1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
|
// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2016 Oculus VR, LLC.
//
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Author: J.M.P. van Waveren
//
#ifndef XR_LINEAR_H_
#define XR_LINEAR_H_
#if defined(OS_LINUX_XCB) || defined(OS_LINUX_XCB_GLX) || defined(OS_LINUX_WAYLAND)
#pragma GCC diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-function"
#endif
#include <openxr/openxr.h>
/*
================================================================================================
Description : Vector, matrix and quaternion math.
Author : J.M.P. van Waveren
Date : 12/10/2016
Language : C99
Format : Indent 4 spaces - no tabs.
Copyright : Copyright (c) 2016 Oculus VR, LLC. All Rights reserved.
DESCRIPTION
===========
All matrices are column-major.
INTERFACE
=========
XrVector2f
XrVector3f
XrVector4f
XrQuaternionf
XrMatrix4x4f
inline static void XrVector3f_Set(XrVector3f* v, const float value);
inline static void XrVector3f_Add(XrVector3f* result, const XrVector3f* a, const XrVector3f* b);
inline static void XrVector3f_Sub(XrVector3f* result, const XrVector3f* a, const XrVector3f* b);
inline static void XrVector3f_Min(XrVector3f* result, const XrVector3f* a, const XrVector3f* b);
inline static void XrVector3f_Max(XrVector3f* result, const XrVector3f* a, const XrVector3f* b);
inline static void XrVector3f_Decay(XrVector3f* result, const XrVector3f* a, const float value);
inline static void XrVector3f_Lerp(XrVector3f* result, const XrVector3f* a, const XrVector3f* b, const float fraction);
inline static void XrVector3f_Scale(XrVector3f* result, const XrVector3f* a, const float scaleFactor);
inline static void XrVector3f_Normalize(XrVector3f* v);
inline static float XrVector3f_Length(const XrVector3f* v);
inline static void XrQuaternionf_Lerp(XrQuaternionf* result, const XrQuaternionf* a, const XrQuaternionf* b, const float fraction);
inline static void XrQuaternionf_Multiply(XrQuaternionf* result, const XrQuaternionf* a, const XrQuaternionf* b;
inline static void XrMatrix4x4f_CreateIdentity(XrMatrix4x4f* result);
inline static void XrMatrix4x4f_CreateTranslation(XrMatrix4x4f* result, const float x, const float y, const float z);
inline static void XrMatrix4x4f_CreateRotation(XrMatrix4x4f* result, const float degreesX, const float degreesY,
const float degreesZ);
inline static void XrMatrix4x4f_CreateScale(XrMatrix4x4f* result, const float x, const float y, const float z);
inline static void XrMatrix4x4f_CreateTranslationRotationScale(XrMatrix4x4f* result, const XrVector3f* translation,
const XrQuaternionf* rotation, const XrVector3f* scale);
inline static void XrMatrix4x4f_CreateProjection(XrMatrix4x4f* result, const float tanAngleLeft, const float tanAngleRight,
const float tanAngleUp, float const tanAngleDown, const float nearZ,
const float farZ);
inline static void XrMatrix4x4f_CreateProjectionFov(XrMatrix4x4f* result, const float fovDegreesLeft, const float fovDegreesRight,
const float fovDegreeUp, const float fovDegreesDown, const float nearZ,
const float farZ);
inline static void XrMatrix4x4f_CreateFromQuaternion(XrMatrix4x4f* result, const XrQuaternionf* src);
inline static void XrMatrix4x4f_CreateOffsetScaleForBounds(XrMatrix4x4f* result, const XrMatrix4x4f* matrix, const XrVector3f* mins,
const XrVector3f* maxs);
inline static bool XrMatrix4x4f_IsAffine(const XrMatrix4x4f* matrix, const float epsilon);
inline static bool XrMatrix4x4f_IsOrthogonal(const XrMatrix4x4f* matrix, const float epsilon);
inline static bool XrMatrix4x4f_IsOrthonormal(const XrMatrix4x4f* matrix, const float epsilon);
inline static bool XrMatrix4x4f_IsRigidBody(const XrMatrix4x4f* matrix, const float epsilon);
inline static void XrMatrix4x4f_GetTranslation(XrVector3f* result, const XrMatrix4x4f* src);
inline static void XrMatrix4x4f_GetRotation(XrQuaternionf* result, const XrMatrix4x4f* src);
inline static void XrMatrix4x4f_GetScale(XrVector3f* result, const XrMatrix4x4f* src);
inline static void XrMatrix4x4f_Multiply(XrMatrix4x4f* result, const XrMatrix4x4f* a, const XrMatrix4x4f* b);
inline static void XrMatrix4x4f_Transpose(XrMatrix4x4f* result, const XrMatrix4x4f* src);
inline static void XrMatrix4x4f_Invert(XrMatrix4x4f* result, const XrMatrix4x4f* src);
inline static void XrMatrix4x4f_InvertRigidBody(XrMatrix4x4f* result, const XrMatrix4x4f* src);
inline static void XrMatrix4x4f_TransformVector3f(XrVector3f* result, const XrMatrix4x4f* m, const XrVector3f* v);
inline static void XrMatrix4x4f_TransformVector4f(XrVector4f* result, const XrMatrix4x4f* m, const XrVector4f* v);
inline static void XrMatrix4x4f_TransformBounds(XrVector3f* resultMins, XrVector3f* resultMaxs, const XrMatrix4x4f* matrix,
const XrVector3f* mins, const XrVector3f* maxs);
inline static bool XrMatrix4x4f_CullBounds(const XrMatrix4x4f* mvp, const XrVector3f* mins, const XrVector3f* maxs);
================================================================================================
*/
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#define MATH_PI 3.14159265358979323846f
#define DEFAULT_NEAR_Z 0.015625f // exact floating point representation
#define INFINITE_FAR_Z 0.0f
static const XrColor4f XrColorRed = {1.0f, 0.0f, 0.0f, 1.0f};
static const XrColor4f XrColorGreen = {0.0f, 1.0f, 0.0f, 1.0f};
static const XrColor4f XrColorBlue = {0.0f, 0.0f, 1.0f, 1.0f};
static const XrColor4f XrColorYellow = {1.0f, 1.0f, 0.0f, 1.0f};
static const XrColor4f XrColorPurple = {1.0f, 0.0f, 1.0f, 1.0f};
static const XrColor4f XrColorCyan = {0.0f, 1.0f, 1.0f, 1.0f};
static const XrColor4f XrColorLightGrey = {0.7f, 0.7f, 0.7f, 1.0f};
static const XrColor4f XrColorDarkGrey = {0.3f, 0.3f, 0.3f, 1.0f};
enum GraphicsAPI { GRAPHICS_VULKAN, GRAPHICS_OPENGL, GRAPHICS_OPENGL_ES, GRAPHICS_D3D };
// Column-major, pre-multiplied. This type does not exist in the OpenXR API and is provided for convenience.
