summaryrefslogtreecommitdiff
path: root/thirdparty/opus/celt/cwrs.c
blob: a552e4f0fb81d4f6e9d15d86fe409bcdee3b2737 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/* Copyright (c) 2007-2008 CSIRO
   Copyright (c) 2007-2009 Xiph.Org Foundation
   Copyright (c) 2007-2009 Timothy B. Terriberry
   Written by Timothy B. Terriberry and Jean-Marc Valin */
/*
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.

   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "os_support.h"
#include "cwrs.h"
#include "mathops.h"
#include "arch.h"

#ifdef CUSTOM_MODES

/*Guaranteed to return a conservatively large estimate of the binary logarithm
   with frac bits of fractional precision.
  Tested for all possible 32-bit inputs with frac=4, where the maximum
   overestimation is 0.06254243 bits.*/
int log2_frac(opus_uint32 val, int frac)
{
  int l;
  l=EC_ILOG(val);
  if(val&(val-1)){
    /*This is (val>>l-16), but guaranteed to round up, even if adding a bias
       before the shift would cause overflow (e.g., for 0xFFFFxxxx).
       Doesn't work for val=0, but that case fails the test above.*/
    if(l>16)val=((val-1)>>(l-16))+1;
    else val<<=16-l;
    l=(l-1)<<frac;
    /*Note that we always need one iteration, since the rounding up above means
       that we might need to adjust the integer part of the logarithm.*/
    do{
      int b;
      b=(int)(val>>16);
      l+=b<<frac;
      val=(val+b)>>b;
      val=(val*val+0x7FFF)>>15;
    }
    while(frac-->0);
    /*If val is not exactly 0x8000, then we have to round up the remainder.*/
    return l+(val>0x8000);
  }
  /*Exact powers of two require no rounding.*/
  else return (l-1)<<frac;
}
#endif

/*Although derived separately, the pulse vector coding scheme is equivalent to
   a Pyramid Vector Quantizer \cite{Fis86}.
  Some additional notes about an early version appear at
   https://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering
   and the definitions of some terms have evolved since that was written.

  The conversion from a pulse vector to an integer index (encoding) and back
   (decoding) is governed by two related functions, V(N,K) and U(N,K).

  V(N,K) = the number of combinations, with replacement, of N items, taken K
   at a time, when a sign bit is added to each item taken at least once (i.e.,
   the number of N-dimensional unit pulse vectors with K pulses).
  One way to compute this is via
    V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1,
   where choose() is the binomial function.
  A table of values for N<10 and K<10 looks like:
  V[10][10] = {
    {1,  0,   0,    0,    0,     0,     0,      0,      0,       0},
    {1,  2,   2,    2,    2,     2,     2,      2,      2,       2},
    {1,  4,   8,   12,   16,    20,    24,     28,     32,      36},
    {1,  6,  18,   38,   66,   102,   146,    198,    258,     326},
    {1,  8,  32,   88,  192,   360,   608,    952,   1408,    1992},
    {1, 10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290},
    {1, 12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436},
    {1, 14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598},
    {1, 16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688},
    {1, 18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146}
  };

  U(N,K) = the number of such combinations wherein N-1 objects are taken at
   most K-1 at a time.
  This is given by
    U(N,K) = sum(k=0...K-1,V(N-1,k))
           = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0.
  The latter expression also makes clear that U(N,K) is half the number of such
   combinations wherein the first object is taken at least once.
  Although it may not be clear from either of these definitions, U(N,K) is the
   natural function to work with when enumerating the pulse vector codebooks,
   not V(N,K).
  U(N,K) is not well-defined for N=0, but with the extension
    U(0,K) = K>0 ? 0 : 1,
   the function becomes symmetric: U(N,K) = U(K,N), with a similar table:
  U[10][10] = {
    {1, 0,  0,   0,    0,    0,     0,     0,      0,      0},
    {0, 1,  1,   1,    1,    1,     1,     1,      1,      1},
    {0, 1,  3,   5,    7,    9,    11,    13,     15,     17},
    {0, 1,  5,  13,   25,   41,    61,    85,    113,    145},
    {0, 1,  7,  25,   63,  129,   231,   377,    575,    833},
    {0, 1,  9,  41,  129,  321,   681,  1289,   2241,   3649},
    {0, 1, 11,  61,  231,  681,  1683,  3653,   7183,  13073},
    {0, 1, 13,  85,  377, 1289,  3653,  8989,  19825,  40081},
    {0, 1, 15, 113,  575, 2241,  7183, 19825,  48639, 108545},
    {0, 1, 17, 145,  833, 3649, 13073, 40081, 108545, 265729}
  };

