summaryrefslogtreecommitdiff
path: root/thirdparty/recastnavigation/Recast/Include/Recast.h
blob: 4d557389b5fbcf10ca9a11c475b7082d895698f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
 
#ifndef RECAST_H
#define RECAST_H

/// The value of PI used by Recast.
static const float RC_PI = 3.14159265f;

/// Recast log categories.
/// @see rcContext
enum rcLogCategory
{
	RC_LOG_PROGRESS = 1,	///< A progress log entry.
	RC_LOG_WARNING,			///< A warning log entry.
	RC_LOG_ERROR,			///< An error log entry.
};

/// Recast performance timer categories.
/// @see rcContext
enum rcTimerLabel
{
	/// The user defined total time of the build.
	RC_TIMER_TOTAL,
	/// A user defined build time.
	RC_TIMER_TEMP,
	/// The time to rasterize the triangles. (See: #rcRasterizeTriangle)
	RC_TIMER_RASTERIZE_TRIANGLES,
	/// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield)
	RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
	/// The total time to build the contours. (See: #rcBuildContours)
	RC_TIMER_BUILD_CONTOURS,
	/// The time to trace the boundaries of the contours. (See: #rcBuildContours)
	RC_TIMER_BUILD_CONTOURS_TRACE,
	/// The time to simplify the contours. (See: #rcBuildContours)
	RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
	/// The time to filter ledge spans. (See: #rcFilterLedgeSpans)
	RC_TIMER_FILTER_BORDER,
	/// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans)
	RC_TIMER_FILTER_WALKABLE,
	/// The time to apply the median filter. (See: #rcMedianFilterWalkableArea)
	RC_TIMER_MEDIAN_AREA,
	/// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles)
	RC_TIMER_FILTER_LOW_OBSTACLES,
	/// The time to build the polygon mesh. (See: #rcBuildPolyMesh)
	RC_TIMER_BUILD_POLYMESH,
	/// The time to merge polygon meshes. (See: #rcMergePolyMeshes)
	RC_TIMER_MERGE_POLYMESH,
	/// The time to erode the walkable area. (See: #rcErodeWalkableArea)
	RC_TIMER_ERODE_AREA,
	/// The time to mark a box area. (See: #rcMarkBoxArea)
	RC_TIMER_MARK_BOX_AREA,
	/// The time to mark a cylinder area. (See: #rcMarkCylinderArea)
	RC_TIMER_MARK_CYLINDER_AREA,
	/// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea)
	RC_TIMER_MARK_CONVEXPOLY_AREA,
	/// The total time to build the distance field. (See: #rcBuildDistanceField)
	RC_TIMER_BUILD_DISTANCEFIELD,
	/// The time to build the distances of the distance field. (See: #rcBuildDistanceField)
	RC_TIMER_BUILD_DISTANCEFIELD_DIST,
	/// The time to blur the distance field. (See: #rcBuildDistanceField)
	RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
	/// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
	RC_TIMER_BUILD_REGIONS,
	/// The total time to apply the watershed algorithm. (See: #rcBuildRegions)
	RC_TIMER_BUILD_REGIONS_WATERSHED,
	/// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions)
	RC_TIMER_BUILD_REGIONS_EXPAND,
	/// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions)
	RC_TIMER_BUILD_REGIONS_FLOOD,
	/// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
	RC_TIMER_BUILD_REGIONS_FILTER,
	/// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
	RC_TIMER_BUILD_LAYERS, 
	/// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
	RC_TIMER_BUILD_POLYMESHDETAIL,
	/// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
	RC_TIMER_MERGE_POLYMESHDETAIL,
	/// The maximum number of timers.  (Used for iterating timers.)
	RC_MAX_TIMERS
};

/// Provides an interface for optional logging and performance tracking of the Recast 
/// build process.
/// @ingroup recast
class rcContext
{
public:

	/// Contructor.
	///  @param[in]		state	TRUE if the logging and performance timers should be enabled.  [Default: true]
	inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
	virtual ~rcContext() {}

	/// Enables or disables logging.
	///  @param[in]		state	TRUE if logging should be enabled.
	inline void enableLog(bool state) { m_logEnabled = state; }

	/// Clears all log entries.
	inline void resetLog() { if (m_logEnabled) doResetLog(); }

	/// Logs a message.
	///  @param[in]		category	The category of the message.
	///  @param[in]		format		The message.
	void log(const rcLogCategory category, const char* format, ...);

	/// Enables or disables the performance timers.
	///  @param[in]		state	TRUE if timers should be enabled.
	inline void enableTimer(bool state) { m_timerEnabled = state; }

	/// Clears all peformance timers. (Resets all to unused.)
	inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }

	/// Starts the specified performance timer.
	///  @param	label	The category of the timer.
	inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }

	/// Stops the specified performance timer.
	///  @param	label	The category of the timer.
	inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }

	/// Returns the total accumulated time of the specified performance timer.
	///  @param	label	The category of the timer.
	///  @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
	inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }

protected:

	/// Clears all log entries.
	virtual void doResetLog() {}

	/// Logs a message.
	///  @param[in]		category	The category of the message.
	///  @param[in]		msg			The formatted message.
	///  @param[in]		len			The length of the formatted message.
	virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}

	/// Clears all timers. (Resets all to unused.)
	virtual void doResetTimers() {}

	/// Starts the specified performance timer.
	///  @param[in]		label	The category of timer.
	virtual void doStartTimer(const rcTimerLabel /*label*/) {}

