summaryrefslogtreecommitdiff
path: root/thirdparty/recastnavigation/Recast/Source/Recast.cpp
blob: 4cf145c981e6bedadb9d259678293069d73d12fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"

namespace
{
/// Allocates and constructs an object of the given type, returning a pointer.
/// TODO: Support constructor args.
/// @param[in]		hint	Hint to the allocator.
template <typename T>
T* rcNew(rcAllocHint hint) {
	T* ptr = (T*)rcAlloc(sizeof(T), hint);
	::new(rcNewTag(), (void*)ptr) T();
	return ptr;
}

/// Destroys and frees an object allocated with rcNew.
/// @param[in]     ptr    The object pointer to delete.
template <typename T>
void rcDelete(T* ptr) {
	if (ptr) {
		ptr->~T();
		rcFree((void*)ptr);
	}
}
}  // namespace


float rcSqrt(float x)
{
	return sqrtf(x);
}

/// @class rcContext
/// @par
///
/// This class does not provide logging or timer functionality on its 
/// own.  Both must be provided by a concrete implementation 
/// by overriding the protected member functions.  Also, this class does not 
/// provide an interface for extracting log messages. (Only adding them.) 
/// So concrete implementations must provide one.
///
/// If no logging or timers are required, just pass an instance of this 
/// class through the Recast build process.
///

/// @par
///
/// Example:
/// @code
/// // Where ctx is an instance of rcContext and filepath is a char array.
/// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath);
/// @endcode
void rcContext::log(const rcLogCategory category, const char* format, ...)
{
	if (!m_logEnabled)
		return;
	static const int MSG_SIZE = 512;
	char msg[MSG_SIZE];
	va_list ap;
	va_start(ap, format);
	int len = vsnprintf(msg, MSG_SIZE, format, ap);
	if (len >= MSG_SIZE)
	{
		len = MSG_SIZE-1;
		msg[MSG_SIZE-1] = '\0';
	}
	va_end(ap);
	doLog(category, msg, len);
}

void rcContext::doResetLog()
{
	// Defined out of line to fix the weak v-tables warning
}

rcHeightfield* rcAllocHeightfield()
{
	return rcNew<rcHeightfield>(RC_ALLOC_PERM);
}
rcHeightfield::rcHeightfield()
	: width()
	, height()
	, bmin()
	, bmax()
	, cs()
	, ch()
	, spans()
	, pools()
	, freelist()
{
}

rcHeightfield::~rcHeightfield()
{
	// Delete span array.
	rcFree(spans);
	// Delete span pools.
	while (pools)
	{
		rcSpanPool* next = pools->next;
		rcFree(pools);
		pools = next;
	}
}

void rcFreeHeightField(rcHeightfield* hf)
{
	rcDelete(hf);
}

rcCompactHeightfield* rcAllocCompactHeightfield()
{
	return rcNew<rcCompactHeightfield>(RC_ALLOC_PERM);
}

void rcFreeCompactHeightfield(rcCompactHeightfield* chf)
{
	rcDelete(chf);
}

rcCompactHeightfield::rcCompactHeightfield()
	: width(),
	height(),
	spanCount(),
	walkableHeight(),
	walkableClimb(),
	borderSize(),
	maxDistance(),
	maxRegions(),
	bmin(),
	bmax(),
	cs(),
	ch(),
	cells(),
	spans(),
	dist(),
	areas()
{
}
rcCompactHeightfield::~rcCompactHeightfield()
{
	rcFree(cells);
	rcFree(spans);
	rcFree(dist);
	rcFree(areas);
}

rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet()
{
	return rcNew<rcHeightfieldLayerSet>(RC_ALLOC_PERM);
}
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset)
{
	rcDelete(lset);
}

rcHeightfieldLayerSet::rcHeightfieldLayerSet()
	: layers(),	nlayers() {}
rcHeightfieldLayerSet::~rcHeightfieldLayerSet()
{
	for (int i = 0; i < nlayers; ++i)
	{
		rcFree(layers[i].heights);
		rcFree(layers[i].areas);
		rcFree(layers[i].cons);
	}
	rcFree(layers);
}


rcContourSet* rcAllocContourSet()
{
	return rcNew<rcContourSet>(RC_ALLOC_PERM);
}
void rcFreeContourSet(rcContourSet* cset)
{
	rcDelete(cset);
}

rcContourSet::rcContourSet()
	: conts(),
	nconts(),
	bmin(),
	bmax(),
	cs(),
	ch(),
	width(),
	height(),
	borderSize(),
	maxError() {}
rcContourSet::~rcContourSet()
{
	for (int i = 0; i < nconts; ++i)
	{
		rcFree(conts[i].verts);
		rcFree(conts[i].rverts);
	}
	rcFree(conts);
}


