summaryrefslogtreecommitdiff
path: root/thirdparty/opus/analysis.c
blob: cb46dec582d2eccad83914b7071a84f8876af985 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/* Copyright (c) 2011 Xiph.Org Foundation
   Written by Jean-Marc Valin */
/*
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.

   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#define ANALYSIS_C

#include <stdio.h>

#include "mathops.h"
#include "kiss_fft.h"
#include "celt.h"
#include "modes.h"
#include "arch.h"
#include "quant_bands.h"
#include "analysis.h"
#include "mlp.h"
#include "stack_alloc.h"
#include "float_cast.h"

#ifndef M_PI
#define M_PI 3.141592653
#endif

#ifndef DISABLE_FLOAT_API

#define TRANSITION_PENALTY 10

static const float dct_table[128] = {
        0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
        0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
        0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f,
       -0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f,
        0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f,
       -0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f,
        0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f,
        0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f,
        0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
        0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
        0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f,
       -0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f,
        0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f,
       -0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f,
        0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f,
        0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f,
};

static const float analysis_window[240] = {
      0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f,
      0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f,
      0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f,
      0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f,
      0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f,
      0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f,
      0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f,
      0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f,
      0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f,
      0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f,
      0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f,
      0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f,
      0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f,
      0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f,
      0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f,
      0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f,
      0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f,
      0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f,
      0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f,
      0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f,
      0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f,
      0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f,
      0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f,
      0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f,
      0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f,
      0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f,
      0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f,
      0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f,
      0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f,
      0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f,
};

static const int tbands[NB_TBANDS+1] = {
      4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240
};

#define NB_TONAL_SKIP_BANDS 9

static opus_val32 silk_resampler_down2_hp(
    opus_val32                  *S,                 /* I/O  State vector [ 2 ]                                          */
    opus_val32                  *out,               /* O    Output signal [ floor(len/2) ]                              */
    const opus_val32            *in,                /* I    Input signal [ len ]                                        */
    int                         inLen               /* I    Number of input samples                                     */
)
{
    int k, len2 = inLen/2;
    opus_val32 in32, out32, out32_hp, Y, X;
    opus_val64 hp_ener = 0;
    /* Internal variables and state are in Q10 format */
    for( k = 0; k < len2; k++ ) {
        /* Convert to Q10 */
        in32 = in[ 2 * k ];

        /* All-pass section for even input sample */
        Y      = SUB32( in32, S[ 0 ] );
        X      = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y);
        out32  = ADD32( S[ 0 ], X );
        S[ 0 ] = ADD32( in32, X );
        out32_hp = out32;
        /* Convert to Q10 */
        in32 = in[ 2 * k + 1 ];

        /* All-pass section for odd input sample, and add to output of previous section */
        Y      = SUB32( in32, S[ 1 ] );
        X      = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
        out32  = ADD32( out32, S[ 1 ] );
        out32  = ADD32( out32, X );
        S[ 1 ] = ADD32( in32, X );

        Y      = SUB32( -in32, S[ 2 ] );
        X      = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
        out32_hp  = ADD32( out32_hp, S[ 2 ] );
        out32_hp  = ADD32( out32_hp, X );
        S[ 2 ] = ADD32( -in32, X );

        hp_ener += out32_hp*(opus_val64)out32_hp;
        /* Add, convert back to int16 and store to output */
        out[ k ] = HALF32(out32);
    }
#ifdef FIXED_POINT
    /* len2 can be up to 480, so we shift by 8 more to make it fit. */
    hp_ener = hp_ener >> (2*SIG_SHIFT + 8);
#endif
    return (opus_val32)hp_ener;
}

static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs)
{
   VARDECL(opus_val32, tmp);
   opus_val32 scale;
   int j;
   opus_val32 ret = 0;
   SAVE_STACK;

   if (subframe==0) return 0;
   if (Fs == 48000)
   {
      subframe *= 2;
      offset *= 2;
   } else if (Fs == 16000) {
      subframe = subframe*2/3;
      offset = offset*2/3;
   }
   ALLOC(tmp, subframe, opus_val32);