	/// Stops the specified performance timer.
	///  @param[in]		label	The category of the timer.
	virtual void doStopTimer(const rcTimerLabel /*label*/) {}

	/// Returns the total accumulated time of the specified performance timer.
	///  @param[in]		label	The category of the timer.
	///  @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
	virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
	
	/// True if logging is enabled.
	bool m_logEnabled;

	/// True if the performance timers are enabled.
	bool m_timerEnabled;
};

/// A helper to first start a timer and then stop it when this helper goes out of scope.
/// @see rcContext
class rcScopedTimer
{
public:
	/// Constructs an instance and starts the timer.
	///  @param[in]		ctx		The context to use.
	///  @param[in]		label	The category of the timer.
	inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); }
	inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); }

private:
	// Explicitly disabled copy constructor and copy assignment operator.
	rcScopedTimer(const rcScopedTimer&);
	rcScopedTimer& operator=(const rcScopedTimer&);
	
	rcContext* const m_ctx;
	const rcTimerLabel m_label;
};

/// Specifies a configuration to use when performing Recast builds.
/// @ingroup recast
struct rcConfig
{
	/// The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
	int width;

	/// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
	int height;
	
	/// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
	int tileSize;
	
	/// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
	int borderSize;

	/// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu] 
	float cs;

	/// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
	float ch;

	/// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
	float bmin[3]; 

	/// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
	float bmax[3];

	/// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees] 
	float walkableSlopeAngle;

	/// Minimum floor to 'ceiling' height that will still allow the floor area to 
	/// be considered walkable. [Limit: >= 3] [Units: vx] 
	int walkableHeight;
	
	/// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx] 
	int walkableClimb;
	
	/// The distance to erode/shrink the walkable area of the heightfield away from 
	/// obstructions.  [Limit: >=0] [Units: vx] 
	int walkableRadius;
	
	/// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx] 
	int maxEdgeLen;
	
	/// The maximum distance a simplfied contour's border edges should deviate 
	/// the original raw contour. [Limit: >=0] [Units: vx]
	float maxSimplificationError;
	
	/// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx] 
	int minRegionArea;
	
	/// Any regions with a span count smaller than this value will, if possible, 
	/// be merged with larger regions. [Limit: >=0] [Units: vx] 
	int mergeRegionArea;
	
	/// The maximum number of vertices allowed for polygons generated during the 
	/// contour to polygon conversion process. [Limit: >= 3] 
	int maxVertsPerPoly;
	
	/// Sets the sampling distance to use when generating the detail mesh.
	/// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu] 
	float detailSampleDist;
	
	/// The maximum distance the detail mesh surface should deviate from heightfield
	/// data. (For height detail only.) [Limit: >=0] [Units: wu] 
	float detailSampleMaxError;
};

/// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax.
static const int RC_SPAN_HEIGHT_BITS = 13;
/// Defines the maximum value for rcSpan::smin and rcSpan::smax.
static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1;

/// The number of spans allocated per span spool.
/// @see rcSpanPool
static const int RC_SPANS_PER_POOL = 2048;

/// Represents a span in a heightfield.
/// @see rcHeightfield
struct rcSpan
{
	unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax]
	unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
	unsigned int area : 6;                   ///< The area id assigned to the span.
	rcSpan* next;                            ///< The next span higher up in column.
};

/// A memory pool used for quick allocation of spans within a heightfield.
/// @see rcHeightfield
struct rcSpanPool
{
	rcSpanPool* next;					///< The next span pool.
	rcSpan items[RC_SPANS_PER_POOL];	///< Array of spans in the pool.
};

/// A dynamic heightfield representing obstructed space.
/// @ingroup recast
struct rcHeightfield
{
	rcHeightfield();
	~rcHeightfield();

	int width;			///< The width of the heightfield. (Along the x-axis in cell units.)
	int height;			///< The height of the heightfield. (Along the z-axis in cell units.)
	float bmin[3];  	///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];		///< The maximum bounds in world space. [(x, y, z)]
	float cs;			///< The size of each cell. (On the xz-plane.)
	float ch;			///< The height of each cell. (The minimum increment along the y-axis.)
	rcSpan** spans;		///< Heightfield of spans (width*height).
	rcSpanPool* pools;	///< Linked list of span pools.
	rcSpan* freelist;	///< The next free span.

private:
	// Explicitly-disabled copy constructor and copy assignment operator.
	rcHeightfield(const rcHeightfield&);
	rcHeightfield& operator=(const rcHeightfield&);
};

/// Provides information on the content of a cell column in a compact heightfield. 
struct rcCompactCell
{
	unsigned int index : 24;	///< Index to the first span in the column.
	unsigned int count : 8;		///< Number of spans in the column.
};

/// Represents a span of unobstructed space within a compact heightfield.
struct rcCompactSpan
{
	unsigned short y;			///< The lower extent of the span. (Measured from the heightfield's base.)
	unsigned short reg;			///< The id of the region the span belongs to. (Or zero if not in a region.)
	unsigned int con : 24;		///< Packed neighbor connection data.
	unsigned int h : 8;			///< The height of the span.  (Measured from #y.)
};