struct XrMatrix4x4f {
float m[16];
};
inline static float XrRcpSqrt(const float x) {
const float SMALLEST_NON_DENORMAL = 1.1754943508222875e-038f; // ( 1U << 23 )
const float rcp = (x >= SMALLEST_NON_DENORMAL) ? 1.0f / sqrtf(x) : 1.0f;
return rcp;
}
inline static void XrVector3f_Set(XrVector3f* v, const float value) {
v->x = value;
v->y = value;
v->z = value;
}
inline static void XrVector3f_Add(XrVector3f* result, const XrVector3f* a, const XrVector3f* b) {
result->x = a->x + b->x;
result->y = a->y + b->y;
result->z = a->z + b->z;
}
inline static void XrVector3f_Sub(XrVector3f* result, const XrVector3f* a, const XrVector3f* b) {
result->x = a->x - b->x;
result->y = a->y - b->y;
result->z = a->z - b->z;
}
inline static void XrVector3f_Min(XrVector3f* result, const XrVector3f* a, const XrVector3f* b) {
result->x = (a->x < b->x) ? a->x : b->x;
result->y = (a->y < b->y) ? a->y : b->y;
result->z = (a->z < b->z) ? a->z : b->z;
}
inline static void XrVector3f_Max(XrVector3f* result, const XrVector3f* a, const XrVector3f* b) {
result->x = (a->x > b->x) ? a->x : b->x;
result->y = (a->y > b->y) ? a->y : b->y;
result->z = (a->z > b->z) ? a->z : b->z;
}
inline static void XrVector3f_Decay(XrVector3f* result, const XrVector3f* a, const float value) {
result->x = (fabsf(a->x) > value) ? ((a->x > 0.0f) ? (a->x - value) : (a->x + value)) : 0.0f;
result->y = (fabsf(a->y) > value) ? ((a->y > 0.0f) ? (a->y - value) : (a->y + value)) : 0.0f;
result->z = (fabsf(a->z) > value) ? ((a->z > 0.0f) ? (a->z - value) : (a->z + value)) : 0.0f;
}
inline static void XrVector3f_Lerp(XrVector3f* result, const XrVector3f* a, const XrVector3f* b, const float fraction) {
result->x = a->x + fraction * (b->x - a->x);
result->y = a->y + fraction * (b->y - a->y);
result->z = a->z + fraction * (b->z - a->z);
}
inline static void XrVector3f_Scale(XrVector3f* result, const XrVector3f* a, const float scaleFactor) {
result->x = a->x * scaleFactor;
result->y = a->y * scaleFactor;
result->z = a->z * scaleFactor;
}
inline static float XrVector3f_Dot(const XrVector3f* a, const XrVector3f* b) { return a->x * b->x + a->y * b->y + a->z * b->z; }
// Compute cross product, which generates a normal vector.
// Direction vector can be determined by right-hand rule: Pointing index finder in
// direction a and middle finger in direction b, thumb will point in Cross(a, b).
