summaryrefslogtreecommitdiff
path: root/thirdparty/pcre2/src/sljit/sljitNativeTILEGX_64.c
blob: 003f43a79091dd7370953feb4e71aff3a13b8f0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright 2013-2013 Tilera Corporation(jiwang@tilera.com). All rights reserved.
 *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* TileGX architecture. */
/* Contributed by Tilera Corporation. */
#include "sljitNativeTILEGX-encoder.c"

#define SIMM_8BIT_MAX (0x7f)
#define SIMM_8BIT_MIN (-0x80)
#define SIMM_16BIT_MAX (0x7fff)
#define SIMM_16BIT_MIN (-0x8000)
#define SIMM_17BIT_MAX (0xffff)
#define SIMM_17BIT_MIN (-0x10000)
#define SIMM_32BIT_MAX (0x7fffffff)
#define SIMM_32BIT_MIN (-0x7fffffff - 1)
#define SIMM_48BIT_MAX (0x7fffffff0000L)
#define SIMM_48BIT_MIN (-0x800000000000L)
#define IMM16(imm) ((imm) & 0xffff)

#define UIMM_16BIT_MAX (0xffff)

#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
#define ADDR_TMP (SLJIT_NUMBER_OF_REGISTERS + 5)
#define PIC_ADDR_REG TMP_REG2

static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
	63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
};

#define SLJIT_LOCALS_REG_mapped 54
#define TMP_REG1_mapped 5
#define TMP_REG2_mapped 16
#define TMP_REG3_mapped 6
#define ADDR_TMP_mapped 7

/* Flags are keept in volatile registers. */
#define EQUAL_FLAG 8
/* And carry flag as well. */
#define ULESS_FLAG 9
#define UGREATER_FLAG 10
#define LESS_FLAG 11
#define GREATER_FLAG 12
#define OVERFLOW_FLAG 13

#define ZERO 63
#define RA 55
#define TMP_EREG1 14
#define TMP_EREG2 15

#define LOAD_DATA 0x01
#define WORD_DATA 0x00
#define BYTE_DATA 0x02
#define HALF_DATA 0x04
#define INT_DATA 0x06
#define SIGNED_DATA 0x08
#define DOUBLE_DATA 0x10

/* Separates integer and floating point registers */
#define GPR_REG 0xf

#define MEM_MASK 0x1f

#define WRITE_BACK 0x00020
#define ARG_TEST 0x00040
#define ALT_KEEP_CACHE 0x00080
#define CUMULATIVE_OP 0x00100
#define LOGICAL_OP 0x00200
#define IMM_OP 0x00400
#define SRC2_IMM 0x00800

#define UNUSED_DEST 0x01000
#define REG_DEST 0x02000
#define REG1_SOURCE 0x04000
#define REG2_SOURCE 0x08000
#define SLOW_SRC1 0x10000
#define SLOW_SRC2 0x20000
#define SLOW_DEST 0x40000

/* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
 */
#define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))

SLJIT_API_FUNC_ATTRIBUTE const char *sljit_get_platform_name(void)
{
	return "TileGX" SLJIT_CPUINFO;
}

/* Length of an instruction word */
typedef sljit_uw sljit_ins;

struct jit_instr {
	const struct tilegx_opcode* opcode; 
	tilegx_pipeline pipe;
	unsigned long input_registers;
	unsigned long output_registers;
	int operand_value[4];
	int line;
};

/* Opcode Helper Macros */
#define TILEGX_X_MODE 0

#define X_MODE create_Mode(TILEGX_X_MODE)

#define FNOP_X0 \
	create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
	create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)

#define FNOP_X1 \
	create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)

#define NOP \
	create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1

#define ANOP_X0 \
	create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
	create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)

#define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
	create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0

#define ADD_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0

#define ADDI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0

#define SUB_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0

#define NOR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0

#define OR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0

#define AND_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0

#define XOR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0

#define CMOVNEZ_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1

#define CMOVEQZ_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1

#define ADDLI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0

#define V4INT_L_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0

#define BFEXTU_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
	create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1

#define BFEXTS_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
	create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1

#define SHL16INSLI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0

#define ST_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0

#define LD_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0

#define JR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0

#define JALR_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
	create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0

#define CLZ_X0 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
	create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
	create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1

#define CMPLTUI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0

#define CMPLTU_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0

#define CMPLTS_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0

#define XORI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0

#define ORI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0

#define ANDI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
	create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0

#define SHLI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
	create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0

#define SHL_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0

#define SHRSI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
	create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0

#define SHRS_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0

#define SHRUI_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
	create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0

#define SHRU_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
	create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0

#define BEQZ_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
	create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0

#define BNEZ_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
	create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0

#define J_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
	create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0

#define JAL_X1 \
	create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
	create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0

#define DEST_X0(x) create_Dest_X0(x)
#define SRCA_X0(x) create_SrcA_X0(x)
#define SRCB_X0(x) create_SrcB_X0(x)
#define DEST_X1(x) create_Dest_X1(x)
#define SRCA_X1(x) create_SrcA_X1(x)
#define SRCB_X1(x) create_SrcB_X1(x)
#define IMM16_X1(x) create_Imm16_X1(x)
#define IMM8_X1(x) create_Imm8_X1(x)
#define BFSTART_X0(x) create_BFStart_X0(x)
#define BFEND_X0(x) create_BFEnd_X0(x)
#define SHIFTIMM_X1(x) create_ShAmt_X1(x)
#define JOFF_X1(x) create_JumpOff_X1(x)
#define BOFF_X1(x) create_BrOff_X1(x)

static const tilegx_mnemonic data_transfer_insts[16] = {
	/* u w s */ TILEGX_OPC_ST   /* st */,
	/* u w l */ TILEGX_OPC_LD   /* ld */,
	/* u b s */ TILEGX_OPC_ST1  /* st1 */,
	/* u b l */ TILEGX_OPC_LD1U /* ld1u */,
	/* u h s */ TILEGX_OPC_ST2  /* st2 */,
	/* u h l */ TILEGX_OPC_LD2U /* ld2u */,
	/* u i s */ TILEGX_OPC_ST4  /* st4 */,
	/* u i l */ TILEGX_OPC_LD4U /* ld4u */,
	/* s w s */ TILEGX_OPC_ST   /* st */,
	/* s w l */ TILEGX_OPC_LD   /* ld */,
	/* s b s */ TILEGX_OPC_ST1  /* st1 */,
	/* s b l */ TILEGX_OPC_LD1S /* ld1s */,
	/* s h s */ TILEGX_OPC_ST2  /* st2 */,
	/* s h l */ TILEGX_OPC_LD2S /* ld2s */,
	/* s i s */ TILEGX_OPC_ST4  /* st4 */,
	/* s i l */ TILEGX_OPC_LD4S /* ld4s */,
};

