summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/rnn/rnn_utils.cpp
blob: 1d60415cbcdbadbbc3ad7276173998f03812df4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "c_types_map.hpp"
#include "math_utils.hpp"
#include "mkldnn_thread.hpp"

#include "ref_rnn.hpp"
#include "rnn_utils.hpp"
#include "type_helpers.hpp"

namespace mkldnn {
namespace impl {
namespace cpu {

using namespace mkldnn::impl::utils;
using namespace rnn_utils;
using namespace format_tag;
using namespace rnn_packed_format;
using namespace data_type;

bool rnn_utils::is_ldigo(const memory_desc_wrapper &md) {
    if (md.format_kind() != format_kind::blocked)
        return false;

    auto blk = md.blocking_desc();
    auto str = blk.strides;
    auto dims = md.dims();
    return md.ndims() == 5 && blk.inner_nblks == 0 && str[4] == 1
            && str[3] == dims[4] && str[1] == str[2] * dims[2]
            && str[0] == str[1] * dims[1];
};

bool rnn_utils::is_ldgoi(const memory_desc_wrapper &md) {
    if (md.format_kind() != format_kind::blocked)
        return false;

    auto blk = md.blocking_desc();
    auto str = blk.strides;
    auto dims = md.dims();
    return md.ndims() == 5 && blk.inner_nblks == 0 && str[2] == 1
            && str[3] == dims[4] * str[4] && str[1] == str[3] * dims[3]
            && str[0] == str[1] * dims[1];
};

void rnn_utils::init_conf(rnn_conf_t &rnn, const rnn_desc_t &rd,
        const memory_desc_wrapper &src_layer_d,
        const memory_desc_wrapper &src_iter_d,
        const memory_desc_wrapper &weights_layer_d,
        const memory_desc_wrapper &weights_iter_d,
        const memory_desc_wrapper &dst_layer_d) {
    rnn.is_fwd = utils::one_of(rd.prop_kind, prop_kind::forward_training,
            prop_kind::forward_inference);
    rnn.is_training = utils::one_of(
            rd.prop_kind, prop_kind::forward_training, prop_kind::backward);
    rnn.is_lbr = rd.cell_desc.cell_kind == mkldnn_gru_linear_before_reset;

    switch (rd.direction) {
    case mkldnn_unidirectional_left2right: rnn.exec_dir = l2r; break;
    case mkldnn_unidirectional_right2left: rnn.exec_dir = r2l; break;
    case mkldnn_bidirectional_concat: rnn.exec_dir = bi_concat; break;
    case mkldnn_bidirectional_sum: rnn.exec_dir = bi_sum; break;
    default: break;
    }

    if (everyone_is(f32, src_layer_d.data_type(), dst_layer_d.data_type(),
                weights_layer_d.data_type()))
        rnn.dt_conf = all_f32;
    else if (dst_layer_d.data_type() == u8) {
        if (IMPLICATION(src_iter_d.md_, src_iter_d.data_type() == u8))
            rnn.dt_conf = u8u8u8u8;
        else
            rnn.dt_conf = f32u8f32u8;
    } else {
        if (IMPLICATION(src_iter_d.md_, src_iter_d.data_type() == u8))
            rnn.dt_conf = u8u8u8f32;
        else
            rnn.dt_conf = f32u8f32f32;
    }

    rnn.n_layer = weights_layer_d.dims()[0];
    rnn.n_iter = src_layer_d.dims()[0];
    rnn.n_dir = weights_layer_d.dims()[1];
    rnn.n_gates = weights_layer_d.dims()[3];
    rnn.n_states = mkldnn_rnn_cell_get_states_count(&rd.cell_desc);
    rnn.n_bias = rnn.n_gates + rnn.is_lbr;
    rnn.mb = src_layer_d.dims()[1];
    rnn.sic = weights_iter_d.dims()[2];
    rnn.slc = weights_layer_d.dims()[2];
    rnn.dic = weights_layer_d.dims()[4];
    rnn.dlc = dst_layer_d.dims()[2];

    rnn.gates_ld = rnn.dic * rnn.n_gates;
    rnn.gates_nld = rnn.mb;
    rnn.states_nld = rnn.mb;

    /* Set the correct number of weights parts */
    bool is_orig_gru = rd.cell_desc.cell_kind == alg_kind::vanilla_gru;
    rnn.n_parts_weights_layer = 1;
    rnn.parts_weights_layer[0] = rnn.n_gates;
    rnn.parts_weights_layer[1] = 0;

    rnn.n_parts_weights_iter = is_orig_gru ? 2 : 1;
    rnn.parts_weights_iter[0] = is_orig_gru ? 2 : rnn.n_gates;
    rnn.parts_weights_iter[1] = is_orig_gru ? 1 : 0;

    rnn.n_parts_bias = 1;
    rnn.parts_bias[0] = rnn.n_bias;
    rnn.parts_bias[1] = 0;