   downmix(_x, tmp, subframe, offset, c1, c2, C);
#ifdef FIXED_POINT
   scale = (1<<SIG_SHIFT);
#else
   scale = 1.f/32768;
#endif
   if (c2==-2)
      scale /= C;
   else if (c2>-1)
      scale /= 2;
   for (j=0;j<subframe;j++)
      tmp[j] *= scale;
   if (Fs == 48000)
   {
      ret = silk_resampler_down2_hp(S, y, tmp, subframe);
   } else if (Fs == 24000) {
      OPUS_COPY(y, tmp, subframe);
   } else if (Fs == 16000) {
      VARDECL(opus_val32, tmp3x);
      ALLOC(tmp3x, 3*subframe, opus_val32);
      /* Don't do this at home! This resampler is horrible and it's only (barely)
         usable for the purpose of the analysis because we don't care about all
         the aliasing between 8 kHz and 12 kHz. */
      for (j=0;j<subframe;j++)
      {
         tmp3x[3*j] = tmp[j];
         tmp3x[3*j+1] = tmp[j];
         tmp3x[3*j+2] = tmp[j];
      }
      silk_resampler_down2_hp(S, y, tmp3x, 3*subframe);
   }
   RESTORE_STACK;
   return ret;
}

void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs)
{
  /* Initialize reusable fields. */
  tonal->arch = opus_select_arch();
  tonal->Fs = Fs;
  /* Clear remaining fields. */
  tonality_analysis_reset(tonal);
}

void tonality_analysis_reset(TonalityAnalysisState *tonal)
{
  /* Clear non-reusable fields. */
  char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START;
  OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal));
}

void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len)
{
   int pos;
   int curr_lookahead;
   float tonality_max;
   float tonality_avg;
   int tonality_count;
   int i;
   int pos0;
   float prob_avg;
   float prob_count;
   float prob_min, prob_max;
   float vad_prob;
   int mpos, vpos;
   int bandwidth_span;

   pos = tonal->read_pos;
   curr_lookahead = tonal->write_pos-tonal->read_pos;
   if (curr_lookahead<0)
      curr_lookahead += DETECT_SIZE;

   tonal->read_subframe += len/(tonal->Fs/400);
   while (tonal->read_subframe>=8)
   {
      tonal->read_subframe -= 8;
      tonal->read_pos++;
   }
   if (tonal->read_pos>=DETECT_SIZE)
      tonal->read_pos-=DETECT_SIZE;

   /* On long frames, look at the second analysis window rather than the first. */
   if (len > tonal->Fs/50 && pos != tonal->write_pos)
   {
      pos++;
      if (pos==DETECT_SIZE)
         pos=0;
   }
   if (pos == tonal->write_pos)
      pos--;
   if (pos<0)
      pos = DETECT_SIZE-1;
   pos0 = pos;
   OPUS_COPY(info_out, &tonal->info[pos], 1);
   if (!info_out->valid)
      return;
   tonality_max = tonality_avg = info_out->tonality;
   tonality_count = 1;
   /* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */
   bandwidth_span = 6;
   /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */
   for (i=0;i<3;i++)
   {
      pos++;
      if (pos==DETECT_SIZE)
         pos = 0;
      if (pos == tonal->write_pos)
         break;
      tonality_max = MAX32(tonality_max, tonal->info[pos].tonality);
      tonality_avg += tonal->info[pos].tonality;
      tonality_count++;
      info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
      bandwidth_span--;
   }
   pos = pos0;
   /* Look back in time to see if any has a wider bandwidth than the current frame. */
   for (i=0;i<bandwidth_span;i++)
   {
      pos--;
      if (pos < 0)
         pos = DETECT_SIZE-1;
      if (pos == tonal->write_pos)
         break;
      info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
   }
   info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f);

   mpos = vpos = pos0;
   /* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and
      ~1 frame delay in the VAD prob. */
   if (curr_lookahead > 15)
   {
      mpos += 5;
      if (mpos>=DETECT_SIZE)
         mpos -= DETECT_SIZE;
      vpos += 1;
      if (vpos>=DETECT_SIZE)
         vpos -= DETECT_SIZE;
   }

   /* The following calculations attempt to minimize a "badness function"
      for the transition. When switching from speech to music, the badness
      of switching at frame k is
      b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
      where
      v_i is the activity probability (VAD) at frame i,
      p_i is the music probability at frame i
      T is the probability threshold for switching
      S is the penalty for switching during active audio rather than silence
      the current frame has index i=0

      Rather than apply badness to directly decide when to switch, what we compute
      instead is the threshold for which the optimal switching point is now. When
      considering whether to switch now (frame 0) or at frame k, we have:
      S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
      which gives us:
      T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i )
      We take the min threshold across all positive values of k (up to the maximum
      amount of lookahead we have) to give us the threshold for which the current
      frame is the optimal switch point.