#ifdef TILEGX_JIT_DEBUG
static sljit_s32 push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
{
	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
	FAIL_IF(!ptr);
	*ptr = ins;
	compiler->size++;
	printf("|%04d|S0|:\t\t", line);
	print_insn_tilegx(ptr);
	return SLJIT_SUCCESS;
}

static sljit_s32 push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
{
	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
	FAIL_IF(!ptr);
	*ptr = ins;
	compiler->size++;
	return SLJIT_SUCCESS;
}

#define push_inst(a, b) push_inst_debug(a, b, __LINE__)
#else
static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
	sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
	FAIL_IF(!ptr);
	*ptr = ins;
	compiler->size++;
	return SLJIT_SUCCESS;
}
#endif

#define BUNDLE_FORMAT_MASK(p0, p1, p2) \
	((p0) | ((p1) << 8) | ((p2) << 16))

#define BUNDLE_FORMAT(p0, p1, p2) \
	{ \
		{ \
			(tilegx_pipeline)(p0), \
			(tilegx_pipeline)(p1), \
			(tilegx_pipeline)(p2) \
		}, \
		BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
	}

#define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS

#define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)

#define PI(encoding) \
	push_inst(compiler, encoding)

#define PB3(opcode, dst, srca, srcb) \
	push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)

#define PB2(opcode, dst, src) \
	push_2_buffer(compiler, opcode, dst, src, __LINE__)

#define JR(reg) \
	push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)

#define ADD(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)

#define SUB(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)

#define MUL(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_MULX, dst, srca, srcb, __LINE__)

#define NOR(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)

#define OR(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)

#define XOR(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)

#define AND(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)

#define CLZ(dst, src) \
	push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)

#define SHLI(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)

#define SHRUI(dst, srca, imm) \
	push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)

#define XORI(dst, srca, imm) \
	push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)

#define ORI(dst, srca, imm) \
	push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)

#define CMPLTU(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)

#define CMPLTS(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)

#define CMPLTUI(dst, srca, imm) \
	push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)

#define CMOVNEZ(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)

#define CMOVEQZ(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)

#define ADDLI(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)

#define SHL16INSLI(dst, srca, srcb) \
	push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)

#define LD_ADD(dst, addr, adjust) \
	push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)

#define ST_ADD(src, addr, adjust) \
	push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)

#define LD(dst, addr) \
	push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)

#define BFEXTU(dst, src, start, end) \
	push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)

#define BFEXTS(dst, src, start, end) \
	push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)

#define ADD_SOLO(dest, srca, srcb) \
	push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))

#define ADDI_SOLO(dest, srca, imm) \
	push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))

#define ADDLI_SOLO(dest, srca, imm) \
	push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))

#define SHL16INSLI_SOLO(dest, srca, imm) \
	push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))

#define JALR_SOLO(reg) \
	push_inst(compiler, JALR_X1 | SRCA_X1(reg))

#define JR_SOLO(reg) \
	push_inst(compiler, JR_X1 | SRCA_X1(reg))

struct Format {
	/* Mapping of bundle issue slot to assigned pipe. */
	tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];

	/* Mask of pipes used by this bundle. */
	unsigned int pipe_mask;
};

const struct Format formats[] =
{
	/* In Y format we must always have something in Y2, since it has
	* no fnop, so this conveys that Y2 must always be used. */
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),

	/* Y format has three instructions. */
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
	BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),

	/* X format has only two instructions. */
	BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
	BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
};


struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
unsigned long inst_buf_index;

tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
{
	/* FIXME: tile: we could pregenerate this. */
	int pipe;
	for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
		;
	return (tilegx_pipeline)(pipe);
}

void insert_nop(tilegx_mnemonic opc, int line)
{
	const struct tilegx_opcode* opcode = NULL;

	memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);

	opcode = &tilegx_opcodes[opc];
	inst_buf[0].opcode = opcode;
	inst_buf[0].pipe = get_any_valid_pipe(opcode);
	inst_buf[0].input_registers = 0;
	inst_buf[0].output_registers = 0;
	inst_buf[0].line = line;
	++inst_buf_index;
}

const struct Format* compute_format()
{
	unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
		inst_buf[0].opcode->pipes,
		inst_buf[1].opcode->pipes,
		(inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));

	const struct Format* match = NULL;
	const struct Format *b = NULL;
	unsigned int i;
	for (i = 0; i < sizeof formats / sizeof formats[0]; i++) {
		b = &formats[i];
		if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
			match = b;
			break;
		}
	}

	return match;
}

sljit_s32 assign_pipes()
{
	unsigned long output_registers = 0;
	unsigned int i = 0;

	if (inst_buf_index == 1) {
		tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
					? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
		insert_nop(opc, __LINE__);
	}

	const struct Format* match = compute_format();

	if (match == NULL)
		return -1;

	for (i = 0; i < inst_buf_index; i++) {

		if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
			return -1;

		if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
			return -1;

		/* Don't include Rzero in the match set, to avoid triggering
		   needlessly on 'prefetch' instrs. */

		output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;

		inst_buf[i].pipe = match->pipe[i];
	}

	/* If only 2 instrs, and in Y-mode, insert a nop. */
	if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
		insert_nop(TILEGX_OPC_FNOP, __LINE__);

		/* Select the yet unassigned pipe. */
		tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
					+ TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
					- (inst_buf[1].pipe + inst_buf[2].pipe)));

		inst_buf[0].pipe = pipe;
	}

	return 0;
}

tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
{
	int i, val;
	const struct tilegx_opcode* opcode = inst->opcode;
	tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];

	const struct tilegx_operand* operand = NULL;
	for (i = 0; i < opcode->num_operands; i++) {
		operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
		val = inst->operand_value[i];

		bits |= operand->insert(val);
	}

	return bits;
}

static sljit_s32 update_buffer(struct sljit_compiler *compiler)
{
	int i;
	int orig_index = inst_buf_index;
	struct jit_instr inst0 = inst_buf[0];
	struct jit_instr inst1 = inst_buf[1];
	struct jit_instr inst2 = inst_buf[2];
	tilegx_bundle_bits bits = 0;

	/* If the bundle is valid as is, perform the encoding and return 1. */
	if (assign_pipes() == 0) {
		for (i = 0; i < inst_buf_index; i++) {
			bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
			printf("|%04d", inst_buf[i].line);
#endif
		}
#ifdef TILEGX_JIT_DEBUG
		if (inst_buf_index == 3)
			printf("|M0|:\t");
		else
			printf("|M0|:\t\t");
		print_insn_tilegx(&bits);
#endif

		inst_buf_index = 0;

#ifdef TILEGX_JIT_DEBUG
		return push_inst_nodebug(compiler, bits);
#else
		return push_inst(compiler, bits);
#endif
	}

	/* If the bundle is invalid, split it in two. First encode the first two
	   (or possibly 1) instructions, and then the last, separately. Note that
	   assign_pipes may have re-ordered the instrs (by inserting no-ops in
	   lower slots) so we need to reset them. */

	inst_buf_index = orig_index - 1;
	inst_buf[0] = inst0;
	inst_buf[1] = inst1;
	inst_buf[2] = inst2;
	if (assign_pipes() == 0) {
		for (i = 0; i < inst_buf_index; i++) {
			bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
			printf("|%04d", inst_buf[i].line);
#endif
		}

