summaryrefslogtreecommitdiff
path: root/thirdparty/pcre2/src/sljit/sljitLir.h
blob: c6a0832ef870cd8d7744a72c77545cd996444dd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef SLJIT_LIR_H_
#define SLJIT_LIR_H_

/*
   ------------------------------------------------------------------------
    Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
   ------------------------------------------------------------------------

   Short description
    Advantages:
      - The execution can be continued from any LIR instruction. In other
        words, it is possible to jump to any label from anywhere, even from
        a code fragment, which is compiled later, as long as the compiling
        context is the same. See sljit_emit_enter for more details.
      - Supports self modifying code: target of any jump and call
        instructions and some constant values can be dynamically modified
        during runtime. See SLJIT_REWRITABLE_JUMP.
        - although it is not suggested to do it frequently
        - can be used for inline caching: save an important value once
          in the instruction stream
      - A fixed stack space can be allocated for local variables
      - The compiler is thread-safe
      - The compiler is highly configurable through preprocessor macros.
        You can disable unneeded features (multithreading in single
        threaded applications), and you can use your own system functions
        (including memory allocators). See sljitConfig.h.
    Disadvantages:
      - The compiler is more like a platform independent assembler, so
        there is no built-in variable management. Registers and stack must
        be managed manually (the name of the compiler refers to this).
    In practice:
      - This approach is very effective for interpreters
        - One of the saved registers typically points to a stack interface
        - It can jump to any exception handler anytime (even if it belongs
          to another function)
        - Hot paths can be modified during runtime reflecting the changes
          of the fastest execution path of the dynamic language
        - SLJIT supports complex memory addressing modes
        - mainly position and context independent code (except some cases)

    For valgrind users:
      - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
*/

#if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE)
#include "sljitConfigPre.h"
#endif /* SLJIT_HAVE_CONFIG_PRE */

#include "sljitConfig.h"

/* The following header file defines useful macros for fine tuning
SLJIT based code generators. They are listed in the beginning
of sljitConfigInternal.h */

#include "sljitConfigInternal.h"

#if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST)
#include "sljitConfigPost.h"
#endif /* SLJIT_HAVE_CONFIG_POST */

#ifdef __cplusplus
extern "C" {
#endif

/* Version numbers. */
#define SLJIT_MAJOR_VERSION	0
#define SLJIT_MINOR_VERSION	95

/* --------------------------------------------------------------------- */
/*  Error codes                                                          */
/* --------------------------------------------------------------------- */

/* Indicates no error. */
#define SLJIT_SUCCESS			0
/* After the call of sljit_generate_code(), the error code of the compiler
   is set to this value to avoid further code generation.
   The complier should be freed after sljit_generate_code(). */
#define SLJIT_ERR_COMPILED		1
/* Cannot allocate non-executable memory. */
#define SLJIT_ERR_ALLOC_FAILED		2
/* Cannot allocate executable memory.
   Only sljit_generate_code() returns with this error code. */
#define SLJIT_ERR_EX_ALLOC_FAILED	3
/* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
#define SLJIT_ERR_UNSUPPORTED		4
/* An ivalid argument is passed to any SLJIT function. */
#define SLJIT_ERR_BAD_ARGUMENT		5

/* --------------------------------------------------------------------- */
/*  Registers                                                            */
/* --------------------------------------------------------------------- */

/*
  Scratch (R) registers: registers which may not preserve their values
  across function calls.

  Saved (S) registers: registers which preserve their values across
  function calls.

  The scratch and saved register sets overlap. The last scratch register
  is the first saved register, the one before the last is the second saved
  register, and so on.

  If an architecture provides two scratch and three saved registers,
  its scratch and saved register sets are the following:

     R0   |        |   R0 is always a scratch register
     R1   |        |   R1 is always a scratch register
    [R2]  |   S2   |   R2 and S2 represent the same physical register
    [R3]  |   S1   |   R3 and S1 represent the same physical register
    [R4]  |   S0   |   R4 and S0 represent the same physical register

  Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
        SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.

  Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
        and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
        are virtual on x86-32. See below.

  The purpose of this definition is convenience: saved registers can
  be used as extra scratch registers. For example four registers can
  be specified as scratch registers and the fifth one as saved register
  on the CPU above and any user code which requires four scratch
  registers can run unmodified. The SLJIT compiler automatically saves
  the content of the two extra scratch register on the stack. Scratch
  registers can also be preserved by saving their value on the stack
  but this needs to be done manually.

  Note: To emphasize that registers assigned to R2-R4 are saved
        registers, they are enclosed by square brackets.

  Note: sljit_emit_enter and sljit_set_context defines whether a register
        is S or R register. E.g: when 3 scratches and 1 saved is mapped
        by sljit_emit_enter, the allowed register set will be: R0-R2 and
        S0. Although S2 is mapped to the same position as R2, it does not
        available in the current configuration. Furthermore the S1 register
        is not available at all.
*/

/* Scratch registers. */
#define SLJIT_R0	1
#define SLJIT_R1	2
#define SLJIT_R2	3
/* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
   are allocated on the stack). These registers are called virtual
   and cannot be used for memory addressing (cannot be part of
   any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
   limitation on other CPUs. See sljit_get_register_index(). */
#define SLJIT_R3	4
#define SLJIT_R4	5
#define SLJIT_R5	6
#define SLJIT_R6	7
#define SLJIT_R7	8
#define SLJIT_R8	9
#define SLJIT_R9	10
/* All R registers provided by the architecture can be accessed by SLJIT_R(i)
   The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
#define SLJIT_R(i)	(1 + (i))

/* Saved registers. */
#define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
#define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
#define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
/* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
   are allocated on the stack). These registers are called virtual
   and cannot be used for memory addressing (cannot be part of
   any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
   limitation on other CPUs. See sljit_get_register_index(). */
#define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
#define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
#define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
#define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
#define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
#define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
#define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
/* All S registers provided by the architecture can be accessed by SLJIT_S(i)
   The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
#define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))

/* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
#define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)

/* The SLJIT_SP provides direct access to the linear stack space allocated by
   sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
   The immediate offset is extended by the relative stack offset automatically.
   The sljit_get_local_base can be used to obtain the real address of a value. */
#define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)

/* Return with machine word. */

#define SLJIT_RETURN_REG	SLJIT_R0

/* --------------------------------------------------------------------- */
/*  Floating point registers                                             */
/* --------------------------------------------------------------------- */

/* Each floating point register can store a 32 or a 64 bit precision
   value. The FR and FS register sets are overlap in the same way as R
   and S register sets. See above. */

/* Floating point scratch registers. */
#define SLJIT_FR0	1
#define SLJIT_FR1	2
#define SLJIT_FR2	3
#define SLJIT_FR3	4
#define SLJIT_FR4	5
#define SLJIT_FR5	6
/* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
   The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
#define SLJIT_FR(i)	(1 + (i))

/* Floating point saved registers. */
#define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
#define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
#define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
#define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
#define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
#define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
/* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
   The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
#define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))

/* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
#define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)

/* Return with floating point arg. */

#define SLJIT_RETURN_FREG	SLJIT_FR0

/* --------------------------------------------------------------------- */
/*  Argument type definitions                                            */
/* --------------------------------------------------------------------- */

/* The following argument type definitions are used by sljit_emit_enter,
   sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.

   As for sljit_emit_call and sljit_emit_icall, the first integer argument
   must be placed into SLJIT_R0, the second one into SLJIT_R1, and so on.
   Similarly the first floating point argument must be placed into SLJIT_FR0,
   the second one into SLJIT_FR1, and so on.

   As for sljit_emit_enter, the integer arguments can be stored in scratch
   or saved registers. The first integer argument without _R postfix is
   stored in SLJIT_S0, the next one in SLJIT_S1, and so on. The integer
   arguments with _R postfix are placed into scratch registers. The index
   of the scratch register is the count of the previous integer arguments
   starting from SLJIT_R0. The floating point arguments are always placed
   into SLJIT_FR0, SLJIT_FR1, and so on.

