1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef RNN_UTILS_HPP
#define RNN_UTILS_HPP
#include "mkldnn.h"
#include "cpu_rnn_pd.hpp"
#define rnn_elemwise_sig(f) \
void f(const rnn_utils::rnn_conf_t &rnn, acc_data_t *ws_gates_, \
src_data_t *states_t_l_, float *c_states_t_l_, \
src_data_t *states_tm1_l_, float *c_states_tm1_l_, \
float *diff_states_t_l_, float *diff_states_t_lp1_, \
float *diff_states_tp1_l_, float *bias_, float *ws_grid_, \
float *ws_cell_) const
#define rnn_cell_execution_sig(f) \
void f(const rnn_utils::rnn_conf_t &rnn, src_data_t *states_t_l_, \
float *c_states_t_l_, float *diff_states_t_l_, \
weights_data_t **w_layer_, weights_data_t **w_iter_, \
float **bias_, src_data_t *states_t_lm1_, \
src_data_t *states_tm1_l_, float *c_states_tm1_l_, \
float *diff_states_t_lp1_, float *diff_states_tp1_l_, \
float *diff_w_layer_, float *diff_w_iter_, float *diff_bias_, \
acc_data_t *ws_gates_, float *ws_grid_, float *ws_cell_) const
#define rnn_grid_execution_sig(f) \
void f(const rnn_utils::rnn_conf_t &rnn, weights_data_t **weights_layer_, \
weights_data_t **weights_states_, float **bias_, \
src_data_t *ws_states_, float *ws_c_states_, \
float *ws_diff_states_, acc_data_t *ws_gates_, float *ws_cell_, \
float *ws_grid_, float *diff_weights_layer_, \
float *diff_weights_iter_, float *diff_bias_) const
#define rnn_gemm_sig(f) \
void f(const char transA, const char transB, int m, int n, int k, \
const float alpha, const weights_data_t *a_, const int ldA, \
const src_data_t *b_, const int ldB, const float beta, \
acc_data_t *c_, const int ldC) const
#define rnn_bias_prepare_sig(f) \
void f(const rnn_utils::rnn_conf_t &rnn, float **bias_, const float *b_, \
float *scratch_bias_) const
#define rnn_bias_finalize_sig(f) \
void f(const rnn_utils::rnn_conf_t &rnn, float *scratch_bias_, \
const float *w_iter_comp, const float *w_layer_comp) const
#define rnn_weights_assign_sig(f) \
void f(const rnn_utils::rnn_conf_t &rnn, const memory_desc_t *md, int nld, \
int ld, int OC_size, int IC_size, const int n_parts, \
const int *gates_per_part, const size_t *part_weights_pack_size, \
weights_data_t **weights_, const weights_data_t *w_, \
float **bias_, const float *b_, float *scratch_bias_) const
namespace mkldnn {
namespace impl {
namespace cpu {
namespace rnn_utils {
using namespace mkldnn::impl::utils;
enum execution_direction_t {
l2r,
r2l,
bi_concat,
bi_sum,
};
enum data_type_conf_t {
all_f32,
u8u8u8f32,
f32u8f32f32,
u8u8u8u8,
f32u8f32u8
};
struct rnn_conf_t {
execution_direction_t exec_dir;
data_type_conf_t dt_conf;
int n_layer, n_iter, n_dir, n_gates, n_states;
int mb;
int slc, sic, dic, dlc;
int gates_ld, gates_nld, gates_ws_ld;
int n_parts_weights_layer, parts_weights_layer[MKLDNN_RNN_MAX_N_PARTS];
int n_parts_weights_iter, parts_weights_iter[MKLDNN_RNN_MAX_N_PARTS];
int n_bias, n_parts_bias, parts_bias[MKLDNN_RNN_MAX_N_PARTS];
size_t part_weights_iter_pack_size[MKLDNN_RNN_MAX_N_PARTS],
part_weights_layer_pack_size[MKLDNN_RNN_MAX_N_PARTS];
bool weights_layer_is_packed, weights_iter_is_packed;
/* Size of packed data in bytes */
size_t weights_layer_comp_offset, weights_layer_pack_size,
weights_iter_comp_offset, weights_iter_pack_size;
bool copy_bias;
int weights_layer_ld, weights_layer_nld;
int diff_weights_layer_ld, diff_weights_layer_nld;
int weights_iter_ld, weights_iter_nld;
int diff_weights_iter_ld, diff_weights_iter_nld;
int states_nld, states_ws_ld;