#ifdef TILEGX_JIT_DEBUG
		if (inst_buf_index == 3)
			printf("|M1|:\t");
		else
			printf("|M1|:\t\t");
		print_insn_tilegx(&bits);
#endif

		if ((orig_index - 1) == 2) {
			inst_buf[0] = inst2;
			inst_buf_index = 1;
		} else if ((orig_index - 1) == 1) {
			inst_buf[0] = inst1;
			inst_buf_index = 1;
		} else
			SLJIT_UNREACHABLE();

#ifdef TILEGX_JIT_DEBUG
		return push_inst_nodebug(compiler, bits);
#else
		return push_inst(compiler, bits);
#endif
	} else {
		/* We had 3 instrs of which the first 2 can't live in the same bundle.
		   Split those two. Note that we don't try to then combine the second
		   and third instr into a single bundle.  First instruction: */
		inst_buf_index = 1;
		inst_buf[0] = inst0;
		inst_buf[1] = inst1;
		inst_buf[2] = inst2;
		if (assign_pipes() == 0) {
			for (i = 0; i < inst_buf_index; i++) {
				bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
				printf("|%04d", inst_buf[i].line);
#endif
			}

#ifdef TILEGX_JIT_DEBUG
			if (inst_buf_index == 3)
				printf("|M2|:\t");
			else
				printf("|M2|:\t\t");
			print_insn_tilegx(&bits);
#endif

			inst_buf[0] = inst1;
			inst_buf[1] = inst2;
			inst_buf_index = orig_index - 1;
#ifdef TILEGX_JIT_DEBUG
			return push_inst_nodebug(compiler, bits);
#else
			return push_inst(compiler, bits);
#endif
		} else
			SLJIT_UNREACHABLE();
	}

	SLJIT_UNREACHABLE();
}

static sljit_s32 flush_buffer(struct sljit_compiler *compiler)
{
	while (inst_buf_index != 0) {
		FAIL_IF(update_buffer(compiler));
	}
	return SLJIT_SUCCESS;
}

static sljit_s32 push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].operand_value[0] = op0;
	inst_buf[inst_buf_index].operand_value[1] = op1;
	inst_buf[inst_buf_index].operand_value[2] = op2;
	inst_buf[inst_buf_index].operand_value[3] = op3;
	inst_buf[inst_buf_index].input_registers = 1L << op1;
	inst_buf[inst_buf_index].output_registers = 1L << op0;
	inst_buf[inst_buf_index].line = line;
	inst_buf_index++;

	return SLJIT_SUCCESS;
}

static sljit_s32 push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].operand_value[0] = op0;
	inst_buf[inst_buf_index].operand_value[1] = op1;
	inst_buf[inst_buf_index].operand_value[2] = op2;
	inst_buf[inst_buf_index].line = line;

	switch (opc) {
	case TILEGX_OPC_ST_ADD:
		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
		inst_buf[inst_buf_index].output_registers = 1L << op0;
		break;
	case TILEGX_OPC_LD_ADD:
		inst_buf[inst_buf_index].input_registers = 1L << op1;
		inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
		break;
	case TILEGX_OPC_ADD:
	case TILEGX_OPC_AND:
	case TILEGX_OPC_SUB:
	case TILEGX_OPC_MULX:
	case TILEGX_OPC_OR:
	case TILEGX_OPC_XOR:
	case TILEGX_OPC_NOR:
	case TILEGX_OPC_SHL:
	case TILEGX_OPC_SHRU:
	case TILEGX_OPC_SHRS:
	case TILEGX_OPC_CMPLTU:
	case TILEGX_OPC_CMPLTS:
	case TILEGX_OPC_CMOVEQZ:
	case TILEGX_OPC_CMOVNEZ:
		inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
		inst_buf[inst_buf_index].output_registers = 1L << op0;
		break;
	case TILEGX_OPC_ADDLI:
	case TILEGX_OPC_XORI:
	case TILEGX_OPC_ORI:
	case TILEGX_OPC_SHLI:
	case TILEGX_OPC_SHRUI:
	case TILEGX_OPC_SHRSI:
	case TILEGX_OPC_SHL16INSLI:
	case TILEGX_OPC_CMPLTUI:
	case TILEGX_OPC_CMPLTSI:
		inst_buf[inst_buf_index].input_registers = 1L << op1;
		inst_buf[inst_buf_index].output_registers = 1L << op0;
		break;
	default:
		printf("unrecoginzed opc: %s\n", opcode->name);
		SLJIT_UNREACHABLE();
	}

	inst_buf_index++;

	return SLJIT_SUCCESS;
}

static sljit_s32 push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].operand_value[0] = op0;
	inst_buf[inst_buf_index].operand_value[1] = op1;
	inst_buf[inst_buf_index].line = line;

	switch (opc) {
	case TILEGX_OPC_BEQZ:
	case TILEGX_OPC_BNEZ:
		inst_buf[inst_buf_index].input_registers = 1L << op0;
		break;
	case TILEGX_OPC_ST:
	case TILEGX_OPC_ST1:
	case TILEGX_OPC_ST2:
	case TILEGX_OPC_ST4:
		inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
		inst_buf[inst_buf_index].output_registers = 0;
		break;
	case TILEGX_OPC_CLZ:
	case TILEGX_OPC_LD:
	case TILEGX_OPC_LD1U:
	case TILEGX_OPC_LD1S:
	case TILEGX_OPC_LD2U:
	case TILEGX_OPC_LD2S:
	case TILEGX_OPC_LD4U:
	case TILEGX_OPC_LD4S:
		inst_buf[inst_buf_index].input_registers = 1L << op1;
		inst_buf[inst_buf_index].output_registers = 1L << op0;
		break;
	default:
		printf("unrecoginzed opc: %s\n", opcode->name);
		SLJIT_UNREACHABLE();
	}

	inst_buf_index++;

	return SLJIT_SUCCESS;
}

static sljit_s32 push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].input_registers = 0;
	inst_buf[inst_buf_index].output_registers = 0;
	inst_buf[inst_buf_index].line = line;
	inst_buf_index++;

	return SLJIT_SUCCESS;
}

static sljit_s32 push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
{
	if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
		FAIL_IF(update_buffer(compiler));

	const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
	inst_buf[inst_buf_index].opcode = opcode;
	inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
	inst_buf[inst_buf_index].operand_value[0] = op0;
	inst_buf[inst_buf_index].input_registers = 1L << op0;
	inst_buf[inst_buf_index].output_registers = 0;
	inst_buf[inst_buf_index].line = line;
	inst_buf_index++;
 
	return flush_buffer(compiler);
}

static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
	sljit_sw diff;
	sljit_uw target_addr;
	sljit_ins *inst;

	if (jump->flags & SLJIT_REWRITABLE_JUMP)
		return code_ptr;

	if (jump->flags & JUMP_ADDR)
		target_addr = jump->u.target;
	else {
		SLJIT_ASSERT(jump->flags & JUMP_LABEL);
		target_addr = (sljit_uw)(code + jump->u.label->size);
	}

	inst = (sljit_ins *)jump->addr;
	if (jump->flags & IS_COND)
		inst--;

	diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
	if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
		jump->flags |= PATCH_B;

		if (!(jump->flags & IS_COND)) {
			if (jump->flags & IS_JAL) {
				jump->flags &= ~(PATCH_B);
				jump->flags |= PATCH_J;
				inst[0] = JAL_X1;

