summaryrefslogtreecommitdiff
path: root/thirdparty/opus/silk/mips/NSQ_del_dec_mipsr1.h
blob: f6afd923e87967d60379a0fde4011be25b076e92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Internet Society, IETF or IETF Trust, nor the
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/

#ifndef __NSQ_DEL_DEC_MIPSR1_H__
#define __NSQ_DEL_DEC_MIPSR1_H__

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "main.h"
#include "stack_alloc.h"

#define OVERRIDE_silk_noise_shape_quantizer_del_dec
static inline void silk_noise_shape_quantizer_del_dec(
    silk_nsq_state      *NSQ,                   /* I/O  NSQ state                           */
    NSQ_del_dec_struct  psDelDec[],             /* I/O  Delayed decision states             */
    opus_int            signalType,             /* I    Signal type                         */
    const opus_int32    x_Q10[],                /* I                                        */
    opus_int8           pulses[],               /* O                                        */
    opus_int16          xq[],                   /* O                                        */
    opus_int32          sLTP_Q15[],             /* I/O  LTP filter state                    */
    opus_int32          delayedGain_Q10[],      /* I/O  Gain delay buffer                   */
    const opus_int16    a_Q12[],                /* I    Short term prediction coefs         */
    const opus_int16    b_Q14[],                /* I    Long term prediction coefs          */
    const opus_int16    AR_shp_Q13[],           /* I    Noise shaping coefs                 */
    opus_int            lag,                    /* I    Pitch lag                           */
    opus_int32          HarmShapeFIRPacked_Q14, /* I                                        */
    opus_int            Tilt_Q14,               /* I    Spectral tilt                       */
    opus_int32          LF_shp_Q14,             /* I                                        */
    opus_int32          Gain_Q16,               /* I                                        */
    opus_int            Lambda_Q10,             /* I                                        */
    opus_int            offset_Q10,             /* I                                        */
    opus_int            length,                 /* I    Input length                        */
    opus_int            subfr,                  /* I    Subframe number                     */
    opus_int            shapingLPCOrder,        /* I    Shaping LPC filter order            */
    opus_int            predictLPCOrder,        /* I    Prediction filter order             */
    opus_int            warping_Q16,            /* I                                        */
    opus_int            nStatesDelayedDecision, /* I    Number of states in decision tree   */
    opus_int            *smpl_buf_idx,          /* I    Index to newest samples in buffers  */
    opus_int            decisionDelay           /* I                                        */
)
{
    opus_int     i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx;
    opus_int32   Winner_rand_state;
    opus_int32   LTP_pred_Q14, LPC_pred_Q14, n_AR_Q14, n_LTP_Q14;
    opus_int32   n_LF_Q14, r_Q10, rr_Q10, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10;
    opus_int32   q1_Q0, q1_Q10, q2_Q10, exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
    opus_int32   tmp1, tmp2, sLF_AR_shp_Q14;
    opus_int32   *pred_lag_ptr, *shp_lag_ptr, *psLPC_Q14;
    NSQ_sample_struct  psSampleState[ MAX_DEL_DEC_STATES ][ 2 ];
    NSQ_del_dec_struct *psDD;
    NSQ_sample_struct  *psSS;
    opus_int16 b_Q14_0, b_Q14_1, b_Q14_2, b_Q14_3, b_Q14_4;
    opus_int16 a_Q12_0, a_Q12_1, a_Q12_2, a_Q12_3, a_Q12_4, a_Q12_5, a_Q12_6;
    opus_int16 a_Q12_7, a_Q12_8, a_Q12_9, a_Q12_10, a_Q12_11, a_Q12_12, a_Q12_13;
    opus_int16 a_Q12_14, a_Q12_15;

    opus_int32 cur, prev, next;

    //Intialize b_Q14 variables
    b_Q14_0 = b_Q14[ 0 ];
    b_Q14_1 = b_Q14[ 1 ];
    b_Q14_2 = b_Q14[ 2 ];
    b_Q14_3 = b_Q14[ 3 ];
    b_Q14_4 = b_Q14[ 4 ];

    //Intialize a_Q12 variables
    a_Q12_0 = a_Q12[0];
    a_Q12_1 = a_Q12[1];
    a_Q12_2 = a_Q12[2];
    a_Q12_3 = a_Q12[3];
    a_Q12_4 = a_Q12[4];
    a_Q12_5 = a_Q12[5];
    a_Q12_6 = a_Q12[6];
    a_Q12_7 = a_Q12[7];
    a_Q12_8 = a_Q12[8];
    a_Q12_9 = a_Q12[9];
    a_Q12_10 = a_Q12[10];
    a_Q12_11 = a_Q12[11];
    a_Q12_12 = a_Q12[12];
    a_Q12_13 = a_Q12[13];
    a_Q12_14 = a_Q12[14];
    a_Q12_15 = a_Q12[15];

    long long temp64;

    silk_assert( nStatesDelayedDecision > 0 );

    shp_lag_ptr  = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
    pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
    Gain_Q10     = silk_RSHIFT( Gain_Q16, 6 );

    for( i = 0; i < length; i++ ) {
        /* Perform common calculations used in all states */