      The last step is that we need to consider whether we want to switch at all.
      For that we use the average of the music probability over the entire window.
      If the threshold is higher than that average we're not going to
      switch, so we compute a min with the average as well. The result of all these
      min operations is music_prob_min, which gives the threshold for switching to music
      if we're currently encoding for speech.

      We do the exact opposite to compute music_prob_max which is used for switching
      from music to speech.
    */
   prob_min = 1.f;
   prob_max = 0.f;
   vad_prob = tonal->info[vpos].activity_probability;
   prob_count = MAX16(.1f, vad_prob);
   prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob;
   while (1)
   {
      float pos_vad;
      mpos++;
      if (mpos==DETECT_SIZE)
         mpos = 0;
      if (mpos == tonal->write_pos)
         break;
      vpos++;
      if (vpos==DETECT_SIZE)
         vpos = 0;
      if (vpos == tonal->write_pos)
         break;
      pos_vad = tonal->info[vpos].activity_probability;
      prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min);
      prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max);
      prob_count += MAX16(.1f, pos_vad);
      prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob;
   }
   info_out->music_prob = prob_avg/prob_count;
   prob_min = MIN16(prob_avg/prob_count, prob_min);
   prob_max = MAX16(prob_avg/prob_count, prob_max);
   prob_min = MAX16(prob_min, 0.f);
   prob_max = MIN16(prob_max, 1.f);

   /* If we don't have enough look-ahead, do our best to make a decent decision. */
   if (curr_lookahead < 10)
   {
      float pmin, pmax;
      pmin = prob_min;
      pmax = prob_max;
      pos = pos0;
      /* Look for min/max in the past. */
      for (i=0;i<IMIN(tonal->count-1, 15);i++)
      {
         pos--;
         if (pos < 0)
            pos = DETECT_SIZE-1;
         pmin = MIN16(pmin, tonal->info[pos].music_prob);
         pmax = MAX16(pmax, tonal->info[pos].music_prob);
      }
      /* Bias against switching on active audio. */
      pmin = MAX16(0.f, pmin - .1f*vad_prob);
      pmax = MIN16(1.f, pmax + .1f*vad_prob);
      prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min);
      prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max);
   }
   info_out->music_prob_min = prob_min;
   info_out->music_prob_max = prob_max;

   /* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */
}

static const float std_feature_bias[9] = {
      5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f,
      2.163313f, 1.260756f, 1.116868f, 1.918795f
};

#define LEAKAGE_OFFSET 2.5f
#define LEAKAGE_SLOPE 2.f

#ifdef FIXED_POINT
/* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to
   compensate for that in the energy. */
#define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT)))
#define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e))
#else
#define SCALE_ENER(e) (e)
#endif

#ifdef FIXED_POINT
static int is_digital_silence32(const opus_val32* pcm, int frame_size, int channels, int lsb_depth)
{
   int silence = 0;
   opus_val32 sample_max = 0;
#ifdef MLP_TRAINING
   return 0;
#endif
   sample_max = celt_maxabs32(pcm, frame_size*channels);

   silence = (sample_max == 0);
   (void)lsb_depth;
   return silence;
}
#else
#define is_digital_silence32(pcm, frame_size, channels, lsb_depth) is_digital_silence(pcm, frame_size, channels, lsb_depth)
#endif