#ifdef TILEGX_JIT_DEBUG
				printf("[runtime relocate]%04d:\t", __LINE__);
				print_insn_tilegx(inst);
#endif
			} else {
				inst[0] = BEQZ_X1 | SRCA_X1(ZERO);

#ifdef TILEGX_JIT_DEBUG
				printf("[runtime relocate]%04d:\t", __LINE__);
				print_insn_tilegx(inst);
#endif
			}

			return inst;
		}

		inst[0] = inst[0] ^ (0x7L << 55);

#ifdef TILEGX_JIT_DEBUG
		printf("[runtime relocate]%04d:\t", __LINE__);
		print_insn_tilegx(inst);
#endif
		jump->addr -= sizeof(sljit_ins);
		return inst;
	}

	if (jump->flags & IS_COND) {
		if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
			jump->flags |= PATCH_J;
			inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
			inst[1] = J_X1;
			return inst + 1;
		}

		return code_ptr;
	}

	if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
		jump->flags |= PATCH_J;

		if (jump->flags & IS_JAL) {
			inst[0] = JAL_X1;

#ifdef TILEGX_JIT_DEBUG
			printf("[runtime relocate]%04d:\t", __LINE__);
			print_insn_tilegx(inst);
#endif

		} else {
			inst[0] = J_X1;

#ifdef TILEGX_JIT_DEBUG
			printf("[runtime relocate]%04d:\t", __LINE__);
			print_insn_tilegx(inst);
#endif
		}

		return inst;
	}

	return code_ptr;
}

SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
{
	struct sljit_memory_fragment *buf;
	sljit_ins *code;
	sljit_ins *code_ptr;
	sljit_ins *buf_ptr;
	sljit_ins *buf_end;
	sljit_uw word_count;
	sljit_uw addr;

	struct sljit_label *label;
	struct sljit_jump *jump;
	struct sljit_const *const_;

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_generate_code(compiler));
	reverse_buf(compiler);

	code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
	PTR_FAIL_WITH_EXEC_IF(code);
	buf = compiler->buf;

	code_ptr = code;
	word_count = 0;
	label = compiler->labels;
	jump = compiler->jumps;
	const_ = compiler->consts;
	do {
		buf_ptr = (sljit_ins *)buf->memory;
		buf_end = buf_ptr + (buf->used_size >> 3);
		do {
			*code_ptr = *buf_ptr++;
			SLJIT_ASSERT(!label || label->size >= word_count);
			SLJIT_ASSERT(!jump || jump->addr >= word_count);
			SLJIT_ASSERT(!const_ || const_->addr >= word_count);
			/* These structures are ordered by their address. */
			if (label && label->size == word_count) {
				/* Just recording the address. */
				label->addr = (sljit_uw) code_ptr;
				label->size = code_ptr - code;
				label = label->next;
			}

			if (jump && jump->addr == word_count) {
				if (jump->flags & IS_JAL)
					jump->addr = (sljit_uw)(code_ptr - 4);
				else
					jump->addr = (sljit_uw)(code_ptr - 3);

				code_ptr = detect_jump_type(jump, code_ptr, code);
				jump = jump->next;
			}

			if (const_ && const_->addr == word_count) {
				/* Just recording the address. */
				const_->addr = (sljit_uw) code_ptr;
				const_ = const_->next;
			}

			code_ptr++;
			word_count++;
		} while (buf_ptr < buf_end);

		buf = buf->next;
	} while (buf);

	if (label && label->size == word_count) {
		label->addr = (sljit_uw) code_ptr;
		label->size = code_ptr - code;
		label = label->next;
	}

	SLJIT_ASSERT(!label);
	SLJIT_ASSERT(!jump);
	SLJIT_ASSERT(!const_);
	SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);

	jump = compiler->jumps;
	while (jump) {
		do {
			addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
			buf_ptr = (sljit_ins *)jump->addr;

			if (jump->flags & PATCH_B) {
				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
				SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
				buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);

#ifdef TILEGX_JIT_DEBUG
				printf("[runtime relocate]%04d:\t", __LINE__);
				print_insn_tilegx(buf_ptr);
#endif
				break;
			}

			if (jump->flags & PATCH_J) {
				SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
				addr = (sljit_sw)(addr - (jump->addr)) >> 3;
				buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);

#ifdef TILEGX_JIT_DEBUG
				printf("[runtime relocate]%04d:\t", __LINE__);
				print_insn_tilegx(buf_ptr);
#endif
				break;
			}

			SLJIT_ASSERT(!(jump->flags & IS_JAL));

			/* Set the fields of immediate loads. */
			buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
			buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
			buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
		} while (0);

		jump = jump->next;
	}

	compiler->error = SLJIT_ERR_COMPILED;
	compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
	SLJIT_CACHE_FLUSH(code, code_ptr);
	return code;
}

static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm)
{

	if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
		return ADDLI(dst_ar, ZERO, imm);

	if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
		return SHL16INSLI(dst_ar, dst_ar, imm);
	}

	if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
		FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
		FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
		return SHL16INSLI(dst_ar, dst_ar, imm);
	}

	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
	return SHL16INSLI(dst_ar, dst_ar, imm);
}

static sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
{
	/* Should *not* be optimized as load_immediate, as pcre relocation
	   mechanism will match this fixed 4-instruction pattern. */
	if (flush) {
		FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
		FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
		return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
	}

	FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
	FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
	return SHL16INSLI(dst_ar, dst_ar, imm);
}

static sljit_s32 emit_const_64(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
{
	/* Should *not* be optimized as load_immediate, as pcre relocation
	   mechanism will match this fixed 4-instruction pattern. */
	if (flush) {
		FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
		FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
		return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
	}

	FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
	FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
	return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
	sljit_ins base;
	sljit_s32 i, tmp;
 
	CHECK_ERROR();
	CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
	set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
	local_size = (local_size + 7) & ~7;
	compiler->local_size = local_size;

	if (local_size <= SIMM_16BIT_MAX) {
		/* Frequent case. */
		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
		base = SLJIT_LOCALS_REG_mapped;
	} else {
		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
		FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
		FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
		base = TMP_REG2_mapped;
		local_size = 0;
	}

	/* Save the return address. */
	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
	FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));

	/* Save the S registers. */
	tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
	for (i = SLJIT_S0; i >= tmp; i--) {
		FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
	}

	/* Save the R registers that need to be reserved. */
	for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
		FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
	}

	/* Move the arguments to S registers. */
	for (i = 0; i < args; i++) {
		FAIL_IF(ADD(reg_map[SLJIT_S0 - i], i, ZERO));
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
	CHECK_ERROR();
	CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
	set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
	compiler->local_size = (local_size + 7) & ~7;