/// A compact, static heightfield representing unobstructed space.
/// @ingroup recast
struct rcCompactHeightfield
{
	rcCompactHeightfield();
	~rcCompactHeightfield();
	int width;					///< The width of the heightfield. (Along the x-axis in cell units.)
	int height;					///< The height of the heightfield. (Along the z-axis in cell units.)
	int spanCount;				///< The number of spans in the heightfield.
	int walkableHeight;			///< The walkable height used during the build of the field.  (See: rcConfig::walkableHeight)
	int walkableClimb;			///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
	int borderSize;				///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
	unsigned short maxDistance;	///< The maximum distance value of any span within the field. 
	unsigned short maxRegions;	///< The maximum region id of any span within the field. 
	float bmin[3];				///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];				///< The maximum bounds in world space. [(x, y, z)]
	float cs;					///< The size of each cell. (On the xz-plane.)
	float ch;					///< The height of each cell. (The minimum increment along the y-axis.)
	rcCompactCell* cells;		///< Array of cells. [Size: #width*#height]
	rcCompactSpan* spans;		///< Array of spans. [Size: #spanCount]
	unsigned short* dist;		///< Array containing border distance data. [Size: #spanCount]
	unsigned char* areas;		///< Array containing area id data. [Size: #spanCount]
};

/// Represents a heightfield layer within a layer set.
/// @see rcHeightfieldLayerSet
struct rcHeightfieldLayer
{
	float bmin[3];				///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];				///< The maximum bounds in world space. [(x, y, z)]
	float cs;					///< The size of each cell. (On the xz-plane.)
	float ch;					///< The height of each cell. (The minimum increment along the y-axis.)
	int width;					///< The width of the heightfield. (Along the x-axis in cell units.)
	int height;					///< The height of the heightfield. (Along the z-axis in cell units.)
	int minx;					///< The minimum x-bounds of usable data.
	int maxx;					///< The maximum x-bounds of usable data.
	int miny;					///< The minimum y-bounds of usable data. (Along the z-axis.)
	int maxy;					///< The maximum y-bounds of usable data. (Along the z-axis.)
	int hmin;					///< The minimum height bounds of usable data. (Along the y-axis.)
	int hmax;					///< The maximum height bounds of usable data. (Along the y-axis.)
	unsigned char* heights;		///< The heightfield. [Size: width * height]
	unsigned char* areas;		///< Area ids. [Size: Same as #heights]
	unsigned char* cons;		///< Packed neighbor connection information. [Size: Same as #heights]
};

/// Represents a set of heightfield layers.
/// @ingroup recast
/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet 
struct rcHeightfieldLayerSet
{
	rcHeightfieldLayerSet();
	~rcHeightfieldLayerSet();
	rcHeightfieldLayer* layers;			///< The layers in the set. [Size: #nlayers]
	int nlayers;						///< The number of layers in the set.
};

/// Represents a simple, non-overlapping contour in field space.
struct rcContour
{
	int* verts;			///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
	int nverts;			///< The number of vertices in the simplified contour. 
	int* rverts;		///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
	int nrverts;		///< The number of vertices in the raw contour. 
	unsigned short reg;	///< The region id of the contour.
	unsigned char area;	///< The area id of the contour.
};

/// Represents a group of related contours.
/// @ingroup recast
struct rcContourSet
{
	rcContourSet();
	~rcContourSet();
	rcContour* conts;	///< An array of the contours in the set. [Size: #nconts]
	int nconts;			///< The number of contours in the set.
	float bmin[3];  	///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];		///< The maximum bounds in world space. [(x, y, z)]
	float cs;			///< The size of each cell. (On the xz-plane.)
	float ch;			///< The height of each cell. (The minimum increment along the y-axis.)
	int width;			///< The width of the set. (Along the x-axis in cell units.) 
	int height;			///< The height of the set. (Along the z-axis in cell units.) 
	int borderSize;		///< The AABB border size used to generate the source data from which the contours were derived.
	float maxError;		///< The max edge error that this contour set was simplified with.
};

/// Represents a polygon mesh suitable for use in building a navigation mesh. 
/// @ingroup recast
struct rcPolyMesh
{
	rcPolyMesh();
	~rcPolyMesh();
	unsigned short* verts;	///< The mesh vertices. [Form: (x, y, z) * #nverts]
	unsigned short* polys;	///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
	unsigned short* regs;	///< The region id assigned to each polygon. [Length: #maxpolys]
	unsigned short* flags;	///< The user defined flags for each polygon. [Length: #maxpolys]
	unsigned char* areas;	///< The area id assigned to each polygon. [Length: #maxpolys]
	int nverts;				///< The number of vertices.
	int npolys;				///< The number of polygons.
	int maxpolys;			///< The number of allocated polygons.
	int nvp;				///< The maximum number of vertices per polygon.
	float bmin[3];			///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];			///< The maximum bounds in world space. [(x, y, z)]
	float cs;				///< The size of each cell. (On the xz-plane.)
	float ch;				///< The height of each cell. (The minimum increment along the y-axis.)
	int borderSize;			///< The AABB border size used to generate the source data from which the mesh was derived.
	float maxEdgeError;		///< The max error of the polygon edges in the mesh.
};

/// Contains triangle meshes that represent detailed height data associated 
/// with the polygons in its associated polygon mesh object.
/// @ingroup recast
struct rcPolyMeshDetail
{
	unsigned int* meshes;	///< The sub-mesh data. [Size: 4*#nmeshes] 
	float* verts;			///< The mesh vertices. [Size: 3*#nverts] 
	unsigned char* tris;	///< The mesh triangles. [Size: 4*#ntris] 
	int nmeshes;			///< The number of sub-meshes defined by #meshes.
	int nverts;				///< The number of vertices in #verts.
	int ntris;				///< The number of triangles in #tris.
};

/// @name Allocation Functions
/// Functions used to allocate and de-allocate Recast objects.
/// @see rcAllocSetCustom
/// @{

