summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/simple_concat.cpp
blob: 0420f87aa52fe750d6b2486de7517264e53c39d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "mkldnn_thread.hpp"

#include "simple_concat.hpp"

namespace mkldnn {
namespace impl {
namespace cpu {

using namespace memory_tracking::names;

template <data_type_t data_type>
status_t simple_concat_t<data_type>::execute(const exec_ctx_t &ctx) const {
    auto scratchpad = this->scratchpad(ctx);
    auto iptrs = scratchpad.template get<const data_t *>(key_concat_iptrs);
    auto optrs = scratchpad.template get<data_t *>(key_concat_optrs);
    auto nelems_to_copy = scratchpad.template get<dim_t>(key_concat_nelems);
    auto is = scratchpad.template get<strides_t>(key_concat_istrides);

    const int num_arrs = pd()->n_inputs();
    const int *perm = pd()->perm_, *iperm = pd()->iperm_;
    const int concat_dim = pd()->concat_dim();
    auto o_base_ptr = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);

    for (int a = 0; a < num_arrs; ++a) {
        const memory_desc_wrapper i_d(pd()->src_md(a));
        const memory_desc_wrapper o_d(pd()->src_image_md(a));

        iptrs[a] = CTX_IN_MEM(const data_t *, MKLDNN_ARG_MULTIPLE_SRC + a)
            + i_d.blk_off(0);
        optrs[a] = o_base_ptr + o_d.blk_off(0);
        nelems_to_copy[a] = pd()->nelems_to_concat(i_d);
        for (int i = 0; i < MKLDNN_MAX_NDIMS; i++) {
            if (i < perm[concat_dim])
                is[a][i] = size_t(i_d.blocking_desc().strides[iperm[i]]);
            else
                is[a][i] = 0;
        }
    }

    const memory_desc_wrapper o_d(pd()->src_image_md(0));

    strides_t os = { 0 };
    for (int i = 0; i < perm[concat_dim]; i++)
        os[i] = o_d.blocking_desc().strides[iperm[i]];

    dims_t phys_dims;
    for (size_t i = 0; i < sizeof(phys_dims)/sizeof(phys_dims[0]); i++)
        phys_dims[i] = (i < (size_t)perm[concat_dim])
            ?  o_d.dims()[iperm[i]] / pd()->blocks_[iperm[i]] : 1;

    if (perm[concat_dim] == 0) {
        for (int a = 0; a < num_arrs; ++a) {
            const data_t *i = &iptrs[a][0];
            data_t *o = &optrs[a][0];
            parallel_nd((ptrdiff_t)nelems_to_copy[a],
                    [&](ptrdiff_t e) { o[e] = i[e]; });
        }
    } else {
        parallel_nd(phys_dims[0], phys_dims[1], phys_dims[2], phys_dims[3],
            phys_dims[4], num_arrs,
            [&](dim_t n0, dim_t n1, dim_t n2, dim_t n3, dim_t n4, int a) {
            // XXX: this code may access uninitialized values in is[*][0-4] --
            // that's why we have to set them to zero although this is
            // probably benign
            size_t in_off = is[a][0] * n0 + is[a][1] * n1 + is[a][2] * n2
                    + is[a][3] * n3 + is[a][4] * n4;
            size_t out_off = os[0] * n0 + os[1] * n1 + os[2] * n2
                    + os[3] * n3 + os[4] * n4;
            const data_t *i = &iptrs[a][in_off];
            data_t *o = &optrs[a][out_off];
#if defined(__GNUC__) && !defined(__INTEL_COMPILER)
            // The code below performs data copying: o[e] = i[e]
            // and uses a workaround to make GNU compilers optimize it
            uint8_t *ptro = reinterpret_cast<uint8_t *>(o);
            const uint8_t *ptri = reinterpret_cast<const uint8_t *>(i);
            const dim_t main_part =
                nelems_to_copy[a] * sizeof(data_t) / sizeof(uint32_t);
            const dim_t tail_part =
                nelems_to_copy[a] % sizeof(data_t) / sizeof(uint32_t);

            PRAGMA_OMP_SIMD()
            for (dim_t e = 0; e < main_part; ++e) {
                *(reinterpret_cast<uint32_t *>(ptro))
                    = *(reinterpret_cast<const uint32_t *>(ptri));
                ptro += sizeof(uint32_t);
                ptri += sizeof(uint32_t);
            }
            for (dim_t e = 0; e < tail_part; ++e) {
                *ptro = *ptri;
                ++ptro;
                ++ptri;
            }
#else
            PRAGMA_OMP_SIMD()
            for (dim_t e = 0; e < nelems_to_copy[a]; ++e) o[e] = i[e];
#endif
        });
    }

    return status::success;
}

template struct simple_concat_t<data_type::f32>;
template struct simple_concat_t<data_type::u8>;
template struct simple_concat_t<data_type::s8>;
template struct simple_concat_t<data_type::s32>;

}
}
}