  With this extension, V(N,K) may be written in terms of U(N,K):
    V(N,K) = U(N,K) + U(N,K+1)
   for all N>=0, K>=0.
  Thus U(N,K+1) represents the number of combinations where the first element
   is positive or zero, and U(N,K) represents the number of combinations where
   it is negative.
  With a large enough table of U(N,K) values, we could write O(N) encoding
   and O(min(N*log(K),N+K)) decoding routines, but such a table would be
   prohibitively large for small embedded devices (K may be as large as 32767
   for small N, and N may be as large as 200).

  Both functions obey the same recurrence relation:
    V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1),
    U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1),
   for all N>0, K>0, with different initial conditions at N=0 or K=0.
  This allows us to construct a row of one of the tables above given the
   previous row or the next row.
  Thus we can derive O(NK) encoding and decoding routines with O(K) memory
   using only addition and subtraction.

  When encoding, we build up from the U(2,K) row and work our way forwards.
  When decoding, we need to start at the U(N,K) row and work our way backwards,
   which requires a means of computing U(N,K).
  U(N,K) may be computed from two previous values with the same N:
    U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2)
   for all N>1, and since U(N,K) is symmetric, a similar relation holds for two
   previous values with the same K:
    U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K)
   for all K>1.
  This allows us to construct an arbitrary row of the U(N,K) table by starting
   with the first two values, which are constants.
  This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K)
   multiplications.
  Similar relations can be derived for V(N,K), but are not used here.

  For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree
   polynomial for fixed N.
  The first few are
    U(1,K) = 1,
    U(2,K) = 2*K-1,
    U(3,K) = (2*K-2)*K+1,
    U(4,K) = (((4*K-6)*K+8)*K-3)/3,
    U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3,
   and
    V(1,K) = 2,
    V(2,K) = 4*K,
    V(3,K) = 4*K*K+2,
    V(4,K) = 8*(K*K+2)*K/3,
    V(5,K) = ((4*K*K+20)*K*K+6)/3,
   for all K>0.
  This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for
   small N (and indeed decoding is also O(N) for N<3).

  @ARTICLE{Fis86,
    author="Thomas R. Fischer",
    title="A Pyramid Vector Quantizer",
    journal="IEEE Transactions on Information Theory",
    volume="IT-32",
    number=4,
    pages="568--583",
    month=Jul,
    year=1986
  }*/

#if !defined(SMALL_FOOTPRINT)

/*U(N,K) = U(K,N) := N>0?K>0?U(N-1,K)+U(N,K-1)+U(N-1,K-1):0:K>0?1:0*/
# define CELT_PVQ_U(_n,_k) (CELT_PVQ_U_ROW[IMIN(_n,_k)][IMAX(_n,_k)])
/*V(N,K) := U(N,K)+U(N,K+1) = the number of PVQ codewords for a band of size N
   with K pulses allocated to it.*/
# define CELT_PVQ_V(_n,_k) (CELT_PVQ_U(_n,_k)+CELT_PVQ_U(_n,(_k)+1))