        /* Long-term prediction */
        if( signalType == TYPE_VOICED ) {
            /* Unrolled loop */
            /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
            temp64 = __builtin_mips_mult(pred_lag_ptr[ 0 ], b_Q14_0 );
            temp64 = __builtin_mips_madd( temp64, pred_lag_ptr[ -1 ], b_Q14_1 );
            temp64 = __builtin_mips_madd( temp64, pred_lag_ptr[ -2 ], b_Q14_2 );
            temp64 = __builtin_mips_madd( temp64, pred_lag_ptr[ -3 ], b_Q14_3 );
            temp64 = __builtin_mips_madd( temp64, pred_lag_ptr[ -4 ], b_Q14_4 );
            temp64 += 32768;
            LTP_pred_Q14 = __builtin_mips_extr_w(temp64, 16);
            LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 );                          /* Q13 -> Q14 */
            pred_lag_ptr++;
        } else {
            LTP_pred_Q14 = 0;
        }

        /* Long-term shaping */
        if( lag > 0 ) {
            /* Symmetric, packed FIR coefficients */
            n_LTP_Q14 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
            n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ],                      HarmShapeFIRPacked_Q14 );
            n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 );            /* Q12 -> Q14 */
            shp_lag_ptr++;
        } else {
            n_LTP_Q14 = 0;
        }

        for( k = 0; k < nStatesDelayedDecision; k++ ) {
            /* Delayed decision state */
            psDD = &psDelDec[ k ];

            /* Sample state */
            psSS = psSampleState[ k ];

            /* Generate dither */
            psDD->Seed = silk_RAND( psDD->Seed );

            /* Pointer used in short term prediction and shaping */
            psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ];
            /* Short-term prediction */
            silk_assert( predictLPCOrder == 10 || predictLPCOrder == 16 );
            temp64 = __builtin_mips_mult(psLPC_Q14[  0 ], a_Q12_0 );
            temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -1 ], a_Q12_1 );
            temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -2 ], a_Q12_2 );
            temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -3 ], a_Q12_3 );
            temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -4 ], a_Q12_4 );
            temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -5 ], a_Q12_5 );
            temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -6 ], a_Q12_6 );
            temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -7 ], a_Q12_7 );
            temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -8 ], a_Q12_8 );
            temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -9 ], a_Q12_9 );
            if( predictLPCOrder == 16 ) {
                temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -10 ], a_Q12_10 );
                temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -11 ], a_Q12_11 );
                temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -12 ], a_Q12_12 );
                temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -13 ], a_Q12_13 );
                temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -14 ], a_Q12_14 );
                temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -15 ], a_Q12_15 );
            }
            temp64 += 32768;
            LPC_pred_Q14 = __builtin_mips_extr_w(temp64, 16);

            LPC_pred_Q14 = silk_LSHIFT( LPC_pred_Q14, 4 );                              /* Q10 -> Q14 */

            /* Noise shape feedback */
            silk_assert( ( shapingLPCOrder & 1 ) == 0 );   /* check that order is even */
            /* Output of lowpass section */
            tmp2 = silk_SMLAWB( psLPC_Q14[ 0 ], psDD->sAR2_Q14[ 0 ], warping_Q16 );
            /* Output of allpass section */
            tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ 0 ], psDD->sAR2_Q14[ 1 ] - tmp2, warping_Q16 );
            psDD->sAR2_Q14[ 0 ] = tmp2;

            temp64 = __builtin_mips_mult(tmp2, AR_shp_Q13[ 0 ] );

            prev = psDD->sAR2_Q14[ 1 ];