static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix)
{
    int i, b;
    const kiss_fft_state *kfft;
    VARDECL(kiss_fft_cpx, in);
    VARDECL(kiss_fft_cpx, out);
    int N = 480, N2=240;
    float * OPUS_RESTRICT A = tonal->angle;
    float * OPUS_RESTRICT dA = tonal->d_angle;
    float * OPUS_RESTRICT d2A = tonal->d2_angle;
    VARDECL(float, tonality);
    VARDECL(float, noisiness);
    float band_tonality[NB_TBANDS];
    float logE[NB_TBANDS];
    float BFCC[8];
    float features[25];
    float frame_tonality;
    float max_frame_tonality;
    /*float tw_sum=0;*/
    float frame_noisiness;
    const float pi4 = (float)(M_PI*M_PI*M_PI*M_PI);
    float slope=0;
    float frame_stationarity;
    float relativeE;
    float frame_probs[2];
    float alpha, alphaE, alphaE2;
    float frame_loudness;
    float bandwidth_mask;
    int is_masked[NB_TBANDS+1];
    int bandwidth=0;
    float maxE = 0;
    float noise_floor;
    int remaining;
    AnalysisInfo *info;
    float hp_ener;
    float tonality2[240];
    float midE[8];
    float spec_variability=0;
    float band_log2[NB_TBANDS+1];
    float leakage_from[NB_TBANDS+1];
    float leakage_to[NB_TBANDS+1];
    float layer_out[MAX_NEURONS];
    float below_max_pitch;
    float above_max_pitch;
    int is_silence;
    SAVE_STACK;

    if (!tonal->initialized)
    {
       tonal->mem_fill = 240;
       tonal->initialized = 1;
    }
    alpha = 1.f/IMIN(10, 1+tonal->count);
    alphaE = 1.f/IMIN(25, 1+tonal->count);
    /* Noise floor related decay for bandwidth detection: -2.2 dB/second */
    alphaE2 = 1.f/IMIN(100, 1+tonal->count);
    if (tonal->count <= 1) alphaE2 = 1;

    if (tonal->Fs == 48000)
    {
       /* len and offset are now at 24 kHz. */
       len/= 2;
       offset /= 2;
    } else if (tonal->Fs == 16000) {
       len = 3*len/2;
       offset = 3*offset/2;
    }

    kfft = celt_mode->mdct.kfft[0];
    tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x,
          &tonal->inmem[tonal->mem_fill], tonal->downmix_state,
          IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs);
    if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE)
    {
       tonal->mem_fill += len;
       /* Don't have enough to update the analysis */
       RESTORE_STACK;
       return;
    }
    hp_ener = tonal->hp_ener_accum;
    info = &tonal->info[tonal->write_pos++];
    if (tonal->write_pos>=DETECT_SIZE)
       tonal->write_pos-=DETECT_SIZE;

    is_silence = is_digital_silence32(tonal->inmem, ANALYSIS_BUF_SIZE, 1, lsb_depth);

    ALLOC(in, 480, kiss_fft_cpx);
    ALLOC(out, 480, kiss_fft_cpx);
    ALLOC(tonality, 240, float);
    ALLOC(noisiness, 240, float);
    for (i=0;i<N2;i++)
    {
       float w = analysis_window[i];
       in[i].r = (kiss_fft_scalar)(w*tonal->inmem[i]);
       in[i].i = (kiss_fft_scalar)(w*tonal->inmem[N2+i]);
       in[N-i-1].r = (kiss_fft_scalar)(w*tonal->inmem[N-i-1]);
       in[N-i-1].i = (kiss_fft_scalar)(w*tonal->inmem[N+N2-i-1]);
    }
    OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240);
    remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill);
    tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x,
          &tonal->inmem[240], tonal->downmix_state, remaining,
          offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs);
    tonal->mem_fill = 240 + remaining;
    if (is_silence)
    {
       /* On silence, copy the previous analysis. */
       int prev_pos = tonal->write_pos-2;
       if (prev_pos < 0)
          prev_pos += DETECT_SIZE;
       OPUS_COPY(info, &tonal->info[prev_pos], 1);
       RESTORE_STACK;
       return;
    }
    opus_fft(kfft, in, out, tonal->arch);
#ifndef FIXED_POINT
    /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */
    if (celt_isnan(out[0].r))
    {
       info->valid = 0;
       RESTORE_STACK;
       return;
    }
#endif

    for (i=1;i<N2;i++)
    {
       float X1r, X2r, X1i, X2i;
       float angle, d_angle, d2_angle;
       float angle2, d_angle2, d2_angle2;
       float mod1, mod2, avg_mod;
       X1r = (float)out[i].r+out[N-i].r;
       X1i = (float)out[i].i-out[N-i].i;
       X2r = (float)out[i].i+out[N-i].i;
       X2i = (float)out[N-i].r-out[i].r;