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw)
{
	sljit_s32 local_size;
	sljit_ins base;
	sljit_s32 i, tmp;
	sljit_s32 saveds;

	CHECK_ERROR();
	CHECK(check_sljit_emit_return(compiler, op, src, srcw));

	FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));

	local_size = compiler->local_size;
	if (local_size <= SIMM_16BIT_MAX)
		base = SLJIT_LOCALS_REG_mapped;
	else {
		FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
		FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
		base = TMP_REG1_mapped;
		local_size = 0;
	}

	/* Restore the return address. */
	FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
	FAIL_IF(LD_ADD(RA, ADDR_TMP_mapped, -8));

	/* Restore the S registers. */
	saveds = compiler->saveds;
	tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
	for (i = SLJIT_S0; i >= tmp; i--) {
		FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
	}

	/* Restore the R registers that need to be reserved. */
	for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
		FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
	}

	if (compiler->local_size <= SIMM_16BIT_MAX)
		FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
	else
		FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));

	return JR(RA);
}

/* reg_ar is an absoulute register! */

/* Can perform an operation using at most 1 instruction. */
static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
{
	SLJIT_ASSERT(arg & SLJIT_MEM);

	if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
			&& !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
		/* Works for both absoulte and relative addresses. */
		if (SLJIT_UNLIKELY(flags & ARG_TEST))
			return 1;

		FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));

		if (flags & LOAD_DATA)
			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
		else
			FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));

		return -1;
	}

	return 0;
}

/* See getput_arg below.
   Note: can_cache is called only for binary operators. Those
   operators always uses word arguments without write back. */
static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
{
	SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));

	/* Simple operation except for updates. */
	if (arg & OFFS_REG_MASK) {
		argw &= 0x3;
		next_argw &= 0x3;
		if (argw && argw == next_argw
				&& (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
			return 1;
		return 0;
	}

	if (arg == next_arg) {
		if (((next_argw - argw) <= SIMM_16BIT_MAX
				&& (next_argw - argw) >= SIMM_16BIT_MIN))
			return 1;

		return 0;
	}

	return 0;
}

/* Emit the necessary instructions. See can_cache above. */
static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
{
	sljit_s32 tmp_ar, base;

	SLJIT_ASSERT(arg & SLJIT_MEM);
	if (!(next_arg & SLJIT_MEM)) {
		next_arg = 0;
		next_argw = 0;
	}

	if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
		tmp_ar = reg_ar;
	else
		tmp_ar = TMP_REG1_mapped;

	base = arg & REG_MASK;

	if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
		argw &= 0x3;

		if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
			SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
			reg_ar = TMP_REG1_mapped;
		}

		/* Using the cache. */
		if (argw == compiler->cache_argw) {
			if (!(flags & WRITE_BACK)) {
				if (arg == compiler->cache_arg) {
					if (flags & LOAD_DATA)
						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
					else
						return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
				}

				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
					if (arg == next_arg && argw == (next_argw & 0x3)) {
						compiler->cache_arg = arg;
						compiler->cache_argw = argw;
						FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
						if (flags & LOAD_DATA)
							return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
						else
							return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
					}

					FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
					if (flags & LOAD_DATA)
						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
					else
						return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
				}
			} else {
				if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
					FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
					if (flags & LOAD_DATA)
						return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
					else
						return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
				}
			}
		}

		if (SLJIT_UNLIKELY(argw)) {
			compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
			compiler->cache_argw = argw;
			FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
		}

		if (!(flags & WRITE_BACK)) {
			if (arg == next_arg && argw == (next_argw & 0x3)) {
				compiler->cache_arg = arg;
				compiler->cache_argw = argw;
				FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
				tmp_ar = TMP_REG3_mapped;
			} else
				FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));

			if (flags & LOAD_DATA)
				return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
			else
				return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
		}

		FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));

		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
	}

	if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
		/* Update only applies if a base register exists. */
		if (reg_ar == reg_map[base]) {
			SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
			if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
				FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
				if (flags & LOAD_DATA)
					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
				else
					FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));

				if (argw)
					return ADDLI(reg_map[base], reg_map[base], argw);

				return SLJIT_SUCCESS;
			}

			FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
			reg_ar = TMP_REG1_mapped;
		}

		if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
			if (argw)
				FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
		} else {
			if (compiler->cache_arg == SLJIT_MEM
					&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
					&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
				if (argw != compiler->cache_argw) {
					FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
					compiler->cache_argw = argw;
				}

				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
			} else {
				compiler->cache_arg = SLJIT_MEM;
				compiler->cache_argw = argw;
				FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
				FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
			}
		}

		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
	}

	if (compiler->cache_arg == arg
			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
		if (argw != compiler->cache_argw) {
			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
			compiler->cache_argw = argw;
		}

		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
	}

	if (compiler->cache_arg == SLJIT_MEM
			&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
			&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
		if (argw != compiler->cache_argw)
			FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
	} else {
		compiler->cache_arg = SLJIT_MEM;
		FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
	}

	compiler->cache_argw = argw;

	if (!base) {
		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
	}

	if (arg == next_arg
			&& next_argw - argw <= SIMM_16BIT_MAX
			&& next_argw - argw >= SIMM_16BIT_MIN) {
		compiler->cache_arg = arg;
		FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
		if (flags & LOAD_DATA)
			return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
		else
			return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
	}

	FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));

	if (flags & LOAD_DATA)
		return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
	else
		return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
}

static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
{
	if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
		return compiler->error;

	compiler->cache_arg = 0;
	compiler->cache_argw = 0;
	return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
}

static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w)
{
	if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
		return compiler->error;
	return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
	ADJUST_LOCAL_OFFSET(dst, dstw);

	/* For UNUSED dst. Uncommon, but possible. */
	if (dst == SLJIT_UNUSED)
		return SLJIT_SUCCESS;

	if (FAST_IS_REG(dst))
		return ADD(reg_map[dst], RA, ZERO);