            /* Loop over allpass sections */
            for( j = 2; j < shapingLPCOrder; j += 2 ) {
                cur = psDD->sAR2_Q14[ j ];
                next = psDD->sAR2_Q14[ j+1 ];
                /* Output of allpass section */
                tmp2 = silk_SMLAWB( prev, cur - tmp1, warping_Q16 );
                psDD->sAR2_Q14[ j - 1 ] = tmp1;
                temp64 = __builtin_mips_madd( temp64, tmp1, AR_shp_Q13[ j - 1 ] );
                temp64 = __builtin_mips_madd( temp64, tmp2, AR_shp_Q13[ j ] );
                /* Output of allpass section */
                tmp1 = silk_SMLAWB( cur, next - tmp2, warping_Q16 );
                psDD->sAR2_Q14[ j + 0 ] = tmp2;
                prev = next;
            }
            psDD->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1;
            temp64 = __builtin_mips_madd( temp64, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] );
            temp64 += 32768;
            n_AR_Q14 = __builtin_mips_extr_w(temp64, 16);
            n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 1 );                                      /* Q11 -> Q12 */
            n_AR_Q14 = silk_SMLAWB( n_AR_Q14, psDD->LF_AR_Q14, Tilt_Q14 );              /* Q12 */
            n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 2 );                                      /* Q12 -> Q14 */

            n_LF_Q14 = silk_SMULWB( psDD->Shape_Q14[ *smpl_buf_idx ], LF_shp_Q14 );     /* Q12 */
            n_LF_Q14 = silk_SMLAWT( n_LF_Q14, psDD->LF_AR_Q14, LF_shp_Q14 );            /* Q12 */
            n_LF_Q14 = silk_LSHIFT( n_LF_Q14, 2 );                                      /* Q12 -> Q14 */

            /* Input minus prediction plus noise feedback                       */
            /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP  */
            tmp1 = silk_ADD32( n_AR_Q14, n_LF_Q14 );                                    /* Q14 */
            tmp2 = silk_ADD32( n_LTP_Q14, LPC_pred_Q14 );                               /* Q13 */
            tmp1 = silk_SUB32( tmp2, tmp1 );                                            /* Q13 */
            tmp1 = silk_RSHIFT_ROUND( tmp1, 4 );                                        /* Q10 */

            r_Q10 = silk_SUB32( x_Q10[ i ], tmp1 );                                     /* residual error Q10 */

            /* Flip sign depending on dither */
            if ( psDD->Seed < 0 ) {
                r_Q10 = -r_Q10;
            }
            r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );

            /* Find two quantization level candidates and measure their rate-distortion */
            q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
            q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
            if( q1_Q0 > 0 ) {
                q1_Q10  = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
                q1_Q10  = silk_ADD32( q1_Q10, offset_Q10 );
                q2_Q10  = silk_ADD32( q1_Q10, 1024 );
                rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
                rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
            } else if( q1_Q0 == 0 ) {
                q1_Q10  = offset_Q10;
                q2_Q10  = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
                rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
                rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
            } else if( q1_Q0 == -1 ) {
                q2_Q10  = offset_Q10;
                q1_Q10  = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
                rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
                rd2_Q10 = silk_SMULBB(  q2_Q10, Lambda_Q10 );
            } else {            /* q1_Q0 < -1 */
                q1_Q10  = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
                q1_Q10  = silk_ADD32( q1_Q10, offset_Q10 );
                q2_Q10  = silk_ADD32( q1_Q10, 1024 );
                rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
                rd2_Q10 = silk_SMULBB( -q2_Q10, Lambda_Q10 );
            }
            rr_Q10  = silk_SUB32( r_Q10, q1_Q10 );
            rd1_Q10 = silk_RSHIFT( silk_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 );
            rr_Q10  = silk_SUB32( r_Q10, q2_Q10 );
            rd2_Q10 = silk_RSHIFT( silk_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 );

            if( rd1_Q10 < rd2_Q10 ) {
                psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
                psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
                psSS[ 0 ].Q_Q10  = q1_Q10;
                psSS[ 1 ].Q_Q10  = q2_Q10;
            } else {
                psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
                psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
                psSS[ 0 ].Q_Q10  = q2_Q10;
                psSS[ 1 ].Q_Q10  = q1_Q10;
            }

            /* Update states for best quantization */

            /* Quantized excitation */
            exc_Q14 = silk_LSHIFT32( psSS[ 0 ].Q_Q10, 4 );
            if ( psDD->Seed < 0 ) {
                exc_Q14 = -exc_Q14;
            }

            /* Add predictions */
            LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
            xq_Q14      = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );

            /* Update states */
            sLF_AR_shp_Q14         = silk_SUB32( xq_Q14, n_AR_Q14 );
            psSS[ 0 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 );
            psSS[ 0 ].LF_AR_Q14    = sLF_AR_shp_Q14;
            psSS[ 0 ].LPC_exc_Q14  = LPC_exc_Q14;
            psSS[ 0 ].xq_Q14       = xq_Q14;

            /* Update states for second best quantization */

            /* Quantized excitation */
            exc_Q14 = silk_LSHIFT32( psSS[ 1 ].Q_Q10, 4 );
            if ( psDD->Seed < 0 ) {
                exc_Q14 = -exc_Q14;
            }