    /* Decide wich gemm implementation to use: packed/nonpacked jit/cblas
     * and if to mergre gemm across iterations */
    bool is_int8 = rnn.dt_conf != all_f32;
    rnn.merge_gemm_layer = ((rnn.is_fwd && rnn.mb < 128) || !rnn.is_fwd)
            || is_int8;
    bool is_gru = utils::one_of(rd.cell_desc.cell_kind, alg_kind::vanilla_gru,
            alg_kind::gru_linear_before_reset);
    rnn.merge_gemm_iter = !(rnn.is_fwd || is_gru) || is_int8;
    bool is_inference = !rnn.is_training;

    rnn.use_jit_gemm = !mayiuse(avx512_mic)
            && ((is_inference && (rnn.n_layer > 1 || rnn.mb < 100))
                || (rnn.is_training && rnn.dic < 500));

    /* Decide to copy bias */
    rnn.copy_bias = rnn.dt_conf != all_f32;

#if USE_MKL_PACKED_GEMM
    rnn.use_layer_packed_gemm
            = (weights_layer_d.format_kind() == format_kind::any
                      && rnn.slc > 760 && rnn.dic > 760 && is_inference)
            || is_int8; // packed gemm is the only supported option for int8
    rnn.use_iter_packed_gemm
            = (weights_iter_d.format_kind() == format_kind::any && rnn.sic > 760
                      && rnn.dic > 760 && is_inference)
            || is_int8;
#else
    rnn.use_layer_packed_gemm = false;
    rnn.use_iter_packed_gemm = false;
#endif

    /* Set packed gemm sizes */
    if (rnn.use_layer_packed_gemm) {
        rnn.weights_layer_pack_size = 0;
        for (int p = 0; p < rnn.n_parts_weights_layer; p++) {
            int m_p = rnn.is_fwd
                ? (rnn.parts_weights_layer[p] * rnn.dic)
                : rnn.slc;
            int k_p = rnn.is_fwd
                ? rnn.slc
                : (rnn.parts_weights_layer[p] * rnn.dic);
            int n_p = rnn.merge_gemm_layer ? rnn.mb * rnn.n_iter : rnn.mb;

#if USE_MKL_PACKED_GEMM
            if (rnn.dt_conf == all_f32)
                rnn.part_weights_layer_pack_size[p] = cblas_sgemm_pack_get_size(
                        CblasAMatrix, m_p, n_p, k_p);
            else
                rnn.part_weights_layer_pack_size[p]
                        = cblas_gemm_s8u8s32_pack_get_size(
                                CblasAMatrix, m_p, n_p, k_p);
#else
            UNUSED(m_p);
            UNUSED(k_p);
            UNUSED(n_p);
            rnn.part_weights_layer_pack_size[p] = 0;
#endif
            rnn.weights_layer_pack_size += rnn.n_layer * rnn.n_dir
                    * rnn.part_weights_layer_pack_size[p];
        }
        rnn.weights_layer_comp_offset = rnn.weights_layer_pack_size;
        rnn.weights_layer_pack_size += rnn.dt_conf == all_f32 ? 0 : rnn.n_layer
                        * rnn.n_dir * rnn.n_gates * rnn.dlc * sizeof(float);
    }

    if (rnn.use_iter_packed_gemm) {
        rnn.weights_iter_pack_size = 0;
        for (int p = 0; p < rnn.n_parts_weights_iter; p++) {
            int m_p = rnn.is_fwd ? (rnn.parts_weights_iter[p] * rnn.dic) :
                                   rnn.sic;
            int k_p = rnn.is_fwd ? rnn.sic :
                                   (rnn.parts_weights_iter[p] * rnn.dic);
            int n_p = rnn.merge_gemm_iter ? rnn.mb * rnn.n_iter : rnn.mb;