inline static void XrVector3f_Cross(XrVector3f* result, const XrVector3f* a, const XrVector3f* b) {
result->x = a->y * b->z - a->z * b->y;
result->y = a->z * b->x - a->x * b->z;
result->z = a->x * b->y - a->y * b->x;
}
inline static void XrVector3f_Normalize(XrVector3f* v) {
const float lengthRcp = XrRcpSqrt(v->x * v->x + v->y * v->y + v->z * v->z);
v->x *= lengthRcp;
v->y *= lengthRcp;
v->z *= lengthRcp;
}
inline static float XrVector3f_Length(const XrVector3f* v) { return sqrtf(v->x * v->x + v->y * v->y + v->z * v->z); }
inline static void XrQuaternionf_CreateFromAxisAngle(XrQuaternionf* result, const XrVector3f* axis, const float angleInRadians) {
float s = sinf(angleInRadians / 2.0f);
float lengthRcp = XrRcpSqrt(axis->x * axis->x + axis->y * axis->y + axis->z * axis->z);
result->x = s * axis->x * lengthRcp;
result->y = s * axis->y * lengthRcp;
result->z = s * axis->z * lengthRcp;
result->w = cosf(angleInRadians / 2.0f);
}
inline static void XrQuaternionf_Lerp(XrQuaternionf* result, const XrQuaternionf* a, const XrQuaternionf* b, const float fraction) {
const float s = a->x * b->x + a->y * b->y + a->z * b->z + a->w * b->w;
const float fa = 1.0f - fraction;
const float fb = (s < 0.0f) ? -fraction : fraction;
const float x = a->x * fa + b->x * fb;
const float y = a->y * fa + b->y * fb;
const float z = a->z * fa + b->z * fb;
const float w = a->w * fa + b->w * fb;
const float lengthRcp = XrRcpSqrt(x * x + y * y + z * z + w * w);
result->x = x * lengthRcp;
result->y = y * lengthRcp;
result->z = z * lengthRcp;
result->w = w * lengthRcp;
}
inline static void XrQuaternionf_Multiply(XrQuaternionf* result, const XrQuaternionf* a, const XrQuaternionf* b) {
result->x = (b->w * a->x) + (b->x * a->w) + (b->y * a->z) - (b->z * a->y);
result->y = (b->w * a->y) - (b->x * a->z) + (b->y * a->w) + (b->z * a->x);
result->z = (b->w * a->z) + (b->x * a->y) - (b->y * a->x) + (b->z * a->w);
result->w = (b->w * a->w) - (b->x * a->x) - (b->y * a->y) - (b->z * a->z);
}
// Use left-multiplication to accumulate transformations.
inline static void XrMatrix4x4f_Multiply(XrMatrix4x4f* result, const XrMatrix4x4f* a, const XrMatrix4x4f* b) {
result->m[0] = a->m[0] * b->m[0] + a->m[4] * b->m[1] + a->m[8] * b->m[2] + a->m[12] * b->m[3];
result->m[1] = a->m[1] * b->m[0] + a->m[5] * b->m[1] + a->m[9] * b->m[2] + a->m[13] * b->m[3];
result->m[2] = a->m[2] * b->m[0] + a->m[6] * b->m[1] + a->m[10] * b->m[2] + a->m[14] * b->m[3];
result->m[3] = a->m[3] * b->m[0] + a->m[7] * b->m[1] + a->m[11] * b->m[2] + a->m[15] * b->m[3];
result->m[4] = a->m[0] * b->m[4] + a->m[4] * b->m[5] + a->m[8] * b->m[6] + a->m[12] * b->m[7];
result->m[5] = a->m[1] * b->m[4] + a->m[5] * b->m[5] + a->m[9] * b->m[6] + a->m[13] * b->m[7];
result->m[6] = a->m[2] * b->m[4] + a->m[6] * b->m[5] + a->m[10] * b->m[6] + a->m[14] * b->m[7];
result->m[7] = a->m[3] * b->m[4] + a->m[7] * b->m[5] + a->m[11] * b->m[6] + a->m[15] * b->m[7];
result->m[8] = a->m[0] * b->m[8] + a->m[4] * b->m[9] + a->m[8] * b->m[10] + a->m[12] * b->m[11];
result->m[9] = a->m[1] * b->m[8] + a->m[5] * b->m[9] + a->m[9] * b->m[10] + a->m[13] * b->m[11];
result->m[10] = a->m[2] * b->m[8] + a->m[6] * b->m[9] + a->m[10] * b->m[10] + a->m[14] * b->m[11];
result->m[11] = a->m[3] * b->m[8] + a->m[7] * b->m[9] + a->m[11] * b->m[10] + a->m[15] * b->m[11];
result->m[12] = a->m[0] * b->m[12] + a->m[4] * b->m[13] + a->m[8] * b->m[14] + a->m[12] * b->m[15];
result->m[13] = a->m[1] * b->m[12] + a->m[5] * b->m[13] + a->m[9] * b->m[14] + a->m[13] * b->m[15];
result->m[14] = a->m[2] * b->m[12] + a->m[6] * b->m[13] + a->m[10] * b->m[14] + a->m[14] * b->m[15];
result->m[15] = a->m[3] * b->m[12] + a->m[7] * b->m[13] + a->m[11] * b->m[14] + a->m[15] * b->m[15];
}
// Creates the transpose of the given matrix.
inline static void XrMatrix4x4f_Transpose(XrMatrix4x4f* result, const XrMatrix4x4f* src) {
result->m[0] = src->m[0];
result->m[1] = src->m[4];
result->m[2] = src->m[8];
result->m[3] = src->m[12];
result->m[4] = src->m[1];
result->m[5] = src->m[5];
result->m[6] = src->m[9];
result->m[7] = src->m[13];
result->m[8] = src->m[2];
result->m[9] = src->m[6];
result->m[10] = src->m[10];
result->m[11] = src->m[14];
result->m[12] = src->m[3];
result->m[13] = src->m[7];
result->m[14] = src->m[11];
result->m[15] = src->m[15];
}
// Returns a 3x3 minor of a 4x4 matrix.
inline static float XrMatrix4x4f_Minor(const XrMatrix4x4f* matrix, int r0, int r1, int r2, int c0, int c1, int c2) {
return matrix->m[4 * r0 + c0] *
(matrix->m[4 * r1 + c1] * matrix->m[4 * r2 + c2] - matrix->m[4 * r2 + c1] * matrix->m[4 * r1 + c2]) -
matrix->m[4 * r0 + c1] *
(matrix->m[4 * r1 + c0] * matrix->m[4 * r2 + c2] - matrix->m[4 * r2 + c0] * matrix->m[4 * r1 + c2]) +
matrix->m[4 * r0 + c2] *
(matrix->m[4 * r1 + c0] * matrix->m[4 * r2 + c1] - matrix->m[4 * r2 + c0] * matrix->m[4 * r1 + c1]);
}
// Calculates the inverse of a 4x4 matrix.