       angle = (float)(.5f/M_PI)*fast_atan2f(X1i, X1r);
       d_angle = angle - A[i];
       d2_angle = d_angle - dA[i];

       angle2 = (float)(.5f/M_PI)*fast_atan2f(X2i, X2r);
       d_angle2 = angle2 - angle;
       d2_angle2 = d_angle2 - d_angle;

       mod1 = d2_angle - (float)float2int(d2_angle);
       noisiness[i] = ABS16(mod1);
       mod1 *= mod1;
       mod1 *= mod1;

       mod2 = d2_angle2 - (float)float2int(d2_angle2);
       noisiness[i] += ABS16(mod2);
       mod2 *= mod2;
       mod2 *= mod2;

       avg_mod = .25f*(d2A[i]+mod1+2*mod2);
       /* This introduces an extra delay of 2 frames in the detection. */
       tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f;
       /* No delay on this detection, but it's less reliable. */
       tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f;

       A[i] = angle2;
       dA[i] = d_angle2;
       d2A[i] = mod2;
    }
    for (i=2;i<N2-1;i++)
    {
       float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1]));
       tonality[i] = .9f*MAX32(tonality[i], tt-.1f);
    }
    frame_tonality = 0;
    max_frame_tonality = 0;
    /*tw_sum = 0;*/
    info->activity = 0;
    frame_noisiness = 0;
    frame_stationarity = 0;
    if (!tonal->count)
    {
       for (b=0;b<NB_TBANDS;b++)
       {
          tonal->lowE[b] = 1e10;
          tonal->highE[b] = -1e10;
       }
    }
    relativeE = 0;
    frame_loudness = 0;
    /* The energy of the very first band is special because of DC. */
    {
       float E = 0;
       float X1r, X2r;
       X1r = 2*(float)out[0].r;
       X2r = 2*(float)out[0].i;
       E = X1r*X1r + X2r*X2r;
       for (i=1;i<4;i++)
       {
          float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
                     + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
          E += binE;
       }
       E = SCALE_ENER(E);
       band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f);
    }
    for (b=0;b<NB_TBANDS;b++)
    {
       float E=0, tE=0, nE=0;
       float L1, L2;
       float stationarity;
       for (i=tbands[b];i<tbands[b+1];i++)
       {
          float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
                     + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
          binE = SCALE_ENER(binE);
          E += binE;
          tE += binE*MAX32(0, tonality[i]);
          nE += binE*2.f*(.5f-noisiness[i]);
       }
#ifndef FIXED_POINT
       /* Check for extreme band energies that could cause NaNs later. */
       if (!(E<1e9f) || celt_isnan(E))
       {
          info->valid = 0;
          RESTORE_STACK;
          return;
       }
#endif

       tonal->E[tonal->E_count][b] = E;
       frame_noisiness += nE/(1e-15f+E);

       frame_loudness += (float)sqrt(E+1e-10f);
       logE[b] = (float)log(E+1e-10f);
       band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f);
       tonal->logE[tonal->E_count][b] = logE[b];
       if (tonal->count==0)
          tonal->highE[b] = tonal->lowE[b] = logE[b];
       if (tonal->highE[b] > tonal->lowE[b] + 7.5)
       {
          if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b])
             tonal->highE[b] -= .01f;
          else
             tonal->lowE[b] += .01f;
       }
       if (logE[b] > tonal->highE[b])
       {
          tonal->highE[b] = logE[b];
          tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]);
       } else if (logE[b] < tonal->lowE[b])
       {
          tonal->lowE[b] = logE[b];
          tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]);
       }
       relativeE += (logE[b]-tonal->lowE[b])/(1e-5f + (tonal->highE[b]-tonal->lowE[b]));

