(xmin, (int)v[0]);
			xmax = rcMax(xmax, (int)v[0]);
			ymin = rcMin(ymin, (int)v[2]);
			ymax = rcMax(ymax, (int)v[2]);
			nPolyVerts++;
		}
		xmin = rcMax(0,xmin-1);
		xmax = rcMin(chf.width,xmax+1);
		ymin = rcMax(0,ymin-1);
		ymax = rcMin(chf.height,ymax+1);
		if (xmin >= xmax || ymin >= ymax) continue;
		maxhw = rcMax(maxhw, xmax-xmin);
		maxhh = rcMax(maxhh, ymax-ymin);
	}
	
	hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
	if (!hp.data)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
		return false;
	}
	
	dmesh.nmeshes = mesh.npolys;
	dmesh.nverts = 0;
	dmesh.ntris = 0;
	dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM);
	if (!dmesh.meshes)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
		return false;
	}
	
	int vcap = nPolyVerts+nPolyVerts/2;
	int tcap = vcap*2;
	
	dmesh.nverts = 0;
	dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
	if (!dmesh.verts)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
		return false;
	}
	dmesh.ntris = 0;
	dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
	if (!dmesh.tris)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
		return false;
	}
	
	for (int i = 0; i < mesh.npolys; ++i)
	{
		const unsigned short* p = &mesh.polys[i*nvp*2];
		
		// Store polygon vertices for processing.
		int npoly = 0;
		for (int j = 0; j < nvp; ++j)
		{
			if(p[j] == RC_MESH_NULL_IDX) break;
			const unsigned short* v = &mesh.verts[p[j]*3];
			poly[j*3+0] = v[0]*cs;
			poly[j*3+1] = v[1]*ch;
			poly[j*3+2] = v[2]*cs;
			npoly++;
		}
		
		// Get the height data from the area of the polygon.
		hp.xmin = bounds[i*4+0];
		hp.ymin = bounds[i*4+2];
		hp.width = bounds[i*4+1]-bounds[i*4+0];
		hp.height = bounds[i*4+3]-bounds[i*4+2];
		getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]);
		
		// Build detail mesh.
		int nverts = 0;
		if (!buildPolyDetail(ctx, poly, npoly,
							 sampleDist, sampleMaxError,
							 heightSearchRadius, chf, hp,
							 verts, nverts, tris,
							 edges, samples))
		{
			return false;
		}
		
		// Move detail verts to world space.
		for (int j = 0; j < nverts; ++j)
		{
			verts[j*3+0] += orig[0];
			verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary?
			verts[j*3+2] += orig[2];
		}
		// Offset poly too, will be used to flag checking.
		for (int j = 0; j < npoly; ++j)
		{
			poly[j*3+0] += orig[0];
			poly[j*3+1] += orig[1];
			poly[j*3+2] += orig[2];
		}
		
		// Store detail submesh.
		const int ntris = tris.size()/4;
		
		dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
		dmesh.meshes[i*4+1] = (unsigned int)nverts;
		dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
		dmesh.meshes[i*4+3] = (unsigned int)ntris;
		
		// Store vertices, allocate more memory if necessary.
		if (dmesh.nverts+nverts > vcap)
		{
			while (dmesh.nverts+nverts > vcap)
				vcap += 256;
			
			float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
			if (!newv)
			{
				ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
				return false;
			}
			if (dmesh.nverts)
				memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
			rcFree(dmesh.verts);
			dmesh.verts = newv;
		}
		for (int j = 0; j < nverts; ++j)
		{
			dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
			dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
			dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
			dmesh.nverts++;
		}
		
		// Store triangles, allocate more memory if necessary.
		if (dmesh.ntris+ntris > tcap)
		{
			while (dmesh.ntris+ntris > tcap)
				tcap += 256;
			unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
			if (!newt)
			{
				ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
				return false;
			}
			if (dmesh.ntris)
				memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
			rcFree(dmesh.tris);
			dmesh.tris = newt;
		}
		for (int j = 0; j < ntris; ++j)
		{
			const int* t = &tris[j*4];
			dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
			dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
			dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
			dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
			dmesh.ntris++;
		}
	}
	
	return true;
}

/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
{
	rcAssert(ctx);
	
	rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL);
	
	int maxVerts = 0;
	int maxTris = 0;
	int maxMeshes = 0;
	
	for (int i = 0; i < nmeshes; ++i)
	{
		if (!meshes[i]) continue;
		maxVerts += meshes[i]->nverts;
		maxTris += meshes[i]->ntris;
		maxMeshes += meshes[i]->nmeshes;
	}
	
	mesh.nmeshes = 0;
	mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
	if (!mesh.meshes)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
		return false;
	}
	
	mesh.ntris = 0;
	mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
	if (!mesh.tris)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
		return false;
	}
	
	mesh.nverts = 0;
	mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
	if (!mesh.verts)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
		return false;
	}
	
	// Merge datas.
	for (int i = 0; i < nmeshes; ++i)
	{
		rcPolyMeshDetail* dm = meshes[i];
		if (!dm) continue;
		for (int j = 0; j < dm->nmeshes; ++j)
		{
			unsigned int* dst = &mesh.meshes[mesh.nmeshes*4];
			unsigned int* src = &dm->meshes[j*4];
			dst[0] = (unsigned int)mesh.nverts+src[0];
			dst[1] = src[1];
			dst[2] = (unsigned int)mesh.ntris+src[2];
			dst[3] = src[3];
			mesh.nmeshes++;
		}
		
		for (int k = 0; k < dm->nverts; ++k)
		{
			rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
			mesh.nverts++;
		}
		for (int k = 0; k < dm->ntris; ++k)
		{
			mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
			mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
			mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
			mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
			mesh.ntris++;
		}
	}
	
	return true;
}