inline static void XrMatrix4x4f_Invert(XrMatrix4x4f* result, const XrMatrix4x4f* src) {
const float rcpDet =
1.0f / (src->m[0] * XrMatrix4x4f_Minor(src, 1, 2, 3, 1, 2, 3) - src->m[1] * XrMatrix4x4f_Minor(src, 1, 2, 3, 0, 2, 3) +
src->m[2] * XrMatrix4x4f_Minor(src, 1, 2, 3, 0, 1, 3) - src->m[3] * XrMatrix4x4f_Minor(src, 1, 2, 3, 0, 1, 2));
result->m[0] = XrMatrix4x4f_Minor(src, 1, 2, 3, 1, 2, 3) * rcpDet;
result->m[1] = -XrMatrix4x4f_Minor(src, 0, 2, 3, 1, 2, 3) * rcpDet;
result->m[2] = XrMatrix4x4f_Minor(src, 0, 1, 3, 1, 2, 3) * rcpDet;
result->m[3] = -XrMatrix4x4f_Minor(src, 0, 1, 2, 1, 2, 3) * rcpDet;
result->m[4] = -XrMatrix4x4f_Minor(src, 1, 2, 3, 0, 2, 3) * rcpDet;
result->m[5] = XrMatrix4x4f_Minor(src, 0, 2, 3, 0, 2, 3) * rcpDet;
result->m[6] = -XrMatrix4x4f_Minor(src, 0, 1, 3, 0, 2, 3) * rcpDet;
result->m[7] = XrMatrix4x4f_Minor(src, 0, 1, 2, 0, 2, 3) * rcpDet;
result->m[8] = XrMatrix4x4f_Minor(src, 1, 2, 3, 0, 1, 3) * rcpDet;
result->m[9] = -XrMatrix4x4f_Minor(src, 0, 2, 3, 0, 1, 3) * rcpDet;
result->m[10] = XrMatrix4x4f_Minor(src, 0, 1, 3, 0, 1, 3) * rcpDet;
result->m[11] = -XrMatrix4x4f_Minor(src, 0, 1, 2, 0, 1, 3) * rcpDet;
result->m[12] = -XrMatrix4x4f_Minor(src, 1, 2, 3, 0, 1, 2) * rcpDet;
result->m[13] = XrMatrix4x4f_Minor(src, 0, 2, 3, 0, 1, 2) * rcpDet;
result->m[14] = -XrMatrix4x4f_Minor(src, 0, 1, 3, 0, 1, 2) * rcpDet;
result->m[15] = XrMatrix4x4f_Minor(src, 0, 1, 2, 0, 1, 2) * rcpDet;
}
// Calculates the inverse of a rigid body transform.
inline static void XrMatrix4x4f_InvertRigidBody(XrMatrix4x4f* result, const XrMatrix4x4f* src) {
result->m[0] = src->m[0];
result->m[1] = src->m[4];
result->m[2] = src->m[8];
result->m[3] = 0.0f;
result->m[4] = src->m[1];
result->m[5] = src->m[5];
result->m[6] = src->m[9];
result->m[7] = 0.0f;
result->m[8] = src->m[2];
result->m[9] = src->m[6];
result->m[10] = src->m[10];
result->m[11] = 0.0f;
result->m[12] = -(src->m[0] * src->m[12] + src->m[1] * src->m[13] + src->m[2] * src->m[14]);
result->m[13] = -(src->m[4] * src->m[12] + src->m[5] * src->m[13] + src->m[6] * src->m[14]);
result->m[14] = -(src->m[8] * src->m[12] + src->m[9] * src->m[13] + src->m[10] * src->m[14]);
result->m[15] = 1.0f;
}
// Creates an identity matrix.
inline static void XrMatrix4x4f_CreateIdentity(XrMatrix4x4f* result) {
result->m[0] = 1.0f;
result->m[1] = 0.0f;
result->m[2] = 0.0f;
result->m[3] = 0.0f;
result->m[4] = 0.0f;
result->m[5] = 1.0f;
result->m[6] = 0.0f;
result->m[7] = 0.0f;
result->m[8] = 0.0f;
result->m[9] = 0.0f;
result->m[10] = 1.0f;
result->m[11] = 0.0f;
result->m[12] = 0.0f;
result->m[13] = 0.0f;
result->m[14] = 0.0f;
result->m[15] = 1.0f;
}
// Creates a translation matrix.
inline static void XrMatrix4x4f_CreateTranslation(XrMatrix4x4f* result, const float x, const float y, const float z) {
result->m[0] = 1.0f;
result->m[1] = 0.0f;
result->m[2] = 0.0f;
result->m[3] = 0.0f;
result->m[4] = 0.0f;
result->m[5] = 1.0f;
result->m[6] = 0.0f;
result->m[7] = 0.0f;
result->m[8] = 0.0f;
result->m[9] = 0.0f;
result->m[10] = 1.0f;
result->m[11] = 0.0f;
result->m[12] = x;
result->m[13] = y;
result->m[14] = z;
result->m[15] = 1.0f;
}
// Creates a rotation matrix.