       L1=L2=0;
       for (i=0;i<NB_FRAMES;i++)
       {
          L1 += (float)sqrt(tonal->E[i][b]);
          L2 += tonal->E[i][b];
       }

       stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2));
       stationarity *= stationarity;
       stationarity *= stationarity;
       frame_stationarity += stationarity;
       /*band_tonality[b] = tE/(1e-15+E)*/;
       band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b]);
#if 0
       if (b>=NB_TONAL_SKIP_BANDS)
       {
          frame_tonality += tweight[b]*band_tonality[b];
          tw_sum += tweight[b];
       }
#else
       frame_tonality += band_tonality[b];
       if (b>=NB_TBANDS-NB_TONAL_SKIP_BANDS)
          frame_tonality -= band_tonality[b-NB_TBANDS+NB_TONAL_SKIP_BANDS];
#endif
       max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality);
       slope += band_tonality[b]*(b-8);
       /*printf("%f %f ", band_tonality[b], stationarity);*/
       tonal->prev_band_tonality[b] = band_tonality[b];
    }

    leakage_from[0] = band_log2[0];
    leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET;
    for (b=1;b<NB_TBANDS+1;b++)
    {
       float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4;
       leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]);
       leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET);
    }
    for (b=NB_TBANDS-2;b>=0;b--)
    {
       float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4;
       leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]);
       leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]);
    }
    celt_assert(NB_TBANDS+1 <= LEAK_BANDS);
    for (b=0;b<NB_TBANDS+1;b++)
    {
       /* leak_boost[] is made up of two terms. The first, based on leakage_to[],
          represents the boost needed to overcome the amount of analysis leakage
          cause in a weaker band b by louder neighbouring bands.
          The second, based on leakage_from[], applies to a loud band b for
          which the quantization noise causes synthesis leakage to the weaker
          neighbouring bands. */
       float boost = MAX16(0, leakage_to[b] - band_log2[b]) +
             MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET));
       info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost));
    }
    for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0;

    for (i=0;i<NB_FRAMES;i++)
    {
       int j;
       float mindist = 1e15f;
       for (j=0;j<NB_FRAMES;j++)
       {
          int k;
          float dist=0;
          for (k=0;k<NB_TBANDS;k++)
          {
             float tmp;
             tmp = tonal->logE[i][k] - tonal->logE[j][k];
             dist += tmp*tmp;
          }
          if (j!=i)
             mindist = MIN32(mindist, dist);
       }
       spec_variability += mindist;
    }
    spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS);
    bandwidth_mask = 0;
    bandwidth = 0;
    maxE = 0;
    noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8)));
    noise_floor *= noise_floor;
    below_max_pitch=0;
    above_max_pitch=0;
    for (b=0;b<NB_TBANDS;b++)
    {
       float E=0;
       float Em;
       int band_start, band_end;
       /* Keep a margin of 300 Hz for aliasing */
       band_start = tbands[b];
       band_end = tbands[b+1];
       for (i=band_start;i<band_end;i++)
       {
          float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
                     + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
          E += binE;
       }
       E = SCALE_ENER(E);
       maxE = MAX32(maxE, E);
       if (band_start < 64)
       {
          below_max_pitch += E;
       } else {
          above_max_pitch += E;
       }
       tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
       Em = MAX32(E, tonal->meanE[b]);
       /* Consider the band "active" only if all these conditions are met:
          1) less than 90 dB below the peak band (maximal masking possible considering
             both the ATH and the loudness-dependent slope of the spreading function)
          2) above the PCM quantization noise floor
          We use b+1 because the first CELT band isn't included in tbands[]
       */
       if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start)))
          bandwidth = b+1;
       /* Check if the band is masked (see below). */
       is_masked[b] = E < (tonal->prev_bandwidth >= b+1  ? .01f : .05f)*bandwidth_mask;
       /* Use a simple follower with 13 dB/Bark slope for spreading function. */
       bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
    }
    /* Special case for the last two bands, for which we don't have spectrum but only
       the energy above 12 kHz. The difficulty here is that the high-pass we use
       leaks some LF energy, so we need to increase the threshold without accidentally cutting
       off the band. */
    if (tonal->Fs == 48000) {
       float noise_ratio;
       float Em;
       float E = hp_ener*(1.f/(60*60));
       noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f;