   Note: if a function is called by sljit_emit_call/sljit_emit_icall and
         an argument is stored in a scratch register by sljit_emit_enter,
         that argument uses the same scratch register index for both
         integer and floating point arguments.

   Example function definition:
     sljit_f32 SLJIT_FUNC example_c_callback(void *arg_a,
         sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);

   Argument type definition:
     SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_F32)
        | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_P, 1) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F64, 2)
        | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_32, 3) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 4)

   Short form of argument type definition:
     SLJIT_ARGS4(32, P, F64, 32, F32)

   Argument passing:
     arg_a must be placed in SLJIT_R0
     arg_c must be placed in SLJIT_R1
     arg_b must be placed in SLJIT_FR0
     arg_d must be placed in SLJIT_FR1

   Examples for argument processing by sljit_emit_enter:
     SLJIT_ARGS4(VOID, P, 32_R, F32, W)
     Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_FR0, SLJIT_S1

     SLJIT_ARGS4(VOID, W, W_R, W, W_R)
     Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_S1, SLJIT_R3

     SLJIT_ARGS4(VOID, F64, W, F32, W_R)
     Arguments are placed into: SLJIT_FR0, SLJIT_S0, SLJIT_FR1, SLJIT_R1

     Note: it is recommended to pass the scratch arguments first
     followed by the saved arguments:

       SLJIT_ARGS4(VOID, W_R, W_R, W, W)
       Arguments are placed into: SLJIT_R0, SLJIT_R1, SLJIT_S0, SLJIT_S1
*/

/* The following flag is only allowed for the integer arguments of
   sljit_emit_enter. When the flag is set, the integer argument is
   stored in a scratch register instead of a saved register. */
#define SLJIT_ARG_TYPE_SCRATCH_REG 0x8

/* Void result, can only be used by SLJIT_ARG_RETURN. */
#define SLJIT_ARG_TYPE_VOID	0
/* Machine word sized integer argument or result. */
#define SLJIT_ARG_TYPE_W	1
#define SLJIT_ARG_TYPE_W_R	(SLJIT_ARG_TYPE_W | SLJIT_ARG_TYPE_SCRATCH_REG)
/* 32 bit integer argument or result. */
#define SLJIT_ARG_TYPE_32	2
#define SLJIT_ARG_TYPE_32_R	(SLJIT_ARG_TYPE_32 | SLJIT_ARG_TYPE_SCRATCH_REG)
/* Pointer sized integer argument or result. */
#define SLJIT_ARG_TYPE_P	3
#define SLJIT_ARG_TYPE_P_R	(SLJIT_ARG_TYPE_P | SLJIT_ARG_TYPE_SCRATCH_REG)
/* 64 bit floating point argument or result. */
#define SLJIT_ARG_TYPE_F64	4
/* 32 bit floating point argument or result. */
#define SLJIT_ARG_TYPE_F32	5

#define SLJIT_ARG_SHIFT 4
#define SLJIT_ARG_RETURN(type) (type)
#define SLJIT_ARG_VALUE(type, idx) ((type) << ((idx) * SLJIT_ARG_SHIFT))

/* Simplified argument list definitions.

   The following definition:
       SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_W) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 1)

   can be shortened to:
       SLJIT_ARGS1(W, F32)
*/

#define SLJIT_ARG_TO_TYPE(type) SLJIT_ARG_TYPE_ ## type

#define SLJIT_ARGS0(ret) \
	SLJIT_ARG_RETURN(SLJIT_ARG_TO_TYPE(ret))

#define SLJIT_ARGS1(ret, arg1) \
	(SLJIT_ARGS0(ret) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1))

#define SLJIT_ARGS2(ret, arg1, arg2) \
	(SLJIT_ARGS1(ret, arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2))

#define SLJIT_ARGS3(ret, arg1, arg2, arg3) \
	(SLJIT_ARGS2(ret, arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3))

#define SLJIT_ARGS4(ret, arg1, arg2, arg3, arg4) \
	(SLJIT_ARGS3(ret, arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4))

/* --------------------------------------------------------------------- */
/*  Main structures and functions                                        */
/* --------------------------------------------------------------------- */

/*
	The following structures are private, and can be changed in the
	future. Keeping them here allows code inlining.
*/

struct sljit_memory_fragment {
	struct sljit_memory_fragment *next;
	sljit_uw used_size;
	/* Must be aligned to sljit_sw. */
	sljit_u8 memory[1];
};

struct sljit_label {
	struct sljit_label *next;
	sljit_uw addr;
	/* The maximum size difference. */
	sljit_uw size;
};

struct sljit_jump {
	struct sljit_jump *next;
	sljit_uw addr;
	/* Architecture dependent flags. */
	sljit_uw flags;
	union {
		sljit_uw target;
		struct sljit_label *label;
	} u;
};

struct sljit_put_label {
	struct sljit_put_label *next;
	struct sljit_label *label;
	sljit_uw addr;
	sljit_uw flags;
};

struct sljit_const {
	struct sljit_const *next;
	sljit_uw addr;
};

struct sljit_compiler {
	sljit_s32 error;
	sljit_s32 options;

	struct sljit_label *labels;
	struct sljit_jump *jumps;
	struct sljit_put_label *put_labels;
	struct sljit_const *consts;
	struct sljit_label *last_label;
	struct sljit_jump *last_jump;
	struct sljit_const *last_const;
	struct sljit_put_label *last_put_label;

	void *allocator_data;
	void *exec_allocator_data;
	struct sljit_memory_fragment *buf;
	struct sljit_memory_fragment *abuf;

	/* Available scratch registers. */
	sljit_s32 scratches;
	/* Available saved registers. */
	sljit_s32 saveds;
	/* Available float scratch registers. */
	sljit_s32 fscratches;
	/* Available float saved registers. */
	sljit_s32 fsaveds;
	/* Local stack size. */
	sljit_s32 local_size;
	/* Maximum code size. */
	sljit_uw size;
	/* Relative offset of the executable mapping from the writable mapping. */
	sljit_sw executable_offset;
	/* Executable size for statistical purposes. */
	sljit_uw executable_size;

#if (defined SLJIT_HAS_STATUS_FLAGS_STATE && SLJIT_HAS_STATUS_FLAGS_STATE)
	sljit_s32 status_flags_state;
#endif

#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
	sljit_s32 args_size;
#endif

#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
	sljit_s32 mode32;
#endif

#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
	/* Constant pool handling. */
	sljit_uw *cpool;
	sljit_u8 *cpool_unique;
	sljit_uw cpool_diff;
	sljit_uw cpool_fill;
	/* Other members. */
	/* Contains pointer, "ldr pc, [...]" pairs. */
	sljit_uw patches;
#endif

#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
	/* Temporary fields. */
	sljit_uw shift_imm;
#endif /* SLJIT_CONFIG_ARM_V5 || SLJIT_CONFIG_ARM_V7 */

#if (defined SLJIT_CONFIG_ARM_32 && SLJIT_CONFIG_ARM_32) && (defined __SOFTFP__)
	sljit_uw args_size;
#endif

#if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
	sljit_u32 imm;
#endif

#if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
	sljit_s32 delay_slot;
	sljit_s32 cache_arg;
	sljit_sw cache_argw;
#endif

#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
	sljit_uw args_size;
#endif

#if (defined SLJIT_CONFIG_RISCV && SLJIT_CONFIG_RISCV)
	sljit_s32 cache_arg;
	sljit_sw cache_argw;
#endif

#if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X)
	/* Need to allocate register save area to make calls. */
	sljit_s32 mode;
#endif

#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
	FILE* verbose;
#endif

#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
	/* Flags specified by the last arithmetic instruction.
	   It contains the type of the variable flag. */
	sljit_s32 last_flags;
	/* Return value type set by entry functions. */
	sljit_s32 last_return;
	/* Local size passed to entry functions. */
	sljit_s32 logical_local_size;
#endif

#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
	/* Trust arguments when an API function is called.
	   Used internally for calling API functions. */
	sljit_s32 skip_checks;
#endif
};

/* --------------------------------------------------------------------- */
/*  Main functions                                                       */
/* --------------------------------------------------------------------- */

/* Creates an SLJIT compiler. The allocator_data is required by some
   custom memory managers. This pointer is passed to SLJIT_MALLOC
   and SLJIT_FREE macros. Most allocators (including the default
   one) ignores this value, and it is recommended to pass NULL
   as a dummy value for allocator_data. The exec_allocator_data
   has the same purpose but this one is passed to SLJIT_MALLOC_EXEC /
   SLJIT_MALLOC_FREE functions.