rcPolyMesh* rcAllocPolyMesh()
{
	return rcNew<rcPolyMesh>(RC_ALLOC_PERM);
}
void rcFreePolyMesh(rcPolyMesh* pmesh)
{
	rcDelete(pmesh);
}

rcPolyMesh::rcPolyMesh()
	: verts(),
	polys(),
	regs(),
	flags(),
	areas(),
	nverts(),
	npolys(),
	maxpolys(),
	nvp(),
	bmin(),
	bmax(),
	cs(),
	ch(),
	borderSize(),
	maxEdgeError() {}

rcPolyMesh::~rcPolyMesh()
{
	rcFree(verts);
	rcFree(polys);
	rcFree(regs);
	rcFree(flags);
	rcFree(areas);
}

rcPolyMeshDetail* rcAllocPolyMeshDetail()
{
	rcPolyMeshDetail* dmesh = (rcPolyMeshDetail*)rcAlloc(sizeof(rcPolyMeshDetail), RC_ALLOC_PERM);
	memset(dmesh, 0, sizeof(rcPolyMeshDetail));
	return dmesh;
}

void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh)
{
	if (!dmesh) return;
	rcFree(dmesh->meshes);
	rcFree(dmesh->verts);
	rcFree(dmesh->tris);
	rcFree(dmesh);
}

void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax)
{
	// Calculate bounding box.
	rcVcopy(bmin, verts);
	rcVcopy(bmax, verts);
	for (int i = 1; i < nv; ++i)
	{
		const float* v = &verts[i*3];
		rcVmin(bmin, v);
		rcVmax(bmax, v);
	}
}

void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h)
{
	*w = (int)((bmax[0] - bmin[0])/cs+0.5f);
	*h = (int)((bmax[2] - bmin[2])/cs+0.5f);
}

/// @par
///
/// See the #rcConfig documentation for more information on the configuration parameters.
/// 
/// @see rcAllocHeightfield, rcHeightfield 
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
						 const float* bmin, const float* bmax,
						 float cs, float ch)
{
	rcIgnoreUnused(ctx);
	
	hf.width = width;
	hf.height = height;
	rcVcopy(hf.bmin, bmin);
	rcVcopy(hf.bmax, bmax);
	hf.cs = cs;
	hf.ch = ch;
	hf.spans = (rcSpan**)rcAlloc(sizeof(rcSpan*)*hf.width*hf.height, RC_ALLOC_PERM);
	if (!hf.spans)
		return false;
	memset(hf.spans, 0, sizeof(rcSpan*)*hf.width*hf.height);
	return true;
}

static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* norm)
{
	float e0[3], e1[3];
	rcVsub(e0, v1, v0);
	rcVsub(e1, v2, v0);
	rcVcross(norm, e0, e1);
	rcVnormalize(norm);
}

/// @par
///
/// Only sets the area id's for the walkable triangles.  Does not alter the
/// area id's for unwalkable triangles.
/// 
/// See the #rcConfig documentation for more information on the configuration parameters.
/// 
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
							 const float* verts, int nv,
							 const int* tris, int nt,
							 unsigned char* areas)
{
	rcIgnoreUnused(ctx);
	rcIgnoreUnused(nv);
	
	const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);

	float norm[3];
	
	for (int i = 0; i < nt; ++i)
	{
		const int* tri = &tris[i*3];
		calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
		// Check if the face is walkable.
		if (norm[1] > walkableThr)
			areas[i] = RC_WALKABLE_AREA;
	}
}

/// @par
///
/// Only sets the area id's for the unwalkable triangles.  Does not alter the
/// area id's for walkable triangles.
/// 
/// See the #rcConfig documentation for more information on the configuration parameters.
/// 
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
								const float* verts, int /*nv*/,
								const int* tris, int nt,
								unsigned char* areas)
{
	rcIgnoreUnused(ctx);
	
	const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
	
	float norm[3];
	
	for (int i = 0; i < nt; ++i)
	{
		const int* tri = &tris[i*3];
		calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
		// Check if the face is walkable.
		if (norm[1] <= walkableThr)
			areas[i] = RC_NULL_AREA;
	}
}

int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf)
{
	rcIgnoreUnused(ctx);
	
	const int w = hf.width;
	const int h = hf.height;
	int spanCount = 0;
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			for (rcSpan* s = hf.spans[x + y*w]; s; s = s->next)
			{
				if (s->area != RC_NULL_AREA)
					spanCount++;
			}
		}
	}
	return spanCount;
}