/*For each V(N,K) supported, we will access element U(min(N,K+1),max(N,K+1)).
  Thus, the number of entries in row I is the larger of the maximum number of
   pulses we will ever allocate for a given N=I (K=128, or however many fit in
   32 bits, whichever is smaller), plus one, and the maximum N for which
   K=I-1 pulses fit in 32 bits.
  The largest band size in an Opus Custom mode is 208.
  Otherwise, we can limit things to the set of N which can be achieved by
   splitting a band from a standard Opus mode: 176, 144, 96, 88, 72, 64, 48,
   44, 36, 32, 24, 22, 18, 16, 8, 4, 2).*/
#if defined(CUSTOM_MODES)
static const opus_uint32 CELT_PVQ_U_DATA[1488]={
#else
static const opus_uint32 CELT_PVQ_U_DATA[1272]={
#endif
  /*N=0, K=0...176:*/
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
#if defined(CUSTOM_MODES)
  /*...208:*/
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0,
#endif
  /*N=1, K=1...176:*/
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
#if defined(CUSTOM_MODES)
  /*...208:*/
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1,
#endif
  /*N=2, K=2...176:*/
  3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
  43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
  81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
  115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
  145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
  175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
  205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
  235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
  265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
  295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
  325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
#if defined(CUSTOM_MODES)
  /*...208:*/
  353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381,
  383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411,
  413, 415,
#endif
  /*N=3, K=3...176:*/
  13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
  685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
  1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
  3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
  6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
  9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
  13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
  17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
  21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
  26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
  31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
  37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
  43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
  50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
  57461, 58141, 58825, 59513, 60205, 60901, 61601,
#if defined(CUSTOM_MODES)
  /*...208:*/
  62305, 63013, 63725, 64441, 65161, 65885, 66613, 67345, 68081, 68821, 69565,
  70313, 71065, 71821, 72581, 73345, 74113, 74885, 75661, 76441, 77225, 78013,
  78805, 79601, 80401, 81205, 82013, 82825, 83641, 84461, 85285, 86113,
#endif
  /*N=4, K=4...176:*/
  63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
  7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
  30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
  82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
  161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
  267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
  410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
  597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
  833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
  1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
  1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
  1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
  2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
  2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
  3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
  3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
  4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
  5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
  6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
  7085049, 7207551,
#if defined(CUSTOM_MODES)
  /*...208:*/
  7331457, 7456775, 7583513, 7711679, 7841281, 7972327, 8104825, 8238783,
  8374209, 8511111, 8649497, 8789375, 8930753, 9073639, 9218041, 9363967,
  9511425, 9660423, 9810969, 9963071, 10116737, 10271975, 10428793, 10587199,
  10747201, 10908807, 11072025, 11236863, 11403329, 11571431, 11741177,
  11912575,
#endif
  /*N=5, K=5...176:*/
  321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
  50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
  330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
  1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
  2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
  4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
  8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
  13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
  20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
  29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
  40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
  55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
  73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
  95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
  122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
  155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
  193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
  238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
  290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
  351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
  420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
  500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
  590359041, 604167209, 618216201, 632508801,
#if defined(CUSTOM_MODES)
  /*...208:*/
  647047809, 661836041, 676876329, 692171521, 707724481, 723538089, 739615241,
  755958849, 772571841, 789457161, 806617769, 824056641, 841776769, 859781161,
  878072841, 896654849, 915530241, 934702089, 954173481, 973947521, 994027329,
  1014416041, 1035116809, 1056132801, 1077467201, 1099123209, 1121104041,
  1143412929, 1166053121, 1189027881, 1212340489, 1235994241,
#endif
  /*N=6, K=6...96:*/
  1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
  335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
  2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
  11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
  29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
  64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
  128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
  235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
  402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
  655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
  1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
  1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
  2011371957, 2120032959,
#if defined(CUSTOM_MODES)
  /*...109:*/
  2233340609U, 2351442379U, 2474488829U, 2602633639U, 2736033641U, 2874848851U,
  3019242501U, 3169381071U, 3325434321U, 3487575323U, 3655980493U, 3830829623U,
  4012305913U,
#endif
  /*N=7, K=7...54*/
  8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
  1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
  19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
  88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
  292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
  793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
  1667010073, 1870535785, 2094367717,
#if defined(CUSTOM_MODES)
  /*...60:*/
  2340095869U, 2609401873U, 2904062449U, 3225952925U, 3577050821U, 3959439497U,
#endif
  /*N=8, K=8...37*/
  48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
  9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
  104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
  638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
  2229491905U,
#if defined(CUSTOM_MODES)
  /*...40:*/
  2691463695U, 3233240945U, 3866006015U,
#endif
  /*N=9, K=9...28:*/
  265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
  39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
  628496897, 872893441, 1196924561, 1621925137, 2173806145U,
#if defined(CUSTOM_MODES)
  /*...29:*/
  2883810113U,
#endif
  /*N=10, K=10...24:*/
  1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
  254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629U,
  3375210671U,
  /*N=11, K=11...19:*/
  8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
  948062325, 1616336765,
#if defined(CUSTOM_MODES)
  /*...20:*/
  2684641785U,
#endif
  /*N=12, K=12...18:*/
  45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
  3248227095U,
  /*N=13, K=13...16:*/
  251595969, 579168825, 1267854873, 2653649025U,
  /*N=14, K=14:*/
  1409933619
};