   Returns NULL if failed. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data, void *exec_allocator_data);

/* Frees everything except the compiled machine code. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);

/* Returns the current error code. If an error occurres, future calls
   which uses the same compiler argument returns early with the same
   error code. Thus there is no need for checking the error after every
   call, it is enough to do it after the code is compiled. Removing
   these checks increases the performance of the compiling process. */
static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }

/* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
   if an error was detected before. After the error code is set
   the compiler behaves as if the allocation failure happened
   during an SLJIT function call. This can greatly simplify error
   checking, since it is enough to check the compiler status
   after the code is compiled. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);

/*
   Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
   and <= 128 bytes on 64 bit architectures. The memory area is owned by the
   compiler, and freed by sljit_free_compiler. The returned pointer is
   sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
   compiling, and no need to worry about freeing them. The size is enough
   to contain at most 16 pointers. If the size is outside of the range,
   the function will return with NULL. However, this return value does not
   indicate that there is no more memory (does not set the current error code
   of the compiler to out-of-memory status).
*/
SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);

#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
/* Passing NULL disables verbose. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
#endif

/*
   Create executable code from the instruction stream. This is the final step
   of the code generation so no more instructions can be emitted after this call.
*/

SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);

/* Free executable code. */

SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data);

/*
   When the protected executable allocator is used the JIT code is mapped
   twice. The first mapping has read/write and the second mapping has read/exec
   permissions. This function returns with the relative offset of the executable
   mapping using the writable mapping as the base after the machine code is
   successfully generated. The returned value is always 0 for the normal executable
   allocator, since it uses only one mapping with read/write/exec permissions.
   Dynamic code modifications requires this value.

   Before a successful code generation, this function returns with 0.
*/
static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }

/*
   The executable memory consumption of the generated code can be retrieved by
   this function. The returned value can be used for statistical purposes.

   Before a successful code generation, this function returns with 0.
*/
static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }

/* Returns with non-zero if the feature or limitation type passed as its
   argument is present on the current CPU. The return value is one, if a
   feature is fully supported, and it is two, if partially supported.

   Some features (e.g. floating point operations) require hardware (CPU)
   support while others (e.g. move with update) are emulated if not available.
   However, even when a feature is emulated, specialized code paths may be
   faster than the emulation. Some limitations are emulated as well so their
   general case is supported but it has extra performance costs. */

/* [Not emulated] Floating-point support is available. */
#define SLJIT_HAS_FPU			0
/* [Limitation] Some registers are virtual registers. */
#define SLJIT_HAS_VIRTUAL_REGISTERS	1
/* [Emulated] Has zero register (setting a memory location to zero is efficient). */
#define SLJIT_HAS_ZERO_REGISTER		2
/* [Emulated] Count leading zero is supported. */
#define SLJIT_HAS_CLZ			3
/* [Emulated] Count trailing zero is supported. */
#define SLJIT_HAS_CTZ			4
/* [Emulated] Rotate left/right is supported. */
#define SLJIT_HAS_ROT			5
/* [Emulated] Conditional move is supported. */
#define SLJIT_HAS_CMOV			6
/* [Emulated] Prefetch instruction is available (emulated as a nop). */
#define SLJIT_HAS_PREFETCH		7

#if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
/* [Not emulated] SSE2 support is available on x86. */
#define SLJIT_HAS_SSE2			100
#endif

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);

/* If type is between SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL,
   sljit_cmp_info returns one, if the cpu supports the passed floating
   point comparison type.

   If type is SLJIT_UNORDERED or SLJIT_ORDERED, sljit_cmp_info returns
   one, if the cpu supports checking the unordered comparison result
   regardless of the comparison type passed to the comparison instruction.
   The returned value is always one, if there is at least one type between
   SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL where sljit_cmp_info
   returns with a zero value.

   Otherwise it returns zero. */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type);

/* The following functions generate machine code. If there is no
   error, they return with SLJIT_SUCCESS, otherwise they return
   with an error code. */

/*
   The executable code is a function from the viewpoint of the C
   language. The function calls must obey to the ABI (Application
   Binary Interface) of the platform, which specify the purpose of
   machine registers and stack handling among other things. The
   sljit_emit_enter function emits the necessary instructions for
   setting up a new context for the executable code. This is often
   called as function prologue. Furthermore the options argument
   can be used to pass configuration options to the compiler. The
   available options are listed before sljit_emit_enter.

   The function argument list is specified by the SLJIT_ARGSx
   (SLJIT_ARGS0 .. SLJIT_ARGS4) macros. Currently maximum four
   arguments are supported. See the description of SLJIT_ARGSx
   macros about argument passing. Furthermore the register set
   used by the function must be declared as well. The number of
   scratch and saved registers available to the function must
   be passed to sljit_emit_enter. Only R registers between R0
   and "scratches" argument can be used later. E.g. if "scratches"
   is set to two, the scratch register set will be limited to
   SLJIT_R0 and SLJIT_R1. The S registers and the floating point
   registers ("fscratches" and "fsaveds") are specified in a
   similar manner. The sljit_emit_enter is also capable of
   allocating a stack space for local data. The "local_size"
   argument contains the size in bytes of this local area, and
   it can be accessed using SLJIT_MEM1(SLJIT_SP). The memory
   area between SLJIT_SP (inclusive) and SLJIT_SP + local_size
   (exclusive) can be modified freely until the function returns.
   The stack space is not initialized to zero.

   Note: the following conditions must met:
         0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
         0 <= saveds <= SLJIT_NUMBER_OF_SAVED_REGISTERS
         scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
         0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
         0 <= fsaveds <= SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS
         fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS

   Note: the compiler can use saved registers as scratch registers,
         but the opposite is not supported

   Note: every call of sljit_emit_enter and sljit_set_context
         overwrites the previous context.
*/

/* Saved registers between SLJIT_S0 and SLJIT_S(n - 1) (inclusive)
   are not saved / restored on function enter / return. Instead,
   these registers can be used to pass / return data (such as
   global / local context pointers) across function calls. The
   value of n must be between 1 and 3. This option is only
   supported by SLJIT_ENTER_REG_ARG calling convention. */
#define SLJIT_ENTER_KEEP(n)	(n)

/* The compiled function uses an SLJIT specific register argument
   calling convention. This is a lightweight function call type where
   both the caller and the called functions must be compiled by
   SLJIT. The type argument of the call must be SLJIT_CALL_REG_ARG
   and all arguments must be stored in scratch registers. */
#define SLJIT_ENTER_REG_ARG	0x00000004

/* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
#define SLJIT_MAX_LOCAL_SIZE	65536

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);

/* The SLJIT compiler has a current context (which contains the local
   stack space size, number of used registers, etc.) which is initialized
   by sljit_emit_enter. Several functions (such as sljit_emit_return)
   requires this context to be able to generate the appropriate code.
   However, some code fragments (compiled separately) may have no
   normal entry point so their context is unknown for the compiler.

   The sljit_set_context and sljit_emit_enter have the same arguments,
   but sljit_set_context does not generate any machine code.

   Note: every call of sljit_emit_enter and sljit_set_context overwrites
         the previous context. */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);

/* Return to the caller function. The sljit_emit_return_void function
   does not return with any value. The sljit_emit_return function returns
   with a single value loaded from its source operand. The load operation
   can be between SLJIT_MOV and SLJIT_MOV_P (see sljit_emit_op1) and
   SLJIT_MOV_F32/SLJIT_MOV_F64 (see sljit_emit_fop1) depending on the
   return value specified by sljit_emit_enter/sljit_set_context. */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler);

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 src, sljit_sw srcw);

/* Restores the saved registers and free the stack area, then the execution
   continues from the address specified by the source operand. This
   operation is similar to sljit_emit_return, but it ignores the return
   address. The code where the exection continues should use the same context
   as the caller function (see sljit_set_context). A word (pointer) value
   can be passed in the SLJIT_RETURN_REG register. This function can be used
   to jump to exception handlers. */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_to(struct sljit_compiler *compiler,
	sljit_s32 src, sljit_sw srcw);

/* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
   Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
   values of all registers and stack frame. The return address is stored in the
   dst argument of sljit_emit_fast_enter, and this return address can be passed
   to SLJIT_FAST_RETURN to continue the execution after the fast call.