/// @par
///
/// This is just the beginning of the process of fully building a compact heightfield.
/// Various filters may be applied, then the distance field and regions built.
/// E.g: #rcBuildDistanceField and #rcBuildRegions
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
							   rcHeightfield& hf, rcCompactHeightfield& chf)
{
	rcAssert(ctx);
	
	rcScopedTimer timer(ctx, RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
	
	const int w = hf.width;
	const int h = hf.height;
	const int spanCount = rcGetHeightFieldSpanCount(ctx, hf);

	// Fill in header.
	chf.width = w;
	chf.height = h;
	chf.spanCount = spanCount;
	chf.walkableHeight = walkableHeight;
	chf.walkableClimb = walkableClimb;
	chf.maxRegions = 0;
	rcVcopy(chf.bmin, hf.bmin);
	rcVcopy(chf.bmax, hf.bmax);
	chf.bmax[1] += walkableHeight*hf.ch;
	chf.cs = hf.cs;
	chf.ch = hf.ch;
	chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*w*h, RC_ALLOC_PERM);
	if (!chf.cells)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
		return false;
	}
	memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
	chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*spanCount, RC_ALLOC_PERM);
	if (!chf.spans)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
		return false;
	}
	memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
	chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*spanCount, RC_ALLOC_PERM);
	if (!chf.areas)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount);
		return false;
	}
	memset(chf.areas, RC_NULL_AREA, sizeof(unsigned char)*spanCount);
	
	const int MAX_HEIGHT = 0xffff;
	
	// Fill in cells and spans.
	int idx = 0;
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcSpan* s = hf.spans[x + y*w];
			// If there are no spans at this cell, just leave the data to index=0, count=0.
			if (!s) continue;
			rcCompactCell& c = chf.cells[x+y*w];
			c.index = idx;
			c.count = 0;
			while (s)
			{
				if (s->area != RC_NULL_AREA)
				{
					const int bot = (int)s->smax;
					const int top = s->next ? (int)s->next->smin : MAX_HEIGHT;
					chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
					chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
					chf.areas[idx] = s->area;
					idx++;
					c.count++;
				}
				s = s->next;
			}
		}
	}

	// Find neighbour connections.
	const int MAX_LAYERS = RC_NOT_CONNECTED-1;
	int tooHighNeighbour = 0;
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				rcCompactSpan& s = chf.spans[i];
				
				for (int dir = 0; dir < 4; ++dir)
				{
					rcSetCon(s, dir, RC_NOT_CONNECTED);
					const int nx = x + rcGetDirOffsetX(dir);
					const int ny = y + rcGetDirOffsetY(dir);
					// First check that the neighbour cell is in bounds.
					if (nx < 0 || ny < 0 || nx >= w || ny >= h)
						continue;
						
					// Iterate over all neighbour spans and check if any of the is
					// accessible from current cell.
					const rcCompactCell& nc = chf.cells[nx+ny*w];
					for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k)
					{
						const rcCompactSpan& ns = chf.spans[k];
						const int bot = rcMax(s.y, ns.y);
						const int top = rcMin(s.y+s.h, ns.y+ns.h);

						// Check that the gap between the spans is walkable,
						// and that the climb height between the gaps is not too high.
						if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
						{
							// Mark direction as walkable.
							const int lidx = k - (int)nc.index;
							if (lidx < 0 || lidx > MAX_LAYERS)
							{
								tooHighNeighbour = rcMax(tooHighNeighbour, lidx);
								continue;
							}
							rcSetCon(s, dir, lidx);
							break;
						}
					}
					
				}
			}
		}
	}
	
	if (tooHighNeighbour > MAX_LAYERS)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
				 tooHighNeighbour, MAX_LAYERS);
	}
	
	return true;
}

/*
static int getHeightfieldMemoryUsage(const rcHeightfield& hf)
{
	int size = 0;
	size += sizeof(hf);
	size += hf.width * hf.height * sizeof(rcSpan*);
	
	rcSpanPool* pool = hf.pools;
	while (pool)
	{
		size += (sizeof(rcSpanPool) - sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL;
		pool = pool->next;
	}
	return size;
}

static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf)
{
	int size = 0;
	size += sizeof(rcCompactHeightfield);
	size += sizeof(rcCompactSpan) * chf.spanCount;
	size += sizeof(rcCompactCell) * chf.width * chf.height;
	return size;
}
*/