            /* Add predictions */
            LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
            xq_Q14      = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );

            /* Update states */
            sLF_AR_shp_Q14         = silk_SUB32( xq_Q14, n_AR_Q14 );
            psSS[ 1 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 );
            psSS[ 1 ].LF_AR_Q14    = sLF_AR_shp_Q14;
            psSS[ 1 ].LPC_exc_Q14  = LPC_exc_Q14;
            psSS[ 1 ].xq_Q14       = xq_Q14;
        }

        *smpl_buf_idx  = ( *smpl_buf_idx - 1 ) & DECISION_DELAY_MASK;                   /* Index to newest samples              */
        last_smple_idx = ( *smpl_buf_idx + decisionDelay ) & DECISION_DELAY_MASK;       /* Index to decisionDelay old samples   */

        /* Find winner */
        RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
        Winner_ind = 0;
        for( k = 1; k < nStatesDelayedDecision; k++ ) {
            if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) {
                RDmin_Q10  = psSampleState[ k ][ 0 ].RD_Q10;
                Winner_ind = k;
            }
        }

        /* Increase RD values of expired states */
        Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ];
        for( k = 0; k < nStatesDelayedDecision; k++ ) {
            if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) {
                psSampleState[ k ][ 0 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 0 ].RD_Q10, silk_int32_MAX >> 4 );
                psSampleState[ k ][ 1 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 1 ].RD_Q10, silk_int32_MAX >> 4 );
                silk_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 );
            }
        }

        /* Find worst in first set and best in second set */
        RDmax_Q10  = psSampleState[ 0 ][ 0 ].RD_Q10;
        RDmin_Q10  = psSampleState[ 0 ][ 1 ].RD_Q10;
        RDmax_ind = 0;
        RDmin_ind = 0;
        for( k = 1; k < nStatesDelayedDecision; k++ ) {
            /* find worst in first set */
            if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) {
                RDmax_Q10  = psSampleState[ k ][ 0 ].RD_Q10;
                RDmax_ind = k;
            }
            /* find best in second set */
            if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) {
                RDmin_Q10  = psSampleState[ k ][ 1 ].RD_Q10;
                RDmin_ind = k;
            }
        }

        /* Replace a state if best from second set outperforms worst in first set */
        if( RDmin_Q10 < RDmax_Q10 ) {
            silk_memcpy( ( (opus_int32 *)&psDelDec[ RDmax_ind ] ) + i,
                         ( (opus_int32 *)&psDelDec[ RDmin_ind ] ) + i, sizeof( NSQ_del_dec_struct ) - i * sizeof( opus_int32) );
            silk_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) );
        }

        /* Write samples from winner to output and long-term filter states */
        psDD = &psDelDec[ Winner_ind ];
        if( subfr > 0 || i >= decisionDelay ) {
            pulses[  i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
            xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
                silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], delayedGain_Q10[ last_smple_idx ] ), 8 ) );
            NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q14[ last_smple_idx ];
            sLTP_Q15[          NSQ->sLTP_buf_idx     - decisionDelay ] = psDD->Pred_Q15[  last_smple_idx ];
        }
        NSQ->sLTP_shp_buf_idx++;
        NSQ->sLTP_buf_idx++;

        /* Update states */
        for( k = 0; k < nStatesDelayedDecision; k++ ) {
            psDD                                     = &psDelDec[ k ];
            psSS                                     = &psSampleState[ k ][ 0 ];
            psDD->LF_AR_Q14                          = psSS->LF_AR_Q14;
            psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14;
            psDD->Xq_Q14[    *smpl_buf_idx ]         = psSS->xq_Q14;
            psDD->Q_Q10[     *smpl_buf_idx ]         = psSS->Q_Q10;
            psDD->Pred_Q15[  *smpl_buf_idx ]         = silk_LSHIFT32( psSS->LPC_exc_Q14, 1 );
            psDD->Shape_Q14[ *smpl_buf_idx ]         = psSS->sLTP_shp_Q14;
            psDD->Seed                               = silk_ADD32_ovflw( psDD->Seed, silk_RSHIFT_ROUND( psSS->Q_Q10, 10 ) );
            psDD->RandState[ *smpl_buf_idx ]         = psDD->Seed;
            psDD->RD_Q10                             = psSS->RD_Q10;
        }
        delayedGain_Q10[     *smpl_buf_idx ]         = Gain_Q10;
    }
    /* Update LPC states */
    for( k = 0; k < nStatesDelayedDecision; k++ ) {
        psDD = &psDelDec[ k ];
        silk_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
    }
}

#endif /* __NSQ_DEL_DEC_MIPSR1_H__ */