   Fast calls are cheap operations (usually only a single call instruction is
   emitted) but they do not preserve any registers. However the callee function
   can freely use / update any registers and the local area which can be
   efficiently exploited by various optimizations. Registers can be saved
   and restored manually if needed.

   Although returning to different address by SLJIT_FAST_RETURN is possible,
   this address usually cannot be predicted by the return address predictor of
   modern CPUs which may reduce performance. Furthermore certain security
   enhancement technologies such as Intel Control-flow Enforcement Technology
   (CET) may disallow returning to a different address.

   Flags: - (does not modify flags). */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);

/*
   Source and destination operands for arithmetical instructions
    imm              - a simple immediate value (cannot be used as a destination)
    reg              - any of the available registers (immediate argument must be 0)
    [imm]            - absolute memory address
    [reg+imm]        - indirect memory address
    [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
                       useful for accessing arrays (fully supported by both x86 and
                       ARM architectures, and cheap operation on others)
*/

/*
   IMPORTANT NOTE: memory accesses MUST be naturally aligned unless
                   SLJIT_UNALIGNED macro is defined and its value is 1.

     length | alignment
   ---------+-----------
     byte   | 1 byte (any physical_address is accepted)
     half   | 2 byte (physical_address & 0x1 == 0)
     int    | 4 byte (physical_address & 0x3 == 0)
     word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
            | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
    pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
            | on 64 bit machines)

   Note:   Different architectures have different addressing limitations.
           A single instruction is enough for the following addressing
           modes. Other adrressing modes are emulated by instruction
           sequences. This information could help to improve those code
           generators which focuses only a few architectures.

   x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
           [reg+(reg<<imm)] is supported
           [imm], -2^32+1 <= imm <= 2^32-1 is supported
           Write-back is not supported
   arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
                bytes, any halfs or floating point values)
           [reg+(reg<<imm)] is supported
           Write-back is supported
   arm-t2: [reg+imm], -255 <= imm <= 4095
           [reg+(reg<<imm)] is supported
           Write back is supported only for [reg+imm], where -255 <= imm <= 255
   arm64:  [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
           [reg+(reg<<imm)] is supported
           Write back is supported only for [reg+imm], where -256 <= imm <= 255
   ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
                signed load on 64 bit requires immediates divisible by 4.
                [reg+imm] is not supported for signed 8 bit values.
           [reg+reg] is supported
           Write-back is supported except for one instruction: 32 bit signed
                load with [reg+imm] addressing mode on 64 bit.
   mips:   [reg+imm], -65536 <= imm <= 65535
           Write-back is not supported
   riscv:  [reg+imm], -2048 <= imm <= 2047
           Write-back is not supported
   s390x:  [reg+imm], -2^19 <= imm < 2^19
           [reg+reg] is supported
           Write-back is not supported
*/

/* Macros for specifying operand types. */
#define SLJIT_MEM		0x80
#define SLJIT_MEM0()		(SLJIT_MEM)
#define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
#define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
#define SLJIT_IMM		0x40
#define SLJIT_REG_PAIR(r1, r2)	((r1) | ((r2) << 8))

/* Sets 32 bit operation mode on 64 bit CPUs. This option is ignored on
   32 bit CPUs. When this option is set for an arithmetic operation, only
   the lower 32 bits of the input registers are used, and the CPU status
   flags are set according to the 32 bit result. Although the higher 32 bit
   of the input and the result registers are not defined by SLJIT, it might
   be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
   requirements all source registers must be the result of those operations
   where this option was also set. Memory loads read 32 bit values rather
   than 64 bit ones. In other words 32 bit and 64 bit operations cannot be
   mixed. The only exception is SLJIT_MOV32 which source register can hold
   any 32 or 64 bit value, and it is converted to a 32 bit compatible format
   first. When the source and destination registers are the same, this
   conversion is free (no instructions are emitted) on most CPUs. A 32 bit
   value can also be converted to a 64 bit value by SLJIT_MOV_S32
   (sign extension) or SLJIT_MOV_U32 (zero extension).

   As for floating-point operations, this option sets 32 bit single
   precision mode. Similar to the integer operations, all register arguments
   must be the result of those operations where this option was also set.

   Note: memory addressing always uses 64 bit values on 64 bit systems so
         the result of a 32 bit operation must not be used with SLJIT_MEMx
         macros.

   This option is part of the instruction name, so there is no need to
   manually set it. E.g:

     SLJIT_ADD32 == (SLJIT_ADD | SLJIT_32) */
#define SLJIT_32		0x100

/* Many CPUs (x86, ARM, PPC) have status flag bits which can be set according
   to the result of an operation. Other CPUs (MIPS) do not have status
   flag bits, and results must be stored in registers. To cover both
   architecture types efficiently only two flags are defined by SLJIT:

    * Zero (equal) flag: it is set if the result is zero
    * Variable flag: its value is defined by the arithmetic operation

   SLJIT instructions can set any or both of these flags. The value of
   these flags is undefined if the instruction does not specify their
   value. The description of each instruction contains the list of
   allowed flag types.

   Note: the logical or operation can be used to set flags.

   Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence

     sljit_op2(..., SLJIT_ADD, ...)
       Both the zero and variable flags are undefined so they can
       have any value after the operation is completed.

     sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
       Sets the zero flag if the result is zero, clears it otherwise.
       The variable flag is undefined.

     sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
       Sets the variable flag if an integer overflow occurs, clears
       it otherwise. The zero flag is undefined.

     sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
       Sets the zero flag if the result is zero, clears it otherwise.
       Sets the variable flag if unsigned overflow (carry) occurs,
       clears it otherwise.

   Certain instructions (e.g. SLJIT_MOV) does not modify flags, so
   status flags are unchanged.

   Example:

     sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
     sljit_op1(..., SLJIT_MOV, ...)
       Zero flag is set according to the result of SLJIT_ADD.

     sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
     sljit_op2(..., SLJIT_ADD, ...)
       Zero flag has unknown value.

   These flags can be used for code optimization. E.g. a fast loop can be
   implemented by decreasing a counter register and set the zero flag
   using a single instruction. The zero register can be used by a
   conditional jump to restart the loop. A single comparison can set a
   zero and less flags to check if a value is less, equal, or greater
   than another value.

   Motivation: although some CPUs can set a large number of flag bits,
   usually their values are ignored or only a few of them are used. Emulating
   a large number of flags on systems without a flag register is complicated
   so SLJIT instructions must specify the flag they want to use and only
   that flag is computed. The last arithmetic instruction can be repeated if
   multiple flags need to be checked.
*/

/* Set Zero status flag. */
#define SLJIT_SET_Z			0x0200
/* Set the variable status flag if condition is true.
   See comparison types (e.g. SLJIT_SET_LESS, SLJIT_SET_F_EQUAL). */
#define SLJIT_SET(condition)			((condition) << 10)