#ifdef FIXED_POINT
       /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */
       E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE);
#endif
       above_max_pitch += E;
       tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
       Em = MAX32(E, tonal->meanE[b]);
       if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160)
          bandwidth = 20;
       /* Check if the band is masked (see below). */
       is_masked[b] = E < (tonal->prev_bandwidth == 20  ? .01f : .05f)*bandwidth_mask;
    }
    if (above_max_pitch > below_max_pitch)
       info->max_pitch_ratio = below_max_pitch/above_max_pitch;
    else
       info->max_pitch_ratio = 1;
    /* In some cases, resampling aliasing can create a small amount of energy in the first band
       being cut. So if the last band is masked, we don't include it.  */
    if (bandwidth == 20 && is_masked[NB_TBANDS])
       bandwidth-=2;
    else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1])
       bandwidth--;
    if (tonal->count<=2)
       bandwidth = 20;
    frame_loudness = 20*(float)log10(frame_loudness);
    tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness);
    tonal->lowECount *= (1-alphaE);
    if (frame_loudness < tonal->Etracker-30)
       tonal->lowECount += alphaE;

    for (i=0;i<8;i++)
    {
       float sum=0;
       for (b=0;b<16;b++)
          sum += dct_table[i*16+b]*logE[b];
       BFCC[i] = sum;
    }
    for (i=0;i<8;i++)
    {
       float sum=0;
       for (b=0;b<16;b++)
          sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]);
       midE[i] = sum;
    }

    frame_stationarity /= NB_TBANDS;
    relativeE /= NB_TBANDS;
    if (tonal->count<10)
       relativeE = .5f;
    frame_noisiness /= NB_TBANDS;
#if 1
    info->activity = frame_noisiness + (1-frame_noisiness)*relativeE;
#else
    info->activity = .5*(1+frame_noisiness-frame_stationarity);
#endif
    frame_tonality = (max_frame_tonality/(NB_TBANDS-NB_TONAL_SKIP_BANDS));
    frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f);
    tonal->prev_tonality = frame_tonality;

    slope /= 8*8;
    info->tonality_slope = slope;

    tonal->E_count = (tonal->E_count+1)%NB_FRAMES;
    tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX);
    info->tonality = frame_tonality;

    for (i=0;i<4;i++)
       features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i];

    for (i=0;i<4;i++)
       tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i];

    for (i=0;i<4;i++)
        features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]);
    for (i=0;i<3;i++)
        features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8];

    if (tonal->count > 5)
    {
       for (i=0;i<9;i++)
          tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i];
    }
    for (i=0;i<4;i++)
       features[i] = BFCC[i]-midE[i];

    for (i=0;i<8;i++)
    {
       tonal->mem[i+24] = tonal->mem[i+16];
       tonal->mem[i+16] = tonal->mem[i+8];
       tonal->mem[i+8] = tonal->mem[i];
       tonal->mem[i] = BFCC[i];
    }
    for (i=0;i<9;i++)
       features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i];
    features[18] = spec_variability - 0.78f;
    features[20] = info->tonality - 0.154723f;
    features[21] = info->activity - 0.724643f;
    features[22] = frame_stationarity - 0.743717f;
    features[23] = info->tonality_slope + 0.069216f;
    features[24] = tonal->lowECount - 0.067930f;

    compute_dense(&layer0, layer_out, features);
    compute_gru(&layer1, tonal->rnn_state, layer_out);
    compute_dense(&layer2, frame_probs, tonal->rnn_state);

    /* Probability of speech or music vs noise */
    info->activity_probability = frame_probs[1];
    info->music_prob = frame_probs[0];

    /*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/
#ifdef MLP_TRAINING
    for (i=0;i<25;i++)
       printf("%f ", features[i]);
    printf("\n");
#endif

    info->bandwidth = bandwidth;
    tonal->prev_bandwidth = bandwidth;
    /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/
    info->noisiness = frame_noisiness;
    info->valid = 1;
    RESTORE_STACK;
}

void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, const void *analysis_pcm,
                 int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs,
                 int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info)
{
   int offset;
   int pcm_len;

   analysis_frame_size -= analysis_frame_size&1;
   if (analysis_pcm != NULL)
   {
      /* Avoid overflow/wrap-around of the analysis buffer */
      analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size);

      pcm_len = analysis_frame_size - analysis->analysis_offset;
      offset = analysis->analysis_offset;
      while (pcm_len>0) {
         tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix);
         offset += Fs/50;
         pcm_len -= Fs/50;
      }
      analysis->analysis_offset = analysis_frame_size;

      analysis->analysis_offset -= frame_size;
   }

   tonality_get_info(analysis, analysis_info, frame_size);
}

#endif /* DISABLE_FLOAT_API */