/// Allocates a heightfield object using the Recast allocator.
///  @return A heightfield that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcCreateHeightfield, rcFreeHeightField
rcHeightfield* rcAllocHeightfield();

/// Frees the specified heightfield object using the Recast allocator.
///  @param[in]		hf	A heightfield allocated using #rcAllocHeightfield
///  @ingroup recast
///  @see rcAllocHeightfield
void rcFreeHeightField(rcHeightfield* hf);

/// Allocates a compact heightfield object using the Recast allocator.
///  @return A compact heightfield that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildCompactHeightfield, rcFreeCompactHeightfield
rcCompactHeightfield* rcAllocCompactHeightfield();

/// Frees the specified compact heightfield object using the Recast allocator.
///  @param[in]		chf		A compact heightfield allocated using #rcAllocCompactHeightfield
///  @ingroup recast
///  @see rcAllocCompactHeightfield
void rcFreeCompactHeightfield(rcCompactHeightfield* chf);

/// Allocates a heightfield layer set using the Recast allocator.
///  @return A heightfield layer set that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();

/// Frees the specified heightfield layer set using the Recast allocator.
///  @param[in]		lset	A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
///  @ingroup recast
///  @see rcAllocHeightfieldLayerSet
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);

/// Allocates a contour set object using the Recast allocator.
///  @return A contour set that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildContours, rcFreeContourSet
rcContourSet* rcAllocContourSet();

/// Frees the specified contour set using the Recast allocator.
///  @param[in]		cset	A contour set allocated using #rcAllocContourSet
///  @ingroup recast
///  @see rcAllocContourSet
void rcFreeContourSet(rcContourSet* cset);

/// Allocates a polygon mesh object using the Recast allocator.
///  @return A polygon mesh that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildPolyMesh, rcFreePolyMesh
rcPolyMesh* rcAllocPolyMesh();

/// Frees the specified polygon mesh using the Recast allocator.
///  @param[in]		pmesh	A polygon mesh allocated using #rcAllocPolyMesh
///  @ingroup recast
///  @see rcAllocPolyMesh
void rcFreePolyMesh(rcPolyMesh* pmesh);

/// Allocates a detail mesh object using the Recast allocator.
///  @return A detail mesh that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail
rcPolyMeshDetail* rcAllocPolyMeshDetail();

/// Frees the specified detail mesh using the Recast allocator.
///  @param[in]		dmesh	A detail mesh allocated using #rcAllocPolyMeshDetail
///  @ingroup recast
///  @see rcAllocPolyMeshDetail
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);

/// @}

/// Heighfield border flag.
/// If a heightfield region ID has this bit set, then the region is a border 
/// region and its spans are considered unwalkable.
/// (Used during the region and contour build process.)
/// @see rcCompactSpan::reg
static const unsigned short RC_BORDER_REG = 0x8000;

/// Polygon touches multiple regions.
/// If a polygon has this region ID it was merged with or created
/// from polygons of different regions during the polymesh
/// build step that removes redundant border vertices. 
/// (Used during the polymesh and detail polymesh build processes)
/// @see rcPolyMesh::regs
static const unsigned short RC_MULTIPLE_REGS = 0;

/// Border vertex flag.
/// If a region ID has this bit set, then the associated element lies on
/// a tile border. If a contour vertex's region ID has this bit set, the 
/// vertex will later be removed in order to match the segments and vertices 
/// at tile boundaries.
/// (Used during the build process.)
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
static const int RC_BORDER_VERTEX = 0x10000;

/// Area border flag.
/// If a region ID has this bit set, then the associated element lies on
/// the border of an area.
/// (Used during the region and contour build process.)
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
static const int RC_AREA_BORDER = 0x20000;

/// Contour build flags.
/// @see rcBuildContours
enum rcBuildContoursFlags
{
	RC_CONTOUR_TESS_WALL_EDGES = 0x01,	///< Tessellate solid (impassable) edges during contour simplification.
	RC_CONTOUR_TESS_AREA_EDGES = 0x02,	///< Tessellate edges between areas during contour simplification.
};

/// Applied to the region id field of contour vertices in order to extract the region id.
/// The region id field of a vertex may have several flags applied to it.  So the
/// fields value can't be used directly.
/// @see rcContour::verts, rcContour::rverts
static const int RC_CONTOUR_REG_MASK = 0xffff;

/// An value which indicates an invalid index within a mesh.
/// @note This does not necessarily indicate an error.
/// @see rcPolyMesh::polys
static const unsigned short RC_MESH_NULL_IDX = 0xffff;

/// Represents the null area.
/// When a data element is given this value it is considered to no longer be 
/// assigned to a usable area.  (E.g. It is unwalkable.)
static const unsigned char RC_NULL_AREA = 0;

/// The default area id used to indicate a walkable polygon. 
/// This is also the maximum allowed area id, and the only non-null area id 
/// recognized by some steps in the build process. 
static const unsigned char RC_WALKABLE_AREA = 63;

/// The value returned by #rcGetCon if the specified direction is not connected
/// to another span. (Has no neighbor.)
static const int RC_NOT_CONNECTED = 0x3f;

/// @name General helper functions
/// @{

/// Used to ignore a function parameter.  VS complains about unused parameters
/// and this silences the warning.
///  @param [in] _ Unused parameter
template<class T> void rcIgnoreUnused(const T&) { }

/// Swaps the values of the two parameters.
///  @param[in,out]	a	Value A
///  @param[in,out]	b	Value B
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }

/// Returns the minimum of two values.
///  @param[in]		a	Value A
///  @param[in]		b	Value B
///  @return The minimum of the two values.
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }

/// Returns the maximum of two values.
///  @param[in]		a	Value A
///  @param[in]		b	Value B
///  @return The maximum of the two values.
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }

/// Returns the absolute value.
///  @param[in]		a	The value.
///  @return The absolute value of the specified value.
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }

/// Returns the square of the value.
///  @param[in]		a	The value.
///  @return The square of the value.
template<class T> inline T rcSqr(T a) { return a*a; }

/// Clamps the value to the specified range.
///  @param[in]		v	The value to clamp.
///  @param[in]		mn	The minimum permitted return value.
///  @param[in]		mx	The maximum permitted return value.
///  @return The value, clamped to the specified range.
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }

/// Returns the square root of the value.
///  @param[in]		x	The value.
///  @return The square root of the vlaue.
float rcSqrt(float x);

/// @}
/// @name Vector helper functions.
/// @{

/// Derives the cross product of two vectors. (@p v1 x @p v2)
///  @param[out]	dest	The cross product. [(x, y, z)]
///  @param[in]		v1		A Vector [(x, y, z)]
///  @param[in]		v2		A vector [(x, y, z)]
inline void rcVcross(float* dest, const float* v1, const float* v2)
{
	dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
	dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
	dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}

/// Derives the dot product of two vectors. (@p v1 . @p v2)
///  @param[in]		v1	A Vector [(x, y, z)]
///  @param[in]		v2	A vector [(x, y, z)]
/// @return The dot product.
inline float rcVdot(const float* v1, const float* v2)
{
	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v1		The base vector. [(x, y, z)]
///  @param[in]		v2		The vector to scale and add to @p v1. [(x, y, z)]
///  @param[in]		s		The amount to scale @p v2 by before adding to @p v1.
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
{
	dest[0] = v1[0]+v2[0]*s;
	dest[1] = v1[1]+v2[1]*s;
	dest[2] = v1[2]+v2[2]*s;
}

/// Performs a vector addition. (@p v1 + @p v2)
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v1		The base vector. [(x, y, z)]
///  @param[in]		v2		The vector to add to @p v1. [(x, y, z)]
inline void rcVadd(float* dest, const float* v1, const float* v2)
{
	dest[0] = v1[0]+v2[0];
	dest[1] = v1[1]+v2[1];
	dest[2] = v1[2]+v2[2];
}

/// Performs a vector subtraction. (@p v1 - @p v2)
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v1		The base vector. [(x, y, z)]
///  @param[in]		v2		The vector to subtract from @p v1. [(x, y, z)]
inline void rcVsub(float* dest, const float* v1, const float* v2)
{
	dest[0] = v1[0]-v2[0];
	dest[1] = v1[1]-v2[1];
	dest[2] = v1[2]-v2[2];
}

/// Selects the minimum value of each element from the specified vectors.
///  @param[in,out]	mn	A vector.  (Will be updated with the result.) [(x, y, z)]
///  @param[in]		v	A vector. [(x, y, z)]
inline void rcVmin(float* mn, const float* v)
{
	mn[0] = rcMin(mn[0], v[0]);
	mn[1] = rcMin(mn[1], v[1]);
	mn[2] = rcMin(mn[2], v[2]);
}

/// Selects the maximum value of each element from the specified vectors.
///  @param[in,out]	mx	A vector.  (Will be updated with the result.) [(x, y, z)]
///  @param[in]		v	A vector. [(x, y, z)]
inline void rcVmax(float* mx, const float* v)
{
	mx[0] = rcMax(mx[0], v[0]);
	mx[1] = rcMax(mx[1], v[1]);
	mx[2] = rcMax(mx[2], v[2]);
}

/// Performs a vector copy.
///  @param[out]	dest	The result. [(x, y, z)]
///  @param[in]		v		The vector to copy. [(x, y, z)]
inline void rcVcopy(float* dest, const float* v)
{
	dest[0] = v[0];
	dest[1] = v[1];
	dest[2] = v[2];
}

/// Returns the distance between two points.
///  @param[in]		v1	A point. [(x, y, z)]
///  @param[in]		v2	A point. [(x, y, z)]
/// @return The distance between the two points.
inline float rcVdist(const float* v1, const float* v2)
{
	float dx = v2[0] - v1[0];
	float dy = v2[1] - v1[1];
	float dz = v2[2] - v1[2];
	return rcSqrt(dx*dx + dy*dy + dz*dz);
}

/// Returns the square of the distance between two points.
///  @param[in]		v1	A point. [(x, y, z)]
///  @param[in]		v2	A point. [(x, y, z)]
/// @return The square of the distance between the two points.
inline float rcVdistSqr(const float* v1, const float* v2)
{
	float dx = v2[0] - v1[0];
	float dy = v2[1] - v1[1];
	float dz = v2[2] - v1[2];
	return dx*dx + dy*dy + dz*dz;
}

/// Normalizes the vector.
///  @param[in,out]	v	The vector to normalize. [(x, y, z)]
inline void rcVnormalize(float* v)
{
	float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
	v[0] *= d;
	v[1] *= d;
	v[2] *= d;
}

/// @}
/// @name Heightfield Functions
/// @see rcHeightfield
/// @{

/// Calculates the bounding box of an array of vertices.
///  @ingroup recast
///  @param[in]		verts	An array of vertices. [(x, y, z) * @p nv]
///  @param[in]		nv		The number of vertices in the @p verts array.
///  @param[out]	bmin	The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
///  @param[out]	bmax	The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);