/* Starting index of opcodes for sljit_emit_op0. */
#define SLJIT_OP0_BASE			0

/* Flags: - (does not modify flags)
   Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
         It falls back to SLJIT_NOP in those cases. */
#define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
/* Flags: - (does not modify flags)
   Note: may or may not cause an extra cycle wait
         it can even decrease the runtime in a few cases. */
#define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
/* Flags: - (may destroy flags)
   Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
   Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
#define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
/* Flags: - (may destroy flags)
   Signed multiplication of SLJIT_R0 and SLJIT_R1.
   Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
#define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
/* Flags: - (may destroy flags)
   Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
   The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
   Note: if SLJIT_R1 is 0, the behaviour is undefined. */
#define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
#define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_32)
/* Flags: - (may destroy flags)
   Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
   The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
   Note: if SLJIT_R1 is 0, the behaviour is undefined.
   Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
         the behaviour is undefined. */
#define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
#define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_32)
/* Flags: - (may destroy flags)
   Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
   The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
   Note: if SLJIT_R1 is 0, the behaviour is undefined. */
#define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
#define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_32)
/* Flags: - (may destroy flags)
   Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
   The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
   Note: if SLJIT_R1 is 0, the behaviour is undefined.
   Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
         the behaviour is undefined. */
#define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
#define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_32)
/* Flags: - (does not modify flags)
   ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
   when Intel Control-flow Enforcement Technology (CET) is enabled.
   No instructions are emitted for other architectures. */
#define SLJIT_ENDBR			(SLJIT_OP0_BASE + 8)
/* Flags: - (may destroy flags)
   Skip stack frames before return when Intel Control-flow
   Enforcement Technology (CET) is enabled. No instructions
   are emitted for other architectures. */
#define SLJIT_SKIP_FRAMES_BEFORE_RETURN	(SLJIT_OP0_BASE + 9)

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);

/* Starting index of opcodes for sljit_emit_op1. */
#define SLJIT_OP1_BASE			32

/* The MOV instruction transfers data from source to destination.

   MOV instruction suffixes:

   U8  - unsigned 8 bit data transfer
   S8  - signed 8 bit data transfer
   U16 - unsigned 16 bit data transfer
   S16 - signed 16 bit data transfer
   U32 - unsigned int (32 bit) data transfer
   S32 - signed int (32 bit) data transfer
   P   - pointer (sljit_p) data transfer
*/

/* Flags: - (does not modify flags) */
#define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
/* Flags: - (does not modify flags) */
#define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
#define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_32)
/* Flags: - (does not modify flags) */
#define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
#define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_32)
/* Flags: - (does not modify flags) */
#define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
#define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_32)
/* Flags: - (does not modify flags) */
#define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
#define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_32)
/* Flags: - (does not modify flags)
   Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
#define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
/* Flags: - (does not modify flags)
   Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
#define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
/* Flags: - (does not modify flags) */
#define SLJIT_MOV32			(SLJIT_OP1_BASE + 7)
/* Flags: - (does not modify flags)
   Note: loads a pointer sized data, useful on x32 mode (a 64 bit mode
         on x86-64 which uses 32 bit pointers) or similar compiling modes */
#define SLJIT_MOV_P			(SLJIT_OP1_BASE + 8)
/* Flags: Z
   Note: immediate source argument is not supported */
#define SLJIT_NOT			(SLJIT_OP1_BASE + 9)
#define SLJIT_NOT32			(SLJIT_NOT | SLJIT_32)
/* Count leading zeroes
   Flags: - (may destroy flags)
   Note: immediate source argument is not supported */
#define SLJIT_CLZ			(SLJIT_OP1_BASE + 10)
#define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_32)
/* Count trailing zeroes
   Flags: - (may destroy flags)
   Note: immediate source argument is not supported */
#define SLJIT_CTZ			(SLJIT_OP1_BASE + 11)
#define SLJIT_CTZ32			(SLJIT_CTZ | SLJIT_32)

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src, sljit_sw srcw);

/* Starting index of opcodes for sljit_emit_op2. */
#define SLJIT_OP2_BASE			96

/* Flags: Z | OVERFLOW | CARRY */
#define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
#define SLJIT_ADD32			(SLJIT_ADD | SLJIT_32)
/* Flags: CARRY */
#define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
#define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_32)
/* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
          SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
          SIG_LESS_EQUAL | OVERFLOW | CARRY */
#define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
#define SLJIT_SUB32			(SLJIT_SUB | SLJIT_32)
/* Flags: CARRY */
#define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
#define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_32)
/* Note: integer mul
   Flags: OVERFLOW */
#define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
#define SLJIT_MUL32			(SLJIT_MUL | SLJIT_32)
/* Flags: Z */
#define SLJIT_AND			(SLJIT_OP2_BASE + 5)
#define SLJIT_AND32			(SLJIT_AND | SLJIT_32)
/* Flags: Z */
#define SLJIT_OR			(SLJIT_OP2_BASE + 6)
#define SLJIT_OR32			(SLJIT_OR | SLJIT_32)
/* Flags: Z */
#define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
#define SLJIT_XOR32			(SLJIT_XOR | SLJIT_32)
/* Flags: Z
   Let bit_length be the length of the shift operation: 32 or 64.
   If src2 is immediate, src2w is masked by (bit_length - 1).
   Otherwise, if the content of src2 is outside the range from 0
   to bit_length - 1, the result is undefined. */
#define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
#define SLJIT_SHL32			(SLJIT_SHL | SLJIT_32)
/* Flags: Z
   Same as SLJIT_SHL, except the the second operand is
   always masked by the length of the shift operation. */
#define SLJIT_MSHL			(SLJIT_OP2_BASE + 9)
#define SLJIT_MSHL32			(SLJIT_MSHL | SLJIT_32)
/* Flags: Z
   Let bit_length be the length of the shift operation: 32 or 64.
   If src2 is immediate, src2w is masked by (bit_length - 1).
   Otherwise, if the content of src2 is outside the range from 0
   to bit_length - 1, the result is undefined. */
#define SLJIT_LSHR			(SLJIT_OP2_BASE + 10)
#define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_32)
/* Flags: Z
   Same as SLJIT_LSHR, except the the second operand is
   always masked by the length of the shift operation. */
#define SLJIT_MLSHR			(SLJIT_OP2_BASE + 11)
#define SLJIT_MLSHR32			(SLJIT_MLSHR | SLJIT_32)
/* Flags: Z
   Let bit_length be the length of the shift operation: 32 or 64.
   If src2 is immediate, src2w is masked by (bit_length - 1).
   Otherwise, if the content of src2 is outside the range from 0
   to bit_length - 1, the result is undefined. */
#define SLJIT_ASHR			(SLJIT_OP2_BASE + 12)
#define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_32)
/* Flags: Z
   Same as SLJIT_ASHR, except the the second operand is
   always masked by the length of the shift operation. */
#define SLJIT_MASHR			(SLJIT_OP2_BASE + 13)
#define SLJIT_MASHR32			(SLJIT_MASHR | SLJIT_32)
/* Flags: - (may destroy flags)
   Let bit_length be the length of the rotate operation: 32 or 64.
   The second operand is always masked by (bit_length - 1). */
#define SLJIT_ROTL			(SLJIT_OP2_BASE + 14)
#define SLJIT_ROTL32			(SLJIT_ROTL | SLJIT_32)
/* Flags: - (may destroy flags)
   Let bit_length be the length of the rotate operation: 32 or 64.
   The second operand is always masked by (bit_length - 1). */
#define SLJIT_ROTR			(SLJIT_OP2_BASE + 15)
#define SLJIT_ROTR32			(SLJIT_ROTR | SLJIT_32)

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w);

/* The sljit_emit_op2u function is the same as sljit_emit_op2
   except the result is discarded. */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w);

/* Emit a left or right shift operation, where the bits shifted
   in comes from a separate source operand. All operands are
   interpreted as unsigned integers.