int weights_iter_compensation_size, weights_layer_compensation_size;
bool is_fwd, is_training, is_lbr;
bool use_workspace;
/* Size of workspace for each tensor in bytes */
size_t ws_gates_size, ws_states_size, ws_c_states_size, ws_diff_states_size,
ws_cell_comp_size, ws_grid_comp_size, ws_per_cell, ws_bias_size;
bool merge_gemm_iter, merge_gemm_layer, use_jit_gemm, use_layer_packed_gemm,
use_iter_packed_gemm;
};
bool is_ldigo(const memory_desc_wrapper &md);
bool is_ldgoi(const memory_desc_wrapper &md);
int get_good_ld(int dim, int sizeof_dt);
void init_conf(rnn_conf_t &rnn, const rnn_desc_t &rd,
const memory_desc_wrapper &src_layer_d,
const memory_desc_wrapper &src_iter_d,
const memory_desc_wrapper &weights_layer_d,
const memory_desc_wrapper &weights_iter_d,
const memory_desc_wrapper &dst_layer_d);
void set_conf(rnn_conf_t &rnn, const rnn_desc_t &rd,
const memory_desc_wrapper &weights_layer_d,
const memory_desc_wrapper &weights_iter_d,
const memory_desc_wrapper &diff_weights_layer_d,
const memory_desc_wrapper &diff_weights_iter_d);
void set_offsets(const rnn_conf_t &rnn, size_t &ws_gates_offset,
size_t &ws_h_state_offset, size_t &ws_c_state_offset,
size_t &ws_diff_states_offset, size_t &ws_grid_comp_offset,
size_t &ws_cell_comp_offset, size_t &ws_bias_offset,
size_t &scratchpad_size, size_t &workspace_size);
void get_scratchpad_and_workspace_sizes(const rnn_conf_t &rnn,
size_t &scratchpad_size, size_t &workspace_size);
status_t set_expected_desc(
rnn_conf_t &rnn, memory_desc_t &weights_md, bool is_iter);
status_t set_good_strides(memory_desc_t &weights_md, format_tag_t tag);
template <typename T>
struct ws_gates_aoc {
ws_gates_aoc(const rnn_conf_t &rnn, T *data)
: gates_(data, rnn.gates_nld, rnn.gates_ws_ld), DIC_(rnn.dic) {}
T &operator()(int batch, int gate, int dic) {
return gates_(batch, gate * DIC_ + dic);
}
private:
mkldnn::impl::utils::array_offset_calculator<T, 2> gates_;
int DIC_;
};
using ws_gates_aoc_t = ws_gates_aoc<float>;
using ws_gates_aoc_s32_t = ws_gates_aoc<int32_t>;
struct bias_aoc_t {
bias_aoc_t(const rnn_conf_t &rnn, const float *data)
: bias_(data, rnn.n_bias, rnn.dic) {}
const float &operator()(int bias_n, int dic) { return bias_(bias_n, dic); }
private:
mkldnn::impl::utils::array_offset_calculator<const float, 2> bias_;
};
template <typename T>
struct ws_states_aoc {
ws_states_aoc(const rnn_conf_t &rnn, T *data)
: state_(data, rnn.states_nld, rnn.states_ws_ld) {}
T &operator()(int batch, int dic) { return state_(batch, dic); }
private:
mkldnn::impl::utils::array_offset_calculator<T, 2> state_;
};
using ws_states_aoc_t = ws_states_aoc<float>;
using ws_states_aoc_u8_t = ws_states_aoc<uint8_t>;
struct ws_diff_states_aoc_t {
ws_diff_states_aoc_t(const rnn_conf_t &rnn, float *data)
: diff_states_(data, rnn.n_states + 1, rnn.n_iter + 1, rnn.states_nld,
rnn.states_ws_ld) {}
float &operator()(int state_n, int batch, int dic) {
return diff_states_(state_n, 0, batch, dic);
}
private:
mkldnn::impl::utils::array_offset_calculator<float, 4> diff_states_;
};
struct ws_diff_w_iter_aoc_t {
ws_diff_w_iter_aoc_t(const rnn_conf_t &rnn, float *data)
: diff_weights_iter_(
data, rnn.diff_weights_iter_nld, rnn.diff_weights_iter_ld)
, DIC_(rnn.dic) {}
float &operator()(int sic, int gate, int dic) {
return diff_weights_iter_(sic, gate * DIC_ + dic);
}
private:
mkldnn::impl::utils::array_offset_calculator<float, 2> diff_weights_iter_;
int DIC_;
};
}
}
}
}
#endif
|