#if defined(CUSTOM_MODES)
static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
  CELT_PVQ_U_DATA+   0,CELT_PVQ_U_DATA+ 208,CELT_PVQ_U_DATA+ 415,
  CELT_PVQ_U_DATA+ 621,CELT_PVQ_U_DATA+ 826,CELT_PVQ_U_DATA+1030,
  CELT_PVQ_U_DATA+1233,CELT_PVQ_U_DATA+1336,CELT_PVQ_U_DATA+1389,
  CELT_PVQ_U_DATA+1421,CELT_PVQ_U_DATA+1441,CELT_PVQ_U_DATA+1455,
  CELT_PVQ_U_DATA+1464,CELT_PVQ_U_DATA+1470,CELT_PVQ_U_DATA+1473
};
#else
static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
  CELT_PVQ_U_DATA+   0,CELT_PVQ_U_DATA+ 176,CELT_PVQ_U_DATA+ 351,
  CELT_PVQ_U_DATA+ 525,CELT_PVQ_U_DATA+ 698,CELT_PVQ_U_DATA+ 870,
  CELT_PVQ_U_DATA+1041,CELT_PVQ_U_DATA+1131,CELT_PVQ_U_DATA+1178,
  CELT_PVQ_U_DATA+1207,CELT_PVQ_U_DATA+1226,CELT_PVQ_U_DATA+1240,
  CELT_PVQ_U_DATA+1248,CELT_PVQ_U_DATA+1254,CELT_PVQ_U_DATA+1257
};
#endif

#if defined(CUSTOM_MODES)
void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
  int k;
  /*_maxk==0 => there's nothing to do.*/
  celt_assert(_maxk>0);
  _bits[0]=0;
  for(k=1;k<=_maxk;k++)_bits[k]=log2_frac(CELT_PVQ_V(_n,k),_frac);
}
#endif

static opus_uint32 icwrs(int _n,const int *_y){
  opus_uint32 i;
  int         j;
  int         k;
  celt_assert(_n>=2);
  j=_n-1;
  i=_y[j]<0;
  k=abs(_y[j]);
  do{
    j--;
    i+=CELT_PVQ_U(_n-j,k);
    k+=abs(_y[j]);
    if(_y[j]<0)i+=CELT_PVQ_U(_n-j,k+1);
  }
  while(j>0);
  return i;
}

void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
  celt_assert(_k>0);
  ec_enc_uint(_enc,icwrs(_n,_y),CELT_PVQ_V(_n,_k));
}