	/* Memory. */
	return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
	ADJUST_LOCAL_OFFSET(src, srcw);

	if (FAST_IS_REG(src))
		FAIL_IF(ADD(RA, reg_map[src], ZERO));

	else if (src & SLJIT_MEM)
		FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));

	else if (src & SLJIT_IMM)
		FAIL_IF(load_immediate(compiler, RA, srcw));

	return JR(RA);
}

static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_s32 src1, sljit_sw src2)
{
	sljit_s32 overflow_ra = 0;

	switch (GET_OPCODE(op)) {
	case SLJIT_MOV:
	case SLJIT_MOV_P:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if (dst != src2)
			return ADD(reg_map[dst], reg_map[src2], ZERO);
		return SLJIT_SUCCESS;

	case SLJIT_MOV_U32:
	case SLJIT_MOV_S32:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S32)
				return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);

			return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
		} else if (dst != src2) {
			SLJIT_ASSERT(src2 == 0);
			return ADD(reg_map[dst], reg_map[src2], ZERO);
		}

		return SLJIT_SUCCESS;

	case SLJIT_MOV_U8:
	case SLJIT_MOV_S8:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S8)
				return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);

			return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
		} else if (dst != src2) {
			SLJIT_ASSERT(src2 == 0);
			return ADD(reg_map[dst], reg_map[src2], ZERO);
		}

		return SLJIT_SUCCESS;

	case SLJIT_MOV_U16:
	case SLJIT_MOV_S16:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S16)
				return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);

			return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
		} else if (dst != src2) {
			SLJIT_ASSERT(src2 == 0);
			return ADD(reg_map[dst], reg_map[src2], ZERO);
		}

		return SLJIT_SUCCESS;

	case SLJIT_NOT:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if (op & SLJIT_SET_E)
			FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
		if (CHECK_FLAGS(SLJIT_SET_E))
			FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));

		return SLJIT_SUCCESS;

	case SLJIT_CLZ:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if (op & SLJIT_SET_E)
			FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
		if (CHECK_FLAGS(SLJIT_SET_E))
			FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));

		return SLJIT_SUCCESS;

	case SLJIT_ADD:
		if (flags & SRC2_IMM) {
			if (op & SLJIT_SET_O) {
				FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
				if (src2 < 0)
					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
			}

			if (op & SLJIT_SET_E)
				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));

			if (op & SLJIT_SET_C) {
				if (src2 >= 0)
					FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
				else {
					FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
					FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
				}
			}

			/* dst may be the same as src1 or src2. */
			if (CHECK_FLAGS(SLJIT_SET_E))
				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));

			if (op & SLJIT_SET_O) {
				FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));

				if (src2 < 0)
					FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
			}
		} else {
			if (op & SLJIT_SET_O) {
				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));

				if (src1 != dst)
					overflow_ra = reg_map[src1];
				else if (src2 != dst)
					overflow_ra = reg_map[src2];
				else {
					/* Rare ocasion. */
					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
					overflow_ra = TMP_EREG2;
				}
			}

			if (op & SLJIT_SET_E)
				FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));

			if (op & SLJIT_SET_C)
				FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));

			/* dst may be the same as src1 or src2. */
			if (CHECK_FLAGS(SLJIT_SET_E))
				FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));

			if (op & SLJIT_SET_O) {
				FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
				FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
			}
		}

		/* a + b >= a | b (otherwise, the carry should be set to 1). */
		if (op & SLJIT_SET_C)
			FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));

		if (op & SLJIT_SET_O)
			return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);

		return SLJIT_SUCCESS;

	case SLJIT_ADDC:
		if (flags & SRC2_IMM) {
			if (op & SLJIT_SET_C) {
				if (src2 >= 0)
					FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
				else {
					FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
					FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
				}
			}

			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));

		} else {
			if (op & SLJIT_SET_C)
				FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));

			/* dst may be the same as src1 or src2. */
			FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
		}

		if (op & SLJIT_SET_C)
			FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));

		FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));

		if (!(op & SLJIT_SET_C))
			return SLJIT_SUCCESS;

		/* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
		FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
		FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
		/* Set carry flag. */
		return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);

	case SLJIT_SUB:
		if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
			src2 = TMP_REG2;
			flags &= ~SRC2_IMM;
		}

		if (flags & SRC2_IMM) {
			if (op & SLJIT_SET_O) {
				FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));

				if (src2 < 0)
					FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));

				if (src1 != dst)
					overflow_ra = reg_map[src1];
				else {
					/* Rare ocasion. */
					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
					overflow_ra = TMP_EREG2;
				}
			}

			if (op & SLJIT_SET_E)
				FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));

			if (op & SLJIT_SET_C) {
				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
			}

			/* dst may be the same as src1 or src2. */
			if (CHECK_FLAGS(SLJIT_SET_E))
				FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));

		} else {

			if (op & SLJIT_SET_O) {
				FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
				FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));

				if (src1 != dst)
					overflow_ra = reg_map[src1];
				else {
					/* Rare ocasion. */
					FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
					overflow_ra = TMP_EREG2;
				}
			}

			if (op & SLJIT_SET_E)
				FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));

			if (op & (SLJIT_SET_U | SLJIT_SET_C))
				FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));

			if (op & SLJIT_SET_U)
				FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));

			if (op & SLJIT_SET_S) {
				FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
				FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
			}

			/* dst may be the same as src1 or src2. */
			if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
				FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
		}

		if (op & SLJIT_SET_O) {
			FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
			FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
			return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
		}

		return SLJIT_SUCCESS;

	case SLJIT_SUBC:
		if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
			FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
			src2 = TMP_REG2;
			flags &= ~SRC2_IMM;
		}

		if (flags & SRC2_IMM) {
			if (op & SLJIT_SET_C) {
				FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
			}

			/* dst may be the same as src1 or src2. */
			FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));

		} else {
			if (op & SLJIT_SET_C)
				FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
				/* dst may be the same as src1 or src2. */
			FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
		}

		if (op & SLJIT_SET_C)
			FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));

		FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));

		if (op & SLJIT_SET_C)
			FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));

		return SLJIT_SUCCESS;

	case SLJIT_MUL:
		if (flags & SRC2_IMM) {
			FAIL_IF(load_immediate(compiler, TMP_REG2_mapped, src2));
			src2 = TMP_REG2;
			flags &= ~SRC2_IMM;
		}

		FAIL_IF(MUL(reg_map[dst], reg_map[src1], reg_map[src2]));

		return SLJIT_SUCCESS;

#define EMIT_LOGICAL(op_imm, op_norm) \
	if (flags & SRC2_IMM) { \
		FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
		if (op & SLJIT_SET_E) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
				ADDR_TMP_mapped, __LINE__)); \
		if (CHECK_FLAGS(SLJIT_SET_E)) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, reg_map[dst], reg_map[src1], \
				ADDR_TMP_mapped, __LINE__)); \
	} else { \
		if (op & SLJIT_SET_E) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
				reg_map[src2], __LINE__)); \
		if (CHECK_FLAGS(SLJIT_SET_E)) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, reg_map[dst], reg_map[src1], \
				reg_map[src2], __LINE__)); \
	}

	case SLJIT_AND:
		EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
		return SLJIT_SUCCESS;

	case SLJIT_OR:
		EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
		return SLJIT_SUCCESS;

	case SLJIT_XOR:
		EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
		return SLJIT_SUCCESS;

#define EMIT_SHIFT(op_imm, op_norm) \
	if (flags & SRC2_IMM) { \
		if (op & SLJIT_SET_E) \
			FAIL_IF(push_3_buffer( \
				compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
				src2 & 0x3F, __LINE__)); \
		if (CHECK_FLAGS(SLJIT_SET_E)) \
			FAIL_IF(push_3_buffer( \
				compiler, op_imm, reg_map[dst], reg_map[src1], \
				src2 & 0x3F, __LINE__)); \
	} else { \
		if (op & SLJIT_SET_E) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
				reg_map[src2], __LINE__)); \
		if (CHECK_FLAGS(SLJIT_SET_E)) \
			FAIL_IF(push_3_buffer( \
				compiler, op_norm, reg_map[dst], reg_map[src1], \
				reg_map[src2], __LINE__)); \
	}

	case SLJIT_SHL:
		EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
		return SLJIT_SUCCESS;

	case SLJIT_LSHR:
		EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
		return SLJIT_SUCCESS;

	case SLJIT_ASHR:
		EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
		return SLJIT_SUCCESS;
	}