// If -Z=forward, +Y=up, +X=right, then degreesX=pitch, degreesY=yaw, degreesZ=roll.
inline static void XrMatrix4x4f_CreateRotation(XrMatrix4x4f* result, const float degreesX, const float degreesY,
const float degreesZ) {
const float sinX = sinf(degreesX * (MATH_PI / 180.0f));
const float cosX = cosf(degreesX * (MATH_PI / 180.0f));
const XrMatrix4x4f rotationX = {{1, 0, 0, 0, 0, cosX, sinX, 0, 0, -sinX, cosX, 0, 0, 0, 0, 1}};
const float sinY = sinf(degreesY * (MATH_PI / 180.0f));
const float cosY = cosf(degreesY * (MATH_PI / 180.0f));
const XrMatrix4x4f rotationY = {{cosY, 0, -sinY, 0, 0, 1, 0, 0, sinY, 0, cosY, 0, 0, 0, 0, 1}};
const float sinZ = sinf(degreesZ * (MATH_PI / 180.0f));
const float cosZ = cosf(degreesZ * (MATH_PI / 180.0f));
const XrMatrix4x4f rotationZ = {{cosZ, sinZ, 0, 0, -sinZ, cosZ, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}};
XrMatrix4x4f rotationXY;
XrMatrix4x4f_Multiply(&rotationXY, &rotationY, &rotationX);
XrMatrix4x4f_Multiply(result, &rotationZ, &rotationXY);
}
// Creates a scale matrix.
inline static void XrMatrix4x4f_CreateScale(XrMatrix4x4f* result, const float x, const float y, const float z) {
result->m[0] = x;
result->m[1] = 0.0f;
result->m[2] = 0.0f;
result->m[3] = 0.0f;
result->m[4] = 0.0f;
result->m[5] = y;
result->m[6] = 0.0f;
result->m[7] = 0.0f;
result->m[8] = 0.0f;
result->m[9] = 0.0f;
result->m[10] = z;
result->m[11] = 0.0f;
result->m[12] = 0.0f;
result->m[13] = 0.0f;
result->m[14] = 0.0f;
result->m[15] = 1.0f;
}
// Creates a matrix from a quaternion.
inline static void XrMatrix4x4f_CreateFromQuaternion(XrMatrix4x4f* result, const XrQuaternionf* quat) {
const float x2 = quat->x + quat->x;
const float y2 = quat->y + quat->y;
const float z2 = quat->z + quat->z;
const float xx2 = quat->x * x2;
const float yy2 = quat->y * y2;
const float zz2 = quat->z * z2;
const float yz2 = quat->y * z2;
const float wx2 = quat->w * x2;
const float xy2 = quat->x * y2;
const float wz2 = quat->w * z2;
const float xz2 = quat->x * z2;
const float wy2 = quat->w * y2;
result->m[0] = 1.0f - yy2 - zz2;
result->m[1] = xy2 + wz2;
result->m[2] = xz2 - wy2;
result->m[3] = 0.0f;
result->m[4] = xy2 - wz2;
result->m[5] = 1.0f - xx2 - zz2;
result->m[6] = yz2 + wx2;
result->m[7] = 0.0f;
result->m[8] = xz2 + wy2;
result->m[9] = yz2 - wx2;
result->m[10] = 1.0f - xx2 - yy2;
result->m[11] = 0.0f;
result->m[12] = 0.0f;
result->m[13] = 0.0f;
result->m[14] = 0.0f;
result->m[15] = 1.0f;
}
// Creates a combined translation(rotation(scale(object))) matrix.
inline static void XrMatrix4x4f_CreateTranslationRotationScale(XrMatrix4x4f* result, const XrVector3f* translation,
const XrQuaternionf* rotation, const XrVector3f* scale) {
XrMatrix4x4f scaleMatrix;
XrMatrix4x4f_CreateScale(&scaleMatrix, scale->x, scale->y, scale->z);
XrMatrix4x4f rotationMatrix;
XrMatrix4x4f_CreateFromQuaternion(&rotationMatrix, rotation);
XrMatrix4x4f translationMatrix;
XrMatrix4x4f_CreateTranslation(&translationMatrix, translation->x, translation->y, translation->z);
XrMatrix4x4f combinedMatrix;
XrMatrix4x4f_Multiply(&combinedMatrix, &rotationMatrix, &scaleMatrix);
XrMatrix4x4f_Multiply(result, &translationMatrix, &combinedMatrix);
}
// Creates a projection matrix based on the specified dimensions.
// The projection matrix transforms -Z=forward, +Y=up, +X=right to the appropriate clip space for the graphics API.
// The far plane is placed at infinity if farZ <= nearZ.
// An infinite projection matrix is preferred for rasterization because, except for
// things *right* up against the near plane, it always provides better precision:
// "Tightening the Precision of Perspective Rendering"
// Paul Upchurch, Mathieu Desbrun
// Journal of Graphics Tools, Volume 16, Issue 1, 2012
inline static void XrMatrix4x4f_CreateProjection(XrMatrix4x4f* result, GraphicsAPI graphicsApi, const float tanAngleLeft,
const float tanAngleRight, const float tanAngleUp, float const tanAngleDown,
const float nearZ, const float farZ) {
const float tanAngleWidth = tanAngleRight - tanAngleLeft;
// Set to tanAngleDown - tanAngleUp for a clip space with positive Y down (Vulkan).