   In the followings the value_mask variable is 31 for 32 bit
     operations and word_size - 1 otherwise.

   op must be one of the following operations:
     SLJIT_SHL or SLJIT_SHL32:
       src_dst <<= src2
       src_dst |= ((src1 >> 1) >> (src2 ^ value_mask))
     SLJIT_MSHL or SLJIT_MSHL32:
       src2 &= value_mask
       perform the SLJIT_SHL or SLJIT_SHL32 operation
     SLJIT_LSHR or SLJIT_LSHR32:
       src_dst >>= src2
       src_dst |= ((src1 << 1) << (src2 ^ value_mask))
     SLJIT_MLSHR or SLJIT_MLSHR32:
       src2 &= value_mask
       perform the SLJIT_LSHR or SLJIT_LSHR32 operation

   op can be combined (or'ed) with SLJIT_SHIFT_INTO_NON_ZERO

   src_dst must be a register which content is updated after
     the operation is completed
   src1 / src1w contains the bits which shifted into src_dst
   src2 / src2w contains the shift amount

   Note: a rotate operation can be performed if src_dst and
         src1 are set to the same register

   Flags: - (may destroy flags) */

/* The src2 contains a non-zero value. Improves the generated
   code on certain architectures, which provides a small
   performance improvement. */
#define SLJIT_SHIFT_INTO_NON_ZERO	0x200

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_shift_into(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 src_dst,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w);

/* Starting index of opcodes for sljit_emit_op2. */
#define SLJIT_OP_SRC_BASE		128

/* Note: src cannot be an immedate value
   Flags: - (does not modify flags) */
#define SLJIT_FAST_RETURN		(SLJIT_OP_SRC_BASE + 0)
/* Skip stack frames before fast return.
   Note: src cannot be an immedate value
   Flags: may destroy flags. */
#define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN	(SLJIT_OP_SRC_BASE + 1)
/* Prefetch value into the level 1 data cache
   Note: if the target CPU does not support data prefetch,
         no instructions are emitted.
   Note: this instruction never fails, even if the memory address is invalid.
   Flags: - (does not modify flags) */
#define SLJIT_PREFETCH_L1		(SLJIT_OP_SRC_BASE + 2)
/* Prefetch value into the level 2 data cache
   Note: same as SLJIT_PREFETCH_L1 if the target CPU
         does not support this instruction form.
   Note: this instruction never fails, even if the memory address is invalid.
   Flags: - (does not modify flags) */
#define SLJIT_PREFETCH_L2		(SLJIT_OP_SRC_BASE + 3)
/* Prefetch value into the level 3 data cache
   Note: same as SLJIT_PREFETCH_L2 if the target CPU
         does not support this instruction form.
   Note: this instruction never fails, even if the memory address is invalid.
   Flags: - (does not modify flags) */
#define SLJIT_PREFETCH_L3		(SLJIT_OP_SRC_BASE + 4)
/* Prefetch a value which is only used once (and can be discarded afterwards)
   Note: same as SLJIT_PREFETCH_L1 if the target CPU
         does not support this instruction form.
   Note: this instruction never fails, even if the memory address is invalid.
   Flags: - (does not modify flags) */
#define SLJIT_PREFETCH_ONCE		(SLJIT_OP_SRC_BASE + 5)

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 src, sljit_sw srcw);

/* Starting index of opcodes for sljit_emit_fop1. */
#define SLJIT_FOP1_BASE			160

/* Flags: - (does not modify flags) */
#define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
#define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_32)
/* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
   SRC/DST TYPE can be: F64, F32, S32, SW
   Rounding mode when the destination is SW or S32: round towards zero. */
/* Flags: - (may destroy flags) */
#define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
#define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_32)
/* Flags: - (may destroy flags) */
#define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
#define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_32)
/* Flags: - (may destroy flags) */
#define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
#define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_32)
/* Flags: - (may destroy flags) */
#define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
#define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_32)
/* Flags: - (may destroy flags) */
#define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
#define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_32)
/* Note: dst is the left and src is the right operand for SLJIT_CMP_F32/64.
   Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
#define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 6)
#define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_32)
/* Flags: - (may destroy flags) */
#define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 7)
#define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_32)
/* Flags: - (may destroy flags) */
#define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 8)
#define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_32)

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src, sljit_sw srcw);

/* Starting index of opcodes for sljit_emit_fop2. */
#define SLJIT_FOP2_BASE			192

/* Flags: - (may destroy flags) */
#define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
#define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_32)
/* Flags: - (may destroy flags) */
#define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
#define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_32)
/* Flags: - (may destroy flags) */
#define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
#define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_32)
/* Flags: - (may destroy flags) */
#define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
#define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_32)

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w);

/* Label and jump instructions. */

SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);

/* Invert (negate) conditional type: xor (^) with 0x1 */

/* Integer comparison types. */
#define SLJIT_EQUAL			0
#define SLJIT_ZERO			SLJIT_EQUAL
#define SLJIT_NOT_EQUAL			1
#define SLJIT_NOT_ZERO			SLJIT_NOT_EQUAL

#define SLJIT_LESS			2
#define SLJIT_SET_LESS			SLJIT_SET(SLJIT_LESS)
#define SLJIT_GREATER_EQUAL		3
#define SLJIT_SET_GREATER_EQUAL		SLJIT_SET(SLJIT_GREATER_EQUAL)
#define SLJIT_GREATER			4
#define SLJIT_SET_GREATER		SLJIT_SET(SLJIT_GREATER)
#define SLJIT_LESS_EQUAL		5
#define SLJIT_SET_LESS_EQUAL		SLJIT_SET(SLJIT_LESS_EQUAL)
#define SLJIT_SIG_LESS			6
#define SLJIT_SET_SIG_LESS		SLJIT_SET(SLJIT_SIG_LESS)
#define SLJIT_SIG_GREATER_EQUAL		7
#define SLJIT_SET_SIG_GREATER_EQUAL	SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
#define SLJIT_SIG_GREATER		8
#define SLJIT_SET_SIG_GREATER		SLJIT_SET(SLJIT_SIG_GREATER)
#define SLJIT_SIG_LESS_EQUAL		9
#define SLJIT_SET_SIG_LESS_EQUAL	SLJIT_SET(SLJIT_SIG_LESS_EQUAL)

#define SLJIT_OVERFLOW			10
#define SLJIT_SET_OVERFLOW		SLJIT_SET(SLJIT_OVERFLOW)
#define SLJIT_NOT_OVERFLOW		11

/* Unlike other flags, sljit_emit_jump may destroy the carry flag. */
#define SLJIT_CARRY			12
#define SLJIT_SET_CARRY			SLJIT_SET(SLJIT_CARRY)
#define SLJIT_NOT_CARRY			13

/* Basic floating point comparison types.

   Note: when the comparison result is unordered, their behaviour is unspecified. */

#define SLJIT_F_EQUAL				14
#define SLJIT_SET_F_EQUAL			SLJIT_SET(SLJIT_F_EQUAL)
#define SLJIT_F_NOT_EQUAL			15
#define SLJIT_SET_F_NOT_EQUAL			SLJIT_SET(SLJIT_F_NOT_EQUAL)
#define SLJIT_F_LESS				16
#define SLJIT_SET_F_LESS			SLJIT_SET(SLJIT_F_LESS)
#define SLJIT_F_GREATER_EQUAL			17
#define SLJIT_SET_F_GREATER_EQUAL		SLJIT_SET(SLJIT_F_GREATER_EQUAL)
#define SLJIT_F_GREATER				18
#define SLJIT_SET_F_GREATER			SLJIT_SET(SLJIT_F_GREATER)
#define SLJIT_F_LESS_EQUAL			19
#define SLJIT_SET_F_LESS_EQUAL			SLJIT_SET(SLJIT_F_LESS_EQUAL)

/* Jumps when either argument contains a NaN value. */
#define SLJIT_UNORDERED				20
#define SLJIT_SET_UNORDERED			SLJIT_SET(SLJIT_UNORDERED)
/* Jumps when neither argument contains a NaN value. */
#define SLJIT_ORDERED				21
#define SLJIT_SET_ORDERED			SLJIT_SET(SLJIT_ORDERED)

/* Ordered / unordered floating point comparison types.