static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){
  opus_uint32 p;
  int         s;
  int         k0;
  opus_int16  val;
  opus_val32  yy=0;
  celt_assert(_k>0);
  celt_assert(_n>1);
  while(_n>2){
    opus_uint32 q;
    /*Lots of pulses case:*/
    if(_k>=_n){
      const opus_uint32 *row;
      row=CELT_PVQ_U_ROW[_n];
      /*Are the pulses in this dimension negative?*/
      p=row[_k+1];
      s=-(_i>=p);
      _i-=p&s;
      /*Count how many pulses were placed in this dimension.*/
      k0=_k;
      q=row[_n];
      if(q>_i){
        celt_sig_assert(p>q);
        _k=_n;
        do p=CELT_PVQ_U_ROW[--_k][_n];
        while(p>_i);
      }
      else for(p=row[_k];p>_i;p=row[_k])_k--;
      _i-=p;
      val=(k0-_k+s)^s;
      *_y++=val;
      yy=MAC16_16(yy,val,val);
    }
    /*Lots of dimensions case:*/
    else{
      /*Are there any pulses in this dimension at all?*/
      p=CELT_PVQ_U_ROW[_k][_n];
      q=CELT_PVQ_U_ROW[_k+1][_n];
      if(p<=_i&&_i<q){
        _i-=p;
        *_y++=0;
      }
      else{
        /*Are the pulses in this dimension negative?*/
        s=-(_i>=q);
        _i-=q&s;
        /*Count how many pulses were placed in this dimension.*/
        k0=_k;
        do p=CELT_PVQ_U_ROW[--_k][_n];
        while(p>_i);
        _i-=p;
        val=(k0-_k+s)^s;
        *_y++=val;
        yy=MAC16_16(yy,val,val);
      }
    }
    _n--;
  }
  /*_n==2*/
  p=2*_k+1;
  s=-(_i>=p);
  _i-=p&s;
  k0=_k;
  _k=(_i+1)>>1;
  if(_k)_i-=2*_k-1;
  val=(k0-_k+s)^s;
  *_y++=val;
  yy=MAC16_16(yy,val,val);
  /*_n==1*/
  s=-(int)_i;
  val=(_k+s)^s;
  *_y=val;
  yy=MAC16_16(yy,val,val);
  return yy;
}

opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
  return cwrsi(_n,_k,ec_dec_uint(_dec,CELT_PVQ_V(_n,_k)),_y);
}

#else /* SMALL_FOOTPRINT */

/*Computes the next row/column of any recurrence that obeys the relation
   u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1].
  _ui0 is the base case for the new row/column.*/
static OPUS_INLINE void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){
  opus_uint32 ui1;
  unsigned      j;
  /*This do-while will overrun the array if we don't have storage for at least
     2 values.*/
  j=1; do {
    ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0);
    _ui[j-1]=_ui0;
    _ui0=ui1;
  } while (++j<_len);
  _ui[j-1]=_ui0;
}

/*Computes the previous row/column of any recurrence that obeys the relation
   u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1].
  _ui0 is the base case for the new row/column.*/
static OPUS_INLINE void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){
  opus_uint32 ui1;
  unsigned      j;
  /*This do-while will overrun the array if we don't have storage for at least
     2 values.*/
  j=1; do {
    ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0);
    _ui[j-1]=_ui0;
    _ui0=ui1;
  } while (++j<_n);
  _ui[j-1]=_ui0;
}

/*Compute V(_n,_k), as well as U(_n,0..._k+1).
  _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/
static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){
  opus_uint32 um2;
  unsigned      len;
  unsigned      k;
  len=_k+2;
  /*We require storage at least 3 values (e.g., _k>0).*/
  celt_assert(len>=3);
  _u[0]=0;
  _u[1]=um2=1;
  /*If _n==0, _u[0] should be 1 and the rest should be 0.*/
  /*If _n==1, _u[i] should be 1 for i>1.*/
  celt_assert(_n>=2);
  /*If _k==0, the following do-while loop will overflow the buffer.*/
  celt_assert(_k>0);
  k=2;
  do _u[k]=(k<<1)-1;
  while(++k<len);
  for(k=2;k<_n;k++)unext(_u+1,_k+1,1);
  return _u[_k]+_u[_k+1];
}