// Set to tanAngleUp - tanAngleDown for a clip space with positive Y up (OpenGL / D3D / Metal).
const float tanAngleHeight = graphicsApi == GRAPHICS_VULKAN ? (tanAngleDown - tanAngleUp) : (tanAngleUp - tanAngleDown);
// Set to nearZ for a [-1,1] Z clip space (OpenGL / OpenGL ES).
// Set to zero for a [0,1] Z clip space (Vulkan / D3D / Metal).
const float offsetZ = (graphicsApi == GRAPHICS_OPENGL || graphicsApi == GRAPHICS_OPENGL_ES) ? nearZ : 0;
if (farZ <= nearZ) {
// place the far plane at infinity
result->m[0] = 2.0f / tanAngleWidth;
result->m[4] = 0.0f;
result->m[8] = (tanAngleRight + tanAngleLeft) / tanAngleWidth;
result->m[12] = 0.0f;
result->m[1] = 0.0f;
result->m[5] = 2.0f / tanAngleHeight;
result->m[9] = (tanAngleUp + tanAngleDown) / tanAngleHeight;
result->m[13] = 0.0f;
result->m[2] = 0.0f;
result->m[6] = 0.0f;
result->m[10] = -1.0f;
result->m[14] = -(nearZ + offsetZ);
result->m[3] = 0.0f;
result->m[7] = 0.0f;
result->m[11] = -1.0f;
result->m[15] = 0.0f;
} else {
// normal projection
result->m[0] = 2.0f / tanAngleWidth;
result->m[4] = 0.0f;
result->m[8] = (tanAngleRight + tanAngleLeft) / tanAngleWidth;
result->m[12] = 0.0f;
result->m[1] = 0.0f;
result->m[5] = 2.0f / tanAngleHeight;
result->m[9] = (tanAngleUp + tanAngleDown) / tanAngleHeight;
result->m[13] = 0.0f;
result->m[2] = 0.0f;
result->m[6] = 0.0f;
result->m[10] = -(farZ + offsetZ) / (farZ - nearZ);
result->m[14] = -(farZ * (nearZ + offsetZ)) / (farZ - nearZ);
result->m[3] = 0.0f;
result->m[7] = 0.0f;
result->m[11] = -1.0f;
result->m[15] = 0.0f;
}
}
// Creates a projection matrix based on the specified FOV.
inline static void XrMatrix4x4f_CreateProjectionFov(XrMatrix4x4f* result, GraphicsAPI graphicsApi, const XrFovf fov,
const float nearZ, const float farZ) {
const float tanLeft = tanf(fov.angleLeft);
const float tanRight = tanf(fov.angleRight);
const float tanDown = tanf(fov.angleDown);
const float tanUp = tanf(fov.angleUp);
XrMatrix4x4f_CreateProjection(result, graphicsApi, tanLeft, tanRight, tanUp, tanDown, nearZ, farZ);
}
// Creates a matrix that transforms the -1 to 1 cube to cover the given 'mins' and 'maxs' transformed with the given 'matrix'.
inline static void XrMatrix4x4f_CreateOffsetScaleForBounds(XrMatrix4x4f* result, const XrMatrix4x4f* matrix, const XrVector3f* mins,
const XrVector3f* maxs) {
const XrVector3f offset = {(maxs->x + mins->x) * 0.5f, (maxs->y + mins->y) * 0.5f, (maxs->z + mins->z) * 0.5f};
const XrVector3f scale = {(maxs->x - mins->x) * 0.5f, (maxs->y - mins->y) * 0.5f, (maxs->z - mins->z) * 0.5f};
result->m[0] = matrix->m[0] * scale.x;
result->m[1] = matrix->m[1] * scale.x;
result->m[2] = matrix->m[2] * scale.x;
result->m[3] = matrix->m[3] * scale.x;
result->m[4] = matrix->m[4] * scale.y;
result->m[5] = matrix->m[5] * scale.y;
result->m[6] = matrix->m[6] * scale.y;
result->m[7] = matrix->m[7] * scale.y;
result->m[8] = matrix->m[8] * scale.z;
result->m[9] = matrix->m[9] * scale.z;
result->m[10] = matrix->m[10] * scale.z;
result->m[11] = matrix->m[11] * scale.z;
result->m[12] = matrix->m[12] + matrix->m[0] * offset.x + matrix->m[4] * offset.y + matrix->m[8] * offset.z;
result->m[13] = matrix->m[13] + matrix->m[1] * offset.x + matrix->m[5] * offset.y + matrix->m[9] * offset.z;
result->m[14] = matrix->m[14] + matrix->m[2] * offset.x + matrix->m[6] * offset.y + matrix->m[10] * offset.z;
result->m[15] = matrix->m[15] + matrix->m[3] * offset.x + matrix->m[7] * offset.y + matrix->m[11] * offset.z;
}
// Returns true if the given matrix is affine.
inline static bool XrMatrix4x4f_IsAffine(const XrMatrix4x4f* matrix, const float epsilon) {
return fabsf(matrix->m[3]) <= epsilon && fabsf(matrix->m[7]) <= epsilon && fabsf(matrix->m[11]) <= epsilon &&
fabsf(matrix->m[15] - 1.0f) <= epsilon;
}
// Returns true if the given matrix is orthogonal.