/// Calculates the grid size based on the bounding box and grid cell size.
///  @ingroup recast
///  @param[in]		bmin	The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
///  @param[in]		bmax	The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
///  @param[in]		cs		The xz-plane cell size. [Limit: > 0] [Units: wu]
///  @param[out]	w		The width along the x-axis. [Limit: >= 0] [Units: vx]
///  @param[out]	h		The height along the z-axis. [Limit: >= 0] [Units: vx]
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);

/// Initializes a new heightfield.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in,out]	hf		The allocated heightfield to initialize.
///  @param[in]		width	The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
///  @param[in]		height	The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
///  @param[in]		bmin	The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
///  @param[in]		bmax	The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
///  @param[in]		cs		The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
///  @param[in]		ch		The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
///  @returns True if the operation completed successfully.
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
						 const float* bmin, const float* bmax,
						 float cs, float ch);

/// Sets the area id of all triangles with a slope below the specified value
/// to #RC_WALKABLE_AREA.
///  @ingroup recast
///  @param[in,out]	ctx					The build context to use during the operation.
///  @param[in]		walkableSlopeAngle	The maximum slope that is considered walkable.
///  									[Limits: 0 <= value < 90] [Units: Degrees]
///  @param[in]		verts				The vertices. [(x, y, z) * @p nv]
///  @param[in]		nv					The number of vertices.
///  @param[in]		tris				The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
///  @param[in]		nt					The number of triangles.
///  @param[out]	areas				The triangle area ids. [Length: >= @p nt]
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
							 const int* tris, int nt, unsigned char* areas); 

/// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA.
///  @ingroup recast
///  @param[in,out]	ctx					The build context to use during the operation.
///  @param[in]		walkableSlopeAngle	The maximum slope that is considered walkable.
///  									[Limits: 0 <= value < 90] [Units: Degrees]
///  @param[in]		verts				The vertices. [(x, y, z) * @p nv]
///  @param[in]		nv					The number of vertices.
///  @param[in]		tris				The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
///  @param[in]		nt					The number of triangles.
///  @param[out]	areas				The triangle area ids. [Length: >= @p nt]
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
								const int* tris, int nt, unsigned char* areas); 

/// Adds a span to the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in,out]	hf				An initialized heightfield.
///  @param[in]		x				The width index where the span is to be added.
///  								[Limits: 0 <= value < rcHeightfield::width]
///  @param[in]		y				The height index where the span is to be added.
///  								[Limits: 0 <= value < rcHeightfield::height]
///  @param[in]		smin			The minimum height of the span. [Limit: < @p smax] [Units: vx]
///  @param[in]		smax			The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
///  @param[in]		area			The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
///  @param[in]		flagMergeThr	The merge theshold. [Limit: >= 0] [Units: vx]
///  @returns True if the operation completed successfully.
bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
			   const unsigned short smin, const unsigned short smax,
			   const unsigned char area, const int flagMergeThr);

/// Rasterizes a triangle into the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		v0				Triangle vertex 0 [(x, y, z)]
///  @param[in]		v1				Triangle vertex 1 [(x, y, z)]
///  @param[in]		v2				Triangle vertex 2 [(x, y, z)]
///  @param[in]		area			The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
///  @param[in,out]	solid			An initialized heightfield.
///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag.
///  								[Limit: >= 0] [Units: vx]
///  @returns True if the operation completed successfully.
bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
						 const unsigned char area, rcHeightfield& solid,
						 const int flagMergeThr = 1);

/// Rasterizes an indexed triangle mesh into the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		verts			The vertices. [(x, y, z) * @p nv]
///  @param[in]		nv				The number of vertices.
///  @param[in]		tris			The triangle indices. [(vertA, vertB, vertC) * @p nt]
///  @param[in]		areas			The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
///  @param[in]		nt				The number of triangles.
///  @param[in,out]	solid			An initialized heightfield.
///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag. 
///  								[Limit: >= 0] [Units: vx]
///  @returns True if the operation completed successfully.
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
						  const int* tris, const unsigned char* areas, const int nt,
						  rcHeightfield& solid, const int flagMergeThr = 1);

/// Rasterizes an indexed triangle mesh into the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx			The build context to use during the operation.
///  @param[in]		verts		The vertices. [(x, y, z) * @p nv]
///  @param[in]		nv			The number of vertices.
///  @param[in]		tris		The triangle indices. [(vertA, vertB, vertC) * @p nt]
///  @param[in]		areas		The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
///  @param[in]		nt			The number of triangles.
///  @param[in,out]	solid		An initialized heightfield.
///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag. 
///  							[Limit: >= 0] [Units: vx]
///  @returns True if the operation completed successfully.
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
						  const unsigned short* tris, const unsigned char* areas, const int nt,
						  rcHeightfield& solid, const int flagMergeThr = 1);

/// Rasterizes triangles into the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		verts			The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
///  @param[in]		areas			The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
///  @param[in]		nt				The number of triangles.
///  @param[in,out]	solid			An initialized heightfield.
///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag. 
///  								[Limit: >= 0] [Units: vx]
///  @returns True if the operation completed successfully.
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
						  rcHeightfield& solid, const int flagMergeThr = 1);

/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimp of a walkable neighbor. 
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		walkableClimb	Maximum ledge height that is considered to still be traversable. 
///  								[Limit: >=0] [Units: vx]
///  @param[in,out]	solid			A fully built heightfield.  (All spans have been added.)
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);