	SLJIT_UNREACHABLE();
	return SLJIT_SUCCESS;
}

static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
{
	/* arg1 goes to TMP_REG1 or src reg.
	   arg2 goes to TMP_REG2, imm or src reg.
	   TMP_REG3 can be used for caching.
	   result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
	sljit_s32 dst_r = TMP_REG2;
	sljit_s32 src1_r;
	sljit_sw src2_r = 0;
	sljit_s32 sugg_src2_r = TMP_REG2;

	if (!(flags & ALT_KEEP_CACHE)) {
		compiler->cache_arg = 0;
		compiler->cache_argw = 0;
	}

	if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32 && !(src2 & SLJIT_MEM))
			return SLJIT_SUCCESS;
		if (GET_FLAGS(op))
			flags |= UNUSED_DEST;
	} else if (FAST_IS_REG(dst)) {
		dst_r = dst;
		flags |= REG_DEST;
		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
			sugg_src2_r = dst_r;
	} else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
		flags |= SLOW_DEST;

	if (flags & IMM_OP) {
		if ((src2 & SLJIT_IMM) && src2w) {
			if ((!(flags & LOGICAL_OP)
					&& (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
					|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
				flags |= SRC2_IMM;
				src2_r = src2w;
			}
		}

		if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
			if ((!(flags & LOGICAL_OP)
					&& (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
					|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
				flags |= SRC2_IMM;
				src2_r = src1w;

				/* And swap arguments. */
				src1 = src2;
				src1w = src2w;
				src2 = SLJIT_IMM;
				/* src2w = src2_r unneeded. */
			}
		}
	}

	/* Source 1. */
	if (FAST_IS_REG(src1)) {
		src1_r = src1;
		flags |= REG1_SOURCE;
	} else if (src1 & SLJIT_IMM) {
		if (src1w) {
			FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
			src1_r = TMP_REG1;
		} else
			src1_r = 0;
	} else {
		if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
			FAIL_IF(compiler->error);
		else
			flags |= SLOW_SRC1;
		src1_r = TMP_REG1;
	}

	/* Source 2. */
	if (FAST_IS_REG(src2)) {
		src2_r = src2;
		flags |= REG2_SOURCE;
		if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
			dst_r = src2_r;
	} else if (src2 & SLJIT_IMM) {
		if (!(flags & SRC2_IMM)) {
			if (src2w) {
				FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
				src2_r = sugg_src2_r;
			} else {
				src2_r = 0;
				if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_S32) && (dst & SLJIT_MEM))
					dst_r = 0;
			}
		}
	} else {
		if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
			FAIL_IF(compiler->error);
		else
			flags |= SLOW_SRC2;
		src2_r = sugg_src2_r;
	}

	if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
		SLJIT_ASSERT(src2_r == TMP_REG2);
		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
		} else {
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
		}
	} else if (flags & SLOW_SRC1)
		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
	else if (flags & SLOW_SRC2)
		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));

	FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));

	if (dst & SLJIT_MEM) {
		if (!(flags & SLOW_DEST)) {
			getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
			return compiler->error;
		}

		return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw, sljit_s32 type)
{
	sljit_s32 sugg_dst_ar, dst_ar;
	sljit_s32 flags = GET_ALL_FLAGS(op);
	sljit_s32 mem_type = (op & SLJIT_I32_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;

	CHECK_ERROR();
	CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
	ADJUST_LOCAL_OFFSET(dst, dstw);

	op = GET_OPCODE(op);
	if (op == SLJIT_MOV_S32 || op == SLJIT_MOV_U32)
		mem_type = INT_DATA | SIGNED_DATA;
	sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];

	compiler->cache_arg = 0;
	compiler->cache_argw = 0;
	if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
		ADJUST_LOCAL_OFFSET(src, srcw);
		FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
		src = TMP_REG1;
		srcw = 0;
	}

	switch (type & 0xff) {
	case SLJIT_EQUAL:
	case SLJIT_NOT_EQUAL:
		FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
		dst_ar = sugg_dst_ar;
		break;
	case SLJIT_LESS:
	case SLJIT_GREATER_EQUAL:
		dst_ar = ULESS_FLAG;
		break;
	case SLJIT_GREATER:
	case SLJIT_LESS_EQUAL:
		dst_ar = UGREATER_FLAG;
		break;
	case SLJIT_SIG_LESS:
	case SLJIT_SIG_GREATER_EQUAL:
		dst_ar = LESS_FLAG;
		break;
	case SLJIT_SIG_GREATER:
	case SLJIT_SIG_LESS_EQUAL:
		dst_ar = GREATER_FLAG;
		break;
	case SLJIT_OVERFLOW:
	case SLJIT_NOT_OVERFLOW:
		dst_ar = OVERFLOW_FLAG;
		break;
	case SLJIT_MUL_OVERFLOW:
	case SLJIT_MUL_NOT_OVERFLOW:
		FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
		dst_ar = sugg_dst_ar;
		type ^= 0x1; /* Flip type bit for the XORI below. */
		break;

	default:
		SLJIT_UNREACHABLE();
		dst_ar = sugg_dst_ar;
		break;
	}

	if (type & 0x1) {
		FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
		dst_ar = sugg_dst_ar;
	}

	if (op >= SLJIT_ADD) {
		if (TMP_REG2_mapped != dst_ar)
			FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
		return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
	}

	if (dst & SLJIT_MEM)
		return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw);

	if (sugg_dst_ar != dst_ar)
		return ADD(sugg_dst_ar, dst_ar, ZERO);