inline static bool XrMatrix4x4f_IsOrthogonal(const XrMatrix4x4f* matrix, const float epsilon) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (i != j) {
if (fabsf(matrix->m[4 * i + 0] * matrix->m[4 * j + 0] + matrix->m[4 * i + 1] * matrix->m[4 * j + 1] +
matrix->m[4 * i + 2] * matrix->m[4 * j + 2]) > epsilon) {
return false;
}
if (fabsf(matrix->m[4 * 0 + i] * matrix->m[4 * 0 + j] + matrix->m[4 * 1 + i] * matrix->m[4 * 1 + j] +
matrix->m[4 * 2 + i] * matrix->m[4 * 2 + j]) > epsilon) {
return false;
}
}
}
}
return true;
}
// Returns true if the given matrix is orthonormal.
inline static bool XrMatrix4x4f_IsOrthonormal(const XrMatrix4x4f* matrix, const float epsilon) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
const float kd = (i == j) ? 1.0f : 0.0f; // Kronecker delta
if (fabsf(kd - (matrix->m[4 * i + 0] * matrix->m[4 * j + 0] + matrix->m[4 * i + 1] * matrix->m[4 * j + 1] +
matrix->m[4 * i + 2] * matrix->m[4 * j + 2])) > epsilon) {
return false;
}
if (fabsf(kd - (matrix->m[4 * 0 + i] * matrix->m[4 * 0 + j] + matrix->m[4 * 1 + i] * matrix->m[4 * 1 + j] +
matrix->m[4 * 2 + i] * matrix->m[4 * 2 + j])) > epsilon) {
return false;
}
}
}
return true;
}
// Returns true if the given matrix is a rigid body transform.
inline static bool XrMatrix4x4f_IsRigidBody(const XrMatrix4x4f* matrix, const float epsilon) {
return XrMatrix4x4f_IsAffine(matrix, epsilon) && XrMatrix4x4f_IsOrthonormal(matrix, epsilon);
}
// Get the translation from a combined translation(rotation(scale(object))) matrix.
inline static void XrMatrix4x4f_GetTranslation(XrVector3f* result, const XrMatrix4x4f* src) {
assert(XrMatrix4x4f_IsAffine(src, 1e-4f));
assert(XrMatrix4x4f_IsOrthogonal(src, 1e-4f));
result->x = src->m[12];
result->y = src->m[13];
result->z = src->m[14];
}
// Get the rotation from a combined translation(rotation(scale(object))) matrix.
inline static void XrMatrix4x4f_GetRotation(XrQuaternionf* result, const XrMatrix4x4f* src) {
assert(XrMatrix4x4f_IsAffine(src, 1e-4f));
assert(XrMatrix4x4f_IsOrthogonal(src, 1e-4f));
const float rcpScaleX = XrRcpSqrt(src->m[0] * src->m[0] + src->m[1] * src->m[1] + src->m[2] * src->m[2]);
const float rcpScaleY = XrRcpSqrt(src->m[4] * src->m[4] + src->m[5] * src->m[5] + src->m[6] * src->m[6]);
const float rcpScaleZ = XrRcpSqrt(src->m[8] * src->m[8] + src->m[9] * src->m[9] + src->m[10] * src->m[10]);
const float m[9] = {src->m[0] * rcpScaleX, src->m[1] * rcpScaleX, src->m[2] * rcpScaleX,
src->m[4] * rcpScaleY, src->m[5] * rcpScaleY, src->m[6] * rcpScaleY,
src->m[8] * rcpScaleZ, src->m[9] * rcpScaleZ, src->m[10] * rcpScaleZ};
if (m[0 * 3 + 0] + m[1 * 3 + 1] + m[2 * 3 + 2] > 0.0f) {
float t = +m[0 * 3 + 0] + m[1 * 3 + 1] + m[2 * 3 + 2] + 1.0f;
float s = XrRcpSqrt(t) * 0.5f;
result->w = s * t;
result->z = (m[0 * 3 + 1] - m[1 * 3 + 0]) * s;
result->y = (m[2 * 3 + 0] - m[0 * 3 + 2]) * s;
result->x = (m[1 * 3 + 2] - m[2 * 3 + 1]) * s;
} else if (m[0 * 3 + 0] > m[1 * 3 + 1] && m[0 * 3 + 0] > m[2 * 3 + 2]) {
float t = +m[0 * 3 + 0] - m[1 * 3 + 1] - m[2 * 3 + 2] + 1.0f;
float s = XrRcpSqrt(t) * 0.5f;
result->x = s * t;
result->y = (m[0 * 3 + 1] + m[1 * 3 + 0]) * s;
result->z = (m[2 * 3 + 0] + m[0 * 3 + 2]) * s;
result->w = (m[1 * 3 + 2] - m[2 * 3 + 1]) * s;
} else if (m[1 * 3 + 1] > m[2 * 3 + 2]) {
float t = -m[0 * 3 + 0] + m[1 * 3 + 1] - m[2 * 3 + 2] + 1.0f;
float s = XrRcpSqrt(t) * 0.5f;
result->y = s * t;
result->x = (m[0 * 3 + 1] + m[1 * 3 + 0]) * s;
result->w = (m[2 * 3 + 0] - m[0 * 3 + 2]) * s;
result->z = (m[1 * 3 + 2] + m[2 * 3 + 1]) * s;
} else {
float t = -m[0 * 3 + 0] - m[1 * 3 + 1] + m[2 * 3 + 2] + 1.0f;
float s = XrRcpSqrt(t) * 0.5f;
result->z = s * t;
result->w = (m[0 * 3 + 1] - m[1 * 3 + 0]) * s;
result->x = (m[2 * 3 + 0] + m[0 * 3 + 2]) * s;
result->y = (m[1 * 3 + 2] + m[2 * 3 + 1]) * s;
}
}
// Get the scale from a combined translation(rotation(scale(object))) matrix.