/// Marks spans that are ledges as not-walkable. 
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area to 
///  								be considered walkable. [Limit: >= 3] [Units: vx]
///  @param[in]		walkableClimb	Maximum ledge height that is considered to still be traversable. 
///  								[Limit: >=0] [Units: vx]
///  @param[in,out]	solid			A fully built heightfield.  (All spans have been added.)
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
						const int walkableClimb, rcHeightfield& solid);

/// Marks walkable spans as not walkable if the clearence above the span is less than the specified height. 
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area to 
///  								be considered walkable. [Limit: >= 3] [Units: vx]
///  @param[in,out]	solid			A fully built heightfield.  (All spans have been added.)
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);

/// Returns the number of spans contained in the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		hf		An initialized heightfield.
///  @returns The number of spans in the heightfield.
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);

/// @}
/// @name Compact Heightfield Functions
/// @see rcCompactHeightfield
/// @{

/// Builds a compact heightfield representing open space, from a heightfield representing solid space.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area 
///  								to be considered walkable. [Limit: >= 3] [Units: vx]
///  @param[in]		walkableClimb	Maximum ledge height that is considered to still be traversable. 
///  								[Limit: >=0] [Units: vx]
///  @param[in]		hf				The heightfield to be compacted.
///  @param[out]	chf				The resulting compact heightfield. (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
							   rcHeightfield& hf, rcCompactHeightfield& chf);

/// Erodes the walkable area within the heightfield by the specified radius. 
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		radius	The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
///  @param[in,out]	chf		The populated compact heightfield to erode.
///  @returns True if the operation completed successfully.
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);

/// Applies a median filter to walkable area types (based on area id), removing noise.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in,out]	chf		A populated compact heightfield.
///  @returns True if the operation completed successfully.
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);

/// Applies an area id to all spans within the specified bounding box. (AABB) 
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		bmin	The minimum of the bounding box. [(x, y, z)]
///  @param[in]		bmax	The maximum of the bounding box. [(x, y, z)]
///  @param[in]		areaId	The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
///  @param[in,out]	chf		A populated compact heightfield.
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
				   rcCompactHeightfield& chf);

/// Applies the area id to the all spans within the specified convex polygon. 
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		verts	The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
///  @param[in]		nverts	The number of vertices in the polygon.
///  @param[in]		hmin	The height of the base of the polygon.
///  @param[in]		hmax	The height of the top of the polygon.
///  @param[in]		areaId	The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
///  @param[in,out]	chf		A populated compact heightfield.
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
						  const float hmin, const float hmax, unsigned char areaId,
						  rcCompactHeightfield& chf);

/// Helper function to offset voncex polygons for rcMarkConvexPolyArea.
///  @ingroup recast
///  @param[in]		verts		The vertices of the polygon [Form: (x, y, z) * @p nverts]
///  @param[in]		nverts		The number of vertices in the polygon.
///  @param[out]	outVerts	The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value]
///  @param[in]		maxOutVerts	The max number of vertices that can be stored to @p outVerts.
///  @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts.
int rcOffsetPoly(const float* verts, const int nverts, const float offset,
				 float* outVerts, const int maxOutVerts);

/// Applies the area id to all spans within the specified cylinder.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		pos		The center of the base of the cylinder. [Form: (x, y, z)] 
///  @param[in]		r		The radius of the cylinder.
///  @param[in]		h		The height of the cylinder.
///  @param[in]		areaId	The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
///  @param[in,out]	chf	A populated compact heightfield.
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
						const float r, const float h, unsigned char areaId,
						rcCompactHeightfield& chf);

/// Builds the distance field for the specified compact heightfield. 
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in,out]	chf		A populated compact heightfield.
///  @returns True if the operation completed successfully.
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);

/// Builds region data for the heightfield using watershed partitioning.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in,out]	chf				A populated compact heightfield.
///  @param[in]		borderSize		The size of the non-navigable border around the heightfield.
///  								[Limit: >=0] [Units: vx]
///  @param[in]		minRegionArea	The minimum number of cells allowed to form isolated island areas.
///  								[Limit: >=0] [Units: vx].
///  @param[in]		mergeRegionArea		Any regions with a span count smaller than this value will, if possible,
///  								be merged with larger regions. [Limit: >=0] [Units: vx] 
///  @returns True if the operation completed successfully.
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
					const int borderSize, const int minRegionArea, const int mergeRegionArea);

/// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in,out]	chf				A populated compact heightfield.
///  @param[in]		borderSize		The size of the non-navigable border around the heightfield.
///  								[Limit: >=0] [Units: vx]
///  @param[in]		minRegionArea	The minimum number of cells allowed to form isolated island areas.
///  								[Limit: >=0] [Units: vx].
///  @returns True if the operation completed successfully.
bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
						 const int borderSize, const int minRegionArea);

/// Builds region data for the heightfield using simple monotone partitioning.
///  @ingroup recast 
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in,out]	chf				A populated compact heightfield.
///  @param[in]		borderSize		The size of the non-navigable border around the heightfield.
///  								[Limit: >=0] [Units: vx]
///  @param[in]		minRegionArea	The minimum number of cells allowed to form isolated island areas.
///  								[Limit: >=0] [Units: vx].
///  @param[in]		mergeRegionArea	Any regions with a span count smaller than this value will, if possible, 
///  								be merged with larger regions. [Limit: >=0] [Units: vx] 
///  @returns True if the operation completed successfully.
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
							const int borderSize, const int minRegionArea, const int mergeRegionArea);