/*Returns the _i'th combination of _k elements chosen from a set of size _n
   with associated sign bits.
  _y: Returns the vector of pulses.
  _u: Must contain entries [0..._k+1] of row _n of U() on input.
      Its contents will be destructively modified.*/
static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){
  int j;
  opus_int16 val;
  opus_val32 yy=0;
  celt_assert(_n>0);
  j=0;
  do{
    opus_uint32 p;
    int           s;
    int           yj;
    p=_u[_k+1];
    s=-(_i>=p);
    _i-=p&s;
    yj=_k;
    p=_u[_k];
    while(p>_i)p=_u[--_k];
    _i-=p;
    yj-=_k;
    val=(yj+s)^s;
    _y[j]=val;
    yy=MAC16_16(yy,val,val);
    uprev(_u,_k+2,0);
  }
  while(++j<_n);
  return yy;
}

/*Returns the index of the given combination of K elements chosen from a set
   of size 1 with associated sign bits.
  _y: The vector of pulses, whose sum of absolute values is K.
  _k: Returns K.*/
static OPUS_INLINE opus_uint32 icwrs1(const int *_y,int *_k){
  *_k=abs(_y[0]);
  return _y[0]<0;
}

/*Returns the index of the given combination of K elements chosen from a set
   of size _n with associated sign bits.
  _y:  The vector of pulses, whose sum of absolute values must be _k.
  _nc: Returns V(_n,_k).*/
static OPUS_INLINE opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y,
 opus_uint32 *_u){
  opus_uint32 i;
  int         j;
  int         k;
  /*We can't unroll the first two iterations of the loop unless _n>=2.*/
  celt_assert(_n>=2);
  _u[0]=0;
  for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1;
  i=icwrs1(_y+_n-1,&k);
  j=_n-2;
  i+=_u[k];
  k+=abs(_y[j]);
  if(_y[j]<0)i+=_u[k+1];
  while(j-->0){
    unext(_u,_k+2,0);
    i+=_u[k];
    k+=abs(_y[j]);
    if(_y[j]<0)i+=_u[k+1];
  }
  *_nc=_u[k]+_u[k+1];
  return i;
}

#ifdef CUSTOM_MODES
void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
  int k;
  /*_maxk==0 => there's nothing to do.*/
  celt_assert(_maxk>0);
  _bits[0]=0;
  if (_n==1)
  {
    for (k=1;k<=_maxk;k++)
      _bits[k] = 1<<_frac;
  }
  else {
    VARDECL(opus_uint32,u);
    SAVE_STACK;
    ALLOC(u,_maxk+2U,opus_uint32);
    ncwrs_urow(_n,_maxk,u);
    for(k=1;k<=_maxk;k++)
      _bits[k]=log2_frac(u[k]+u[k+1],_frac);
    RESTORE_STACK;
  }
}
#endif /* CUSTOM_MODES */

void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
  opus_uint32 i;
  VARDECL(opus_uint32,u);
  opus_uint32 nc;
  SAVE_STACK;
  celt_assert(_k>0);
  ALLOC(u,_k+2U,opus_uint32);
  i=icwrs(_n,_k,&nc,_y,u);
  ec_enc_uint(_enc,i,nc);
  RESTORE_STACK;
}

opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
  VARDECL(opus_uint32,u);
  int ret;
  SAVE_STACK;
  celt_assert(_k>0);
  ALLOC(u,_k+2U,opus_uint32);
  ret = cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u);
  RESTORE_STACK;
  return ret;
}

#endif /* SMALL_FOOTPRINT */