inline static void XrMatrix4x4f_GetScale(XrVector3f* result, const XrMatrix4x4f* src) {
assert(XrMatrix4x4f_IsAffine(src, 1e-4f));
assert(XrMatrix4x4f_IsOrthogonal(src, 1e-4f));
result->x = sqrtf(src->m[0] * src->m[0] + src->m[1] * src->m[1] + src->m[2] * src->m[2]);
result->y = sqrtf(src->m[4] * src->m[4] + src->m[5] * src->m[5] + src->m[6] * src->m[6]);
result->z = sqrtf(src->m[8] * src->m[8] + src->m[9] * src->m[9] + src->m[10] * src->m[10]);
}
// Transforms a 3D vector.
inline static void XrMatrix4x4f_TransformVector3f(XrVector3f* result, const XrMatrix4x4f* m, const XrVector3f* v) {
const float w = m->m[3] * v->x + m->m[7] * v->y + m->m[11] * v->z + m->m[15];
const float rcpW = 1.0f / w;
result->x = (m->m[0] * v->x + m->m[4] * v->y + m->m[8] * v->z + m->m[12]) * rcpW;
result->y = (m->m[1] * v->x + m->m[5] * v->y + m->m[9] * v->z + m->m[13]) * rcpW;
result->z = (m->m[2] * v->x + m->m[6] * v->y + m->m[10] * v->z + m->m[14]) * rcpW;
}
// Transforms a 4D vector.
inline static void XrMatrix4x4f_TransformVector4f(XrVector4f* result, const XrMatrix4x4f* m, const XrVector4f* v) {
result->x = m->m[0] * v->x + m->m[4] * v->y + m->m[8] * v->z + m->m[12] * v->w;
result->y = m->m[1] * v->x + m->m[5] * v->y + m->m[9] * v->z + m->m[13] * v->w;
result->z = m->m[2] * v->x + m->m[6] * v->y + m->m[10] * v->z + m->m[14] * v->w;
result->w = m->m[3] * v->x + m->m[7] * v->y + m->m[11] * v->z + m->m[15] * v->w;
}
// Transforms the 'mins' and 'maxs' bounds with the given 'matrix'.
inline static void XrMatrix4x4f_TransformBounds(XrVector3f* resultMins, XrVector3f* resultMaxs, const XrMatrix4x4f* matrix,
const XrVector3f* mins, const XrVector3f* maxs) {
assert(XrMatrix4x4f_IsAffine(matrix, 1e-4f));
const XrVector3f center = {(mins->x + maxs->x) * 0.5f, (mins->y + maxs->y) * 0.5f, (mins->z + maxs->z) * 0.5f};
const XrVector3f extents = {maxs->x - center.x, maxs->y - center.y, maxs->z - center.z};
const XrVector3f newCenter = {matrix->m[0] * center.x + matrix->m[4] * center.y + matrix->m[8] * center.z + matrix->m[12],
matrix->m[1] * center.x + matrix->m[5] * center.y + matrix->m[9] * center.z + matrix->m[13],
matrix->m[2] * center.x + matrix->m[6] * center.y + matrix->m[10] * center.z + matrix->m[14]};
const XrVector3f newExtents = {
fabsf(extents.x * matrix->m[0]) + fabsf(extents.y * matrix->m[4]) + fabsf(extents.z * matrix->m[8]),
fabsf(extents.x * matrix->m[1]) + fabsf(extents.y * matrix->m[5]) + fabsf(extents.z * matrix->m[9]),
fabsf(extents.x * matrix->m[2]) + fabsf(extents.y * matrix->m[6]) + fabsf(extents.z * matrix->m[10])};
XrVector3f_Sub(resultMins, &newCenter, &newExtents);
XrVector3f_Add(resultMaxs, &newCenter, &newExtents);
}
// Returns true if the 'mins' and 'maxs' bounds is completely off to one side of the projection matrix.
inline static bool XrMatrix4x4f_CullBounds(const XrMatrix4x4f* mvp, const XrVector3f* mins, const XrVector3f* maxs) {
if (maxs->x <= mins->x && maxs->y <= mins->y && maxs->z <= mins->z) {
return false;
}
XrVector4f c[8];
for (int i = 0; i < 8; i++) {
const XrVector4f corner = {(i & 1) != 0 ? maxs->x : mins->x, (i & 2) != 0 ? maxs->y : mins->y,
(i & 4) != 0 ? maxs->z : mins->z, 1.0f};
XrMatrix4x4f_TransformVector4f(&c[i], mvp, &corner);
}
int i;
for (i = 0; i < 8; i++) {
if (c[i].x > -c[i].w) {
break;
}
}
if (i == 8) {
return true;
}
for (i = 0; i < 8; i++) {
if (c[i].x < c[i].w) {
break;
}
}
if (i == 8) {
return true;
}
for (i = 0; i < 8; i++) {
if (c[i].y > -c[i].w) {
break;
}
}
if (i == 8) {
return true;
}
for (i = 0; i < 8; i++) {
if (c[i].y < c[i].w) {
break;
}
}
if (i == 8) {
return true;
}
for (i = 0; i < 8; i++) {
if (c[i].z > -c[i].w) {
break;
}
}
if (i == 8) {
return true;
}
for (i = 0; i < 8; i++) {
if (c[i].z < c[i].w) {
break;
}
}
return i == 8;
}
#endif // XR_LINEAR_H_
|