/// Sets the neighbor connection data for the specified direction.
///  @param[in]		s		The span to update.
///  @param[in]		dir		The direction to set. [Limits: 0 <= value < 4]
///  @param[in]		i		The index of the neighbor span.
inline void rcSetCon(rcCompactSpan& s, int dir, int i)
{
	const unsigned int shift = (unsigned int)dir*6;
	unsigned int con = s.con;
	s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
}

/// Gets neighbor connection data for the specified direction.
///  @param[in]		s		The span to check.
///  @param[in]		dir		The direction to check. [Limits: 0 <= value < 4]
///  @return The neighbor connection data for the specified direction,
///  	or #RC_NOT_CONNECTED if there is no connection.
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
	const unsigned int shift = (unsigned int)dir*6;
	return (s.con >> shift) & 0x3f;
}

/// Gets the standard width (x-axis) offset for the specified direction.
///  @param[in]		dir		The direction. [Limits: 0 <= value < 4]
///  @return The width offset to apply to the current cell position to move
///  	in the direction.
inline int rcGetDirOffsetX(int dir)
{
	static const int offset[4] = { -1, 0, 1, 0, };
	return offset[dir&0x03];
}

/// Gets the standard height (z-axis) offset for the specified direction.
///  @param[in]		dir		The direction. [Limits: 0 <= value < 4]
///  @return The height offset to apply to the current cell position to move
///  	in the direction.
inline int rcGetDirOffsetY(int dir)
{
	static const int offset[4] = { 0, 1, 0, -1 };
	return offset[dir&0x03];
}

/// Gets the direction for the specified offset. One of x and y should be 0.
///  @param[in]		x		The x offset. [Limits: -1 <= value <= 1]
///  @param[in]		y		The y offset. [Limits: -1 <= value <= 1]
///  @return The direction that represents the offset.
inline int rcGetDirForOffset(int x, int y)
{
	static const int dirs[5] = { 3, 0, -1, 2, 1 };
	return dirs[((y+1)<<1)+x];
}

/// @}
/// @name Layer, Contour, Polymesh, and Detail Mesh Functions
/// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail
/// @{

/// Builds a layer set from the specified compact heightfield.
///  @ingroup recast
///  @param[in,out]	ctx			The build context to use during the operation.
///  @param[in]		chf			A fully built compact heightfield.
///  @param[in]		borderSize	The size of the non-navigable border around the heightfield. [Limit: >=0] 
///  							[Units: vx]
///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area 
///  							to be considered walkable. [Limit: >= 3] [Units: vx]
///  @param[out]	lset		The resulting layer set. (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf, 
							  const int borderSize, const int walkableHeight,
							  rcHeightfieldLayerSet& lset);

/// Builds a contour set from the region outlines in the provided compact heightfield.
///  @ingroup recast
///  @param[in,out]	ctx			The build context to use during the operation.
///  @param[in]		chf			A fully built compact heightfield.
///  @param[in]		maxError	The maximum distance a simplfied contour's border edges should deviate 
///  							the original raw contour. [Limit: >=0] [Units: wu]
///  @param[in]		maxEdgeLen	The maximum allowed length for contour edges along the border of the mesh. 
///  							[Limit: >=0] [Units: vx]
///  @param[out]	cset		The resulting contour set. (Must be pre-allocated.)
///  @param[in]		buildFlags	The build flags. (See: #rcBuildContoursFlags)
///  @returns True if the operation completed successfully.
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
					 const float maxError, const int maxEdgeLen,
					 rcContourSet& cset, const int buildFlags = RC_CONTOUR_TESS_WALL_EDGES);

/// Builds a polygon mesh from the provided contours.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		cset	A fully built contour set.
///  @param[in]		nvp		The maximum number of vertices allowed for polygons generated during the 
///  						contour to polygon conversion process. [Limit: >= 3] 
///  @param[out]	mesh	The resulting polygon mesh. (Must be re-allocated.)
///  @returns True if the operation completed successfully.
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh);

/// Merges multiple polygon meshes into a single mesh.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		meshes	An array of polygon meshes to merge. [Size: @p nmeshes]
///  @param[in]		nmeshes	The number of polygon meshes in the meshes array.
///  @param[in]		mesh	The resulting polygon mesh. (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);

/// Builds a detail mesh from the provided polygon mesh.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		mesh			A fully built polygon mesh.
///  @param[in]		chf				The compact heightfield used to build the polygon mesh.
///  @param[in]		sampleDist		Sets the distance to use when samping the heightfield. [Limit: >=0] [Units: wu]
///  @param[in]		sampleMaxError	The maximum distance the detail mesh surface should deviate from 
///  								heightfield data. [Limit: >=0] [Units: wu]
///  @param[out]	dmesh			The resulting detail mesh.  (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
						   const float sampleDist, const float sampleMaxError,
						   rcPolyMeshDetail& dmesh);

/// Copies the poly mesh data from src to dst.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		src		The source mesh to copy from.
///  @param[out]	dst		The resulting detail mesh. (Must be pre-allocated, must be empty mesh.)
///  @returns True if the operation completed successfully.
bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst);

/// Merges multiple detail meshes into a single detail mesh.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		meshes	An array of detail meshes to merge. [Size: @p nmeshes]
///  @param[in]		nmeshes	The number of detail meshes in the meshes array.
///  @param[out]	mesh	The resulting detail mesh. (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);

/// @}

#endif // RECAST_H

///////////////////////////////////////////////////////////////////////////

// Due to the large amount of detail documentation for this file, 
// the content normally located at the end of the header file has been separated
// out to a file in /Docs/Extern.