   Note: each comparison type has an ordered and unordered form. Some
         architectures supports only either of them (see: sljit_cmp_info). */

#define SLJIT_ORDERED_EQUAL			22
#define SLJIT_SET_ORDERED_EQUAL			SLJIT_SET(SLJIT_ORDERED_EQUAL)
#define SLJIT_UNORDERED_OR_NOT_EQUAL		23
#define SLJIT_SET_UNORDERED_OR_NOT_EQUAL	SLJIT_SET(SLJIT_UNORDERED_OR_NOT_EQUAL)
#define SLJIT_ORDERED_LESS			24
#define SLJIT_SET_ORDERED_LESS			SLJIT_SET(SLJIT_ORDERED_LESS)
#define SLJIT_UNORDERED_OR_GREATER_EQUAL	25
#define SLJIT_SET_UNORDERED_OR_GREATER_EQUAL	SLJIT_SET(SLJIT_UNORDERED_OR_GREATER_EQUAL)
#define SLJIT_ORDERED_GREATER			26
#define SLJIT_SET_ORDERED_GREATER		SLJIT_SET(SLJIT_ORDERED_GREATER)
#define SLJIT_UNORDERED_OR_LESS_EQUAL		27
#define SLJIT_SET_UNORDERED_OR_LESS_EQUAL	SLJIT_SET(SLJIT_UNORDERED_OR_LESS_EQUAL)

#define SLJIT_UNORDERED_OR_EQUAL		28
#define SLJIT_SET_UNORDERED_OR_EQUAL		SLJIT_SET(SLJIT_UNORDERED_OR_EQUAL)
#define SLJIT_ORDERED_NOT_EQUAL			29
#define SLJIT_SET_ORDERED_NOT_EQUAL		SLJIT_SET(SLJIT_ORDERED_NOT_EQUAL)
#define SLJIT_UNORDERED_OR_LESS			30
#define SLJIT_SET_UNORDERED_OR_LESS		SLJIT_SET(SLJIT_UNORDERED_OR_LESS)
#define SLJIT_ORDERED_GREATER_EQUAL		31
#define SLJIT_SET_ORDERED_GREATER_EQUAL		SLJIT_SET(SLJIT_ORDERED_GREATER_EQUAL)
#define SLJIT_UNORDERED_OR_GREATER		32
#define SLJIT_SET_UNORDERED_OR_GREATER		SLJIT_SET(SLJIT_UNORDERED_OR_GREATER)
#define SLJIT_ORDERED_LESS_EQUAL		33
#define SLJIT_SET_ORDERED_LESS_EQUAL		SLJIT_SET(SLJIT_ORDERED_LESS_EQUAL)

/* Unconditional jump types. */
#define SLJIT_JUMP			34
/* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
#define SLJIT_FAST_CALL			35
/* Default C calling convention. */
#define SLJIT_CALL			36
/* Called function must be compiled by SLJIT.
   See SLJIT_ENTER_REG_ARG option. */
#define SLJIT_CALL_REG_ARG		37

/* The target can be changed during runtime (see: sljit_set_jump_addr). */
#define SLJIT_REWRITABLE_JUMP		0x1000
/* When this flag is passed, the execution of the current function ends and
   the called function returns to the caller of the current function. The
   stack usage is reduced before the call, but it is not necessarily reduced
   to zero. In the latter case the compiler needs to allocate space for some
   arguments and the return address must be stored on the stack as well. */
#define SLJIT_CALL_RETURN		0x2000

/* Emit a jump instruction. The destination is not set, only the type of the jump.
    type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
    type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP

   Flags: does not modify flags. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);

/* Emit a C compiler (ABI) compatible function call.
    type must be SLJIT_CALL or SLJIT_CALL_REG_ARG
    type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and/or SLJIT_CALL_RETURN
    arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros

   Flags: destroy all flags. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);

/* Basic arithmetic comparison. In most architectures it is implemented as
   a compare operation followed by a sljit_emit_jump. However some
   architectures (i.e: ARM64 or MIPS) may employ special optimizations
   here. It is suggested to use this comparison form when appropriate.
    type must be between SLJIT_EQUAL and SLJIT_SIG_LESS_EQUAL
    type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP

   Flags: may destroy flags. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w);

/* Basic floating point comparison. In most architectures it is implemented as
   a SLJIT_CMP_F32/64 operation (setting appropriate flags) followed by a
   sljit_emit_jump. However some architectures (i.e: MIPS) may employ
   special optimizations here. It is suggested to use this comparison form
   when appropriate.
    type must be between SLJIT_F_EQUAL and SLJIT_ORDERED_LESS_EQUAL
    type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   Flags: destroy flags.
   Note: when an operand is NaN the behaviour depends on the comparison type. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w);

/* Set the destination of the jump to this label. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
/* Set the destination address of the jump to this label. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);

/* Emit an indirect jump or fast call.
   Direct form: set src to SLJIT_IMM() and srcw to the address
   Indirect form: any other valid addressing mode
    type must be between SLJIT_JUMP and SLJIT_FAST_CALL

   Flags: does not modify flags. */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);

/* Emit a C compiler (ABI) compatible function call.
   Direct form: set src to SLJIT_IMM() and srcw to the address
   Indirect form: any other valid addressing mode
    type must be SLJIT_CALL or SLJIT_CALL_REG_ARG
    type can be combined (or'ed) with SLJIT_CALL_RETURN
    arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros

   Flags: destroy all flags. */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);

/* Perform an operation using the conditional flags as the second argument.
   Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL.
   The value represented by the type is 1, if the condition represented
   by the type is fulfilled, and 0 otherwise.

   When op is SLJIT_MOV or SLJIT_MOV32:
     Set dst to the value represented by the type (0 or 1).
     Flags: - (does not modify flags)
   When op is SLJIT_AND, SLJIT_AND32, SLJIT_OR, SLJIT_OR32, SLJIT_XOR, or SLJIT_XOR32
     Performs the binary operation using dst as the first, and the value
     represented by type as the second argument. Result is written into dst.
     Flags: Z (may destroy flags) */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 type);

/* Emit a conditional mov instruction which moves source to destination,
   if the condition is satisfied. Unlike other arithmetic operations this
   instruction does not support memory access.

   type must be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL
   type can be combined (or'ed) with SLJIT_32
   dst_reg must be a valid register
   src must be a valid register or immediate (SLJIT_IMM)

   Flags: - (does not modify flags) */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
	sljit_s32 dst_reg,
	sljit_s32 src, sljit_sw srcw);

/* The following flags are used by sljit_emit_mem(), sljit_emit_mem_update(),
   sljit_emit_fmem(), and sljit_emit_fmem_update(). */

/* Memory load operation. This is the default. */
#define SLJIT_MEM_LOAD		0x000000
/* Memory store operation. */
#define SLJIT_MEM_STORE		0x000200

/* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */

/* Load or stora data from an unaligned (byte aligned) address. */
#define SLJIT_MEM_UNALIGNED	0x000400
/* Load or stora data from a 16 bit aligned address. */
#define SLJIT_MEM_UNALIGNED_16	0x000800
/* Load or stora data from a 32 bit aligned address. */
#define SLJIT_MEM_UNALIGNED_32	0x001000

/* The following flags are used by sljit_emit_mem_update(),
   and sljit_emit_fmem_update(). */

/* Base register is updated before the memory access (default). */
#define SLJIT_MEM_PRE		0x000000
/* Base register is updated after the memory access. */
#define SLJIT_MEM_POST		0x000400

/* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
   Instead the function returns with SLJIT_SUCCESS if the instruction
   form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
   allows runtime checking of available instruction forms. */
#define SLJIT_MEM_SUPP		0x000800

/* The sljit_emit_mem emits instructions for various memory operations:

   When SLJIT_MEM_UNALIGNED / SLJIT_MEM_UNALIGNED_16 /
        SLJIT_MEM_UNALIGNED_32 is set in type argument:
     Emit instructions for unaligned memory loads or stores. When
     SLJIT_UNALIGNED is not defined, the only way to access unaligned
     memory data is using sljit_emit_mem. Otherwise all operations (e.g.
     sljit_emit_op1/2, or sljit_emit_fop1/2) supports unaligned access.
     In general, the performance of unaligned memory accesses are often
     lower than aligned and should be avoided.