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) {
	CHECK_ERROR();
	CHECK(check_sljit_emit_op0(compiler, op));

	op = GET_OPCODE(op);
	switch (op) {
	case SLJIT_NOP:
		return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);

	case SLJIT_BREAKPOINT:
		return PI(BPT);

	case SLJIT_LMUL_UW:
	case SLJIT_LMUL_SW:
	case SLJIT_DIVMOD_UW:
	case SLJIT_DIVMOD_SW:
	case SLJIT_DIV_UW:
	case SLJIT_DIV_SW:
		SLJIT_UNREACHABLE();
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
	ADJUST_LOCAL_OFFSET(dst, dstw);
	ADJUST_LOCAL_OFFSET(src, srcw);

	switch (GET_OPCODE(op)) {
	case SLJIT_MOV:
	case SLJIT_MOV_P:
		return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOV_U32:
		return emit_op(compiler, SLJIT_MOV_U32, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOV_S32:
		return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOV_U8:
		return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);

	case SLJIT_MOV_S8:
		return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);

	case SLJIT_MOV_U16:
		return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);

	case SLJIT_MOV_S16:
		return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);

	case SLJIT_MOVU:
	case SLJIT_MOVU_P:
		return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOVU_U32:
		return emit_op(compiler, SLJIT_MOV_U32, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOVU_S32:
		return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_MOVU_U8:
		return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);

	case SLJIT_MOVU_S8:
		return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);

	case SLJIT_MOVU_U16:
		return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);

	case SLJIT_MOVU_S16:
		return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);

	case SLJIT_NOT:
		return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_NEG:
		return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);

	case SLJIT_CLZ:
		return emit_op(compiler, op, (op & SLJIT_I32_OP) ? INT_DATA : WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
	ADJUST_LOCAL_OFFSET(dst, dstw);
	ADJUST_LOCAL_OFFSET(src1, src1w);
	ADJUST_LOCAL_OFFSET(src2, src2w);

	switch (GET_OPCODE(op)) {
	case SLJIT_ADD:
	case SLJIT_ADDC:
		return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_SUB:
	case SLJIT_SUBC:
		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_MUL:
		return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_AND:
	case SLJIT_OR:
	case SLJIT_XOR:
		return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_SHL:
	case SLJIT_LSHR:
	case SLJIT_ASHR:
		if (src2 & SLJIT_IMM)
			src2w &= 0x3f;
		if (op & SLJIT_I32_OP)
			src2w &= 0x1f;

		return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
{
	struct sljit_label *label;

	flush_buffer(compiler);

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_emit_label(compiler));

	if (compiler->last_label && compiler->last_label->size == compiler->size)
		return compiler->last_label;

	label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
	PTR_FAIL_IF(!label);
	set_label(label, compiler);
	return label;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
{
	sljit_s32 src_r = TMP_REG2;
	struct sljit_jump *jump = NULL;

	flush_buffer(compiler);

	CHECK_ERROR();
	CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
	ADJUST_LOCAL_OFFSET(src, srcw);

	if (FAST_IS_REG(src)) {
		if (reg_map[src] != 0)
			src_r = src;
		else
			FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
	}

	if (type >= SLJIT_CALL0) {
		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
		if (src & (SLJIT_IMM | SLJIT_MEM)) {
			if (src & SLJIT_IMM)
				FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
			else {
				SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
				FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
			}

			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));

			FAIL_IF(ADDI_SOLO(54, 54, -16));

			FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));

			return ADDI_SOLO(54, 54, 16);
		}

		/* Register input. */
		if (type >= SLJIT_CALL1)
			FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));

		FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));

		FAIL_IF(ADDI_SOLO(54, 54, -16));

		FAIL_IF(JALR_SOLO(reg_map[src_r]));

		return ADDI_SOLO(54, 54, 16);
	}

	if (src & SLJIT_IMM) {
		jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
		FAIL_IF(!jump);
		set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
		jump->u.target = srcw;
		FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));

		if (type >= SLJIT_FAST_CALL) {
			FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
			jump->addr = compiler->size;
			FAIL_IF(JR_SOLO(reg_map[src_r]));
		} else {
			jump->addr = compiler->size;
			FAIL_IF(JR_SOLO(reg_map[src_r]));
		}

		return SLJIT_SUCCESS;

	} else if (src & SLJIT_MEM) {
		FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
		flush_buffer(compiler);
	}

	FAIL_IF(JR_SOLO(reg_map[src_r]));

	if (jump)
		jump->addr = compiler->size;

	return SLJIT_SUCCESS;
}

#define BR_Z(src) \
	inst = BEQZ_X1 | SRCA_X1(src); \
	flags = IS_COND;

#define BR_NZ(src) \
	inst = BNEZ_X1 | SRCA_X1(src); \
	flags = IS_COND;

SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
{
	struct sljit_jump *jump;
	sljit_ins inst;
	sljit_s32 flags = 0;

	flush_buffer(compiler);

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_emit_jump(compiler, type));

	jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
	PTR_FAIL_IF(!jump);
	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
	type &= 0xff;

	switch (type) {
	case SLJIT_EQUAL:
		BR_NZ(EQUAL_FLAG);
		break;
	case SLJIT_NOT_EQUAL:
		BR_Z(EQUAL_FLAG);
		break;
	case SLJIT_LESS:
		BR_Z(ULESS_FLAG);
		break;
	case SLJIT_GREATER_EQUAL:
		BR_NZ(ULESS_FLAG);
		break;
	case SLJIT_GREATER:
		BR_Z(UGREATER_FLAG);
		break;
	case SLJIT_LESS_EQUAL:
		BR_NZ(UGREATER_FLAG);
		break;
	case SLJIT_SIG_LESS:
		BR_Z(LESS_FLAG);
		break;
	case SLJIT_SIG_GREATER_EQUAL:
		BR_NZ(LESS_FLAG);
		break;
	case SLJIT_SIG_GREATER:
		BR_Z(GREATER_FLAG);
		break;
	case SLJIT_SIG_LESS_EQUAL:
		BR_NZ(GREATER_FLAG);
		break;
	case SLJIT_OVERFLOW:
	case SLJIT_MUL_OVERFLOW:
		BR_Z(OVERFLOW_FLAG);
		break;
	case SLJIT_NOT_OVERFLOW:
	case SLJIT_MUL_NOT_OVERFLOW:
		BR_NZ(OVERFLOW_FLAG);
		break;
	default:
		/* Not conditional branch. */
		inst = 0;
		break;
	}

	jump->flags |= flags;

	if (inst) {
		inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
		PTR_FAIL_IF(PI(inst));
	}

	PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
	if (type <= SLJIT_JUMP) {
		jump->addr = compiler->size;
		PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
	} else {
		SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
		/* Cannot be optimized out if type is >= CALL0. */
		jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
		PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
		jump->addr = compiler->size;
		PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
	}

	return jump;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
{
	SLJIT_UNREACHABLE();
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
{
	SLJIT_UNREACHABLE();
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
{
	struct sljit_const *const_;
	sljit_s32 reg;

	flush_buffer(compiler);

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
	ADJUST_LOCAL_OFFSET(dst, dstw);

	const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
	PTR_FAIL_IF(!const_);
	set_const(const_, compiler);

	reg = FAST_IS_REG(dst) ? dst : TMP_REG2;

	PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));

	if (dst & SLJIT_MEM)
		PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
	return const_;
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target)
{
	sljit_ins *inst = (sljit_ins *)addr;

	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_target >> 32) & 0xffff) << 43);
	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_target >> 16) & 0xffff) << 43);
	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_target & 0xffff) << 43);
	SLJIT_CACHE_FLUSH(inst, inst + 3);
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
	sljit_ins *inst = (sljit_ins *)addr;

	inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
	inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
	inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
	inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
	SLJIT_CACHE_FLUSH(inst, inst + 4);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg)
{
	CHECK_REG_INDEX(check_sljit_get_register_index(reg));
	return reg_map[reg];
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
	void *instruction, sljit_s32 size)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
	return SLJIT_ERR_UNSUPPORTED;
}