   When a pair of registers is passed in reg argument:
     Emit instructions for moving data between a register pair and
     memory. The register pair can be specified by the SLJIT_REG_PAIR
     macro. The first register is loaded from or stored into the
     location specified by the mem/memw arguments, and the end address
     of this operation is the starting address of the data transfer
     between the second register and memory. The type argument must
     be SLJIT_MOV. The SLJIT_MEM_UNALIGNED* options are allowed for
     this operation.

   type must be between SLJIT_MOV and SLJIT_MOV_P and can be
     combined (or'ed) with SLJIT_MEM_* flags
   reg is a register or register pair, which is the source or
     destination of the operation
   mem must be a memory operand

   Flags: - (does not modify flags) */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
	sljit_s32 reg,
	sljit_s32 mem, sljit_sw memw);

/* Emit a single memory load or store with update instruction.
   When the requested instruction form is not supported by the CPU,
   it returns with SLJIT_ERR_UNSUPPORTED instead of emulating the
   instruction. This allows specializing tight loops based on
   the supported instruction forms (see SLJIT_MEM_SUPP flag).
   Absolute address (SLJIT_MEM0) forms are never supported
   and the base (first) register specified by the mem argument
   must not be SLJIT_SP and must also be different from the
   register specified by the reg argument.

   type must be between SLJIT_MOV and SLJIT_MOV_P and can be
     combined (or'ed) with SLJIT_MEM_* flags
   reg is the source or destination register of the operation
   mem must be a memory operand

   Flags: - (does not modify flags) */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem_update(struct sljit_compiler *compiler, sljit_s32 type,
	sljit_s32 reg,
	sljit_s32 mem, sljit_sw memw);

/* Same as sljit_emit_mem except the followings:

   Loading or storing a pair of registers is not supported.

   type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
     combined (or'ed) with SLJIT_MEM_* flags.
   freg is the source or destination floating point register
     of the operation
   mem must be a memory operand

   Flags: - (does not modify flags) */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
	sljit_s32 freg,
	sljit_s32 mem, sljit_sw memw);

/* Same as sljit_emit_mem_update except the followings:

   type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
     combined (or'ed) with SLJIT_MEM_* flags
   freg is the source or destination floating point register
     of the operation
   mem must be a memory operand

   Flags: - (does not modify flags) */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem_update(struct sljit_compiler *compiler, sljit_s32 type,
	sljit_s32 freg,
	sljit_s32 mem, sljit_sw memw);

/* Copies the base address of SLJIT_SP + offset to dst. The offset can
   represent the starting address of a value in the local data (stack).
   The offset is not limited by the local data limits, it can be any value.
   For example if an array of bytes are stored on the stack from
   offset 0x40, and R0 contains the offset of an array item plus 0x120,
   this item can be changed by two SLJIT instructions:

   sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
   sljit_emit_op1(compiler, SLJIT_MOV_U8, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);

   Flags: - (may destroy flags) */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);

/* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
   Flags: - (does not modify flags) */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);

/* Store the value of a label (see: sljit_set_put_label)
   Flags: - (does not modify flags) */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);

/* Set the value stored by put_label to this label. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);

/* After the code generation the address for label, jump and const instructions
   are computed. Since these structures are freed by sljit_free_compiler, the
   addresses must be preserved by the user program elsewere. */
static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }

/* Only the address and executable offset are required to perform dynamic
   code modifications. See sljit_get_executable_offset function. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);

/* --------------------------------------------------------------------- */
/*  CPU specific functions                                               */
/* --------------------------------------------------------------------- */

/* The following function is a helper function for sljit_emit_op_custom.
   It returns with the real machine register index ( >=0 ) of any SLJIT_R,
   SLJIT_S and SLJIT_SP registers.

   Note: it returns with -1 for virtual registers (only on x86-32). */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);

/* The following function is a helper function for sljit_emit_op_custom.
   It returns with the real machine register ( >= 0 ) index of any SLJIT_FR,
   and SLJIT_FS register.

   Note: the index is always an even number on ARM-32, MIPS. */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);

/* Any instruction can be inserted into the instruction stream by
   sljit_emit_op_custom. It has a similar purpose as inline assembly.
   The size parameter must match to the instruction size of the target
   architecture:

         x86: 0 < size <= 15. The instruction argument can be byte aligned.
      Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
              if size == 4, the instruction argument must be 4 byte aligned.
   Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
	void *instruction, sljit_u32 size);

/* Flags were set by a 32 bit operation. */
#define SLJIT_CURRENT_FLAGS_32			SLJIT_32

/* Flags were set by an ADD or ADDC operations. */
#define SLJIT_CURRENT_FLAGS_ADD			0x01
/* Flags were set by a SUB, SUBC, or NEG operation. */
#define SLJIT_CURRENT_FLAGS_SUB			0x02

/* Flags were set by sljit_emit_op2u with SLJIT_SUB opcode.
   Must be combined with SLJIT_CURRENT_FLAGS_SUB. */
#define SLJIT_CURRENT_FLAGS_COMPARE		0x04

/* Define the currently available CPU status flags. It is usually used after
   an sljit_emit_label or sljit_emit_op_custom operations to define which CPU
   status flags are available.

   The current_flags must be a valid combination of SLJIT_SET_* and
   SLJIT_CURRENT_FLAGS_* constants. */

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
	sljit_s32 current_flags);

/* --------------------------------------------------------------------- */
/*  Miscellaneous utility functions                                      */
/* --------------------------------------------------------------------- */

/* Get the human readable name of the platform. Can be useful on platforms
   like ARM, where ARM and Thumb2 functions can be mixed, and it is useful
   to know the type of the code generator. */
SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);

/* Portable helper function to get an offset of a member. */
#define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)

#if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)

/* The sljit_stack structure and its manipulation functions provides
   an implementation for a top-down stack. The stack top is stored
   in the end field of the sljit_stack structure and the stack goes
   down to the min_start field, so the memory region reserved for
   this stack is between min_start (inclusive) and end (exclusive)
   fields. However the application can only use the region between
   start (inclusive) and end (exclusive) fields. The sljit_stack_resize
   function can be used to extend this region up to min_start.

   This feature uses the "address space reserve" feature of modern
   operating systems. Instead of allocating a large memory block
   applications can allocate a small memory region and extend it
   later without moving the content of the memory area. Therefore
   after a successful resize by sljit_stack_resize all pointers into
   this region are still valid.

   Note:
     this structure may not be supported by all operating systems.
     end and max_limit fields are aligned to PAGE_SIZE bytes (usually
         4 Kbyte or more).
     stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */

struct sljit_stack {
	/* User data, anything can be stored here.
	   Initialized to the same value as the end field. */
	sljit_u8 *top;
/* These members are read only. */
	/* End address of the stack */
	sljit_u8 *end;
	/* Current start address of the stack. */
	sljit_u8 *start;
	/* Lowest start address of the stack. */
	sljit_u8 *min_start;
};

/* Allocates a new stack. Returns NULL if unsuccessful.
   Note: see sljit_create_compiler for the explanation of allocator_data. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);

/* Can be used to increase (extend) or decrease (shrink) the stack
   memory area. Returns with new_start if successful and NULL otherwise.
   It always fails if new_start is less than min_start or greater or equal
   than end fields. The fields of the stack are not changed if the returned
   value is NULL (the current memory content is never lost). */
SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);

#endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */

#if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)

/* Get the entry address of a given function (signed, unsigned result). */
#define SLJIT_FUNC_ADDR(func_name)	((sljit_sw)func_name)
#define SLJIT_FUNC_UADDR(func_name)	((sljit_uw)func_name)

#else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */

/* All JIT related code should be placed in the same context (library, binary, etc.). */

/* Get the entry address of a given function (signed, unsigned result). */
#define SLJIT_FUNC_ADDR(func_name)	(*(sljit_sw*)(void*)func_name)
#define SLJIT_FUNC_UADDR(func_name)	(*(sljit_uw*)(void*)func_name)

/* For powerpc64, the function pointers point to a context descriptor. */
struct sljit_function_context {
	sljit_uw addr;
	sljit_uw r2;
	sljit_uw r11;
};

/* Fill the context arguments using the addr and the function.
   If func_ptr is NULL, it will not be set to the address of context
   If addr is NULL, the function address also comes from the func pointer. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_uw addr, void* func);

#endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */

#if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
/* Free unused executable memory. The allocator keeps some free memory
   around to reduce the number of OS executable memory allocations.
   This improves performance since these calls are costly. However
   it is sometimes desired to free all unused memory regions, e.g.
   before the application terminates. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
#endif

#ifdef __cplusplus
} /* extern "C" */
#endif

#endif /* SLJIT_LIR_H_ */