#if USE_MKL_PACKED_GEMM
            if (rnn.dt_conf == all_f32)
                rnn.part_weights_iter_pack_size[p] = cblas_sgemm_pack_get_size(
                        CblasAMatrix, m_p, n_p, k_p);
            else
                rnn.part_weights_iter_pack_size[p]
                        = cblas_gemm_s8u8s32_pack_get_size(
                                CblasAMatrix, m_p, n_p, k_p);
#else
            UNUSED(m_p);
            UNUSED(k_p);
            UNUSED(n_p);
            rnn.part_weights_iter_pack_size[p] = 0;
#endif
            rnn.weights_iter_pack_size += rnn.n_layer * rnn.n_dir
                    * rnn.part_weights_iter_pack_size[p];
        }
        rnn.weights_iter_comp_offset = rnn.weights_iter_pack_size;
        rnn.weights_iter_pack_size += rnn.dt_conf == all_f32 ? 0 : rnn.n_layer
                        * rnn.n_dir * rnn.n_gates * rnn.dic * sizeof(float);
    }

}

void rnn_utils::set_conf(rnn_conf_t &rnn, const rnn_desc_t &rd,
        const memory_desc_wrapper &weights_layer_d,
        const memory_desc_wrapper &weights_iter_d,
        const memory_desc_wrapper &diff_weights_layer_d,
        const memory_desc_wrapper &diff_weights_iter_d) {

    /* Set leading dimensions for input weights arrays depending on input format
     */
    rnn.weights_layer_is_packed
            = weights_layer_d.format_kind() == format_kind::rnn_packed;
    rnn.weights_iter_is_packed
            = weights_iter_d.format_kind() == format_kind::rnn_packed;

    auto set_dims = [&](const memory_desc_wrapper &md, int &ld, int &nld) {
        ld = 0; nld = 0;
        if (md.is_blocking_desc()) {
            if (is_ldigo(md)) {
                ld = (int)md.blocking_desc().strides[2];
                nld = md.dims()[2];
            } else if (is_ldgoi(md)) {
                ld = (int)md.blocking_desc().strides[4];
                nld = md.dims()[3] * md.dims()[4];
            } else
                assert(!"unsupported weights format");
        }
    };
    set_dims(weights_layer_d, rnn.weights_layer_ld, rnn.weights_layer_nld);
    set_dims(weights_iter_d, rnn.weights_iter_ld, rnn.weights_iter_nld);
    if (!rnn.is_fwd) {
        set_dims(diff_weights_layer_d, rnn.diff_weights_layer_ld,
                rnn.diff_weights_layer_nld);
        set_dims(diff_weights_iter_d, rnn.diff_weights_iter_ld,
                rnn.diff_weights_iter_nld);
    }

    int sizeof_states_dt
            = rnn.dt_conf == all_f32 ? sizeof(float) : sizeof(uint8_t);
    rnn.states_ws_ld
            = get_good_ld(nstl::max(rnn.slc, nstl::max(rnn.sic, rnn.dic)),
                sizeof_states_dt);
    rnn.gates_ws_ld = get_good_ld(rnn.gates_ld, sizeof(float));

    /* Set workspace sizes to store:
     * states to copmute a pass
     * diff states to copmute bwd pass (training only)
     * intermediate results from the gates
     */
    rnn.use_workspace = rnn.is_training;
    rnn.ws_states_size = (size_t)(rnn.n_layer + 1) * rnn.n_dir
            * (rnn.n_iter + 1) * rnn.mb * rnn.states_ws_ld * sizeof_states_dt;
    bool is_lstm = rd.cell_desc.cell_kind == mkldnn_vanilla_lstm;
    rnn.ws_c_states_size = is_lstm
            ? (size_t)(rnn.n_layer + 1) * rnn.n_dir * (rnn.n_iter + 1) * rnn.mb
                    * rnn.states_ws_ld * sizeof(float)
            : 0;
    rnn.ws_diff_states_size = rnn.is_training
            ? (size_t)(rnn.n_layer + 1) * rnn.n_dir * (rnn.n_iter + 1)
                    * (rnn.n_states + 1) * rnn.mb * rnn.states_ws_ld
                    * sizeof(float)
            : (size_t)0;
    rnn.ws_gates_size = (size_t)rnn.n_layer * rnn.n_dir * rnn.n_iter * rnn.mb
            * rnn.gates_ws_ld * sizeof(float);

    /* set other sizes */
    rnn.ws_per_cell = (size_t)rnn.is_lbr * rnn.mb * rnn.dic * sizeof(float);
    rnn.ws_cell_comp_size
            = rnn.is_lbr || rnn.dt_conf != all_f32
                ? (size_t) rnn.gates_nld * rnn.gates_ws_ld * sizeof(float)
                : 0;
    rnn.ws_grid_comp_size = (size_t)rnn.is_lbr * rnn.is_training * rnn.n_layer
            * rnn.n_dir * rnn.n_iter * rnn.ws_per_cell * sizeof(float);
    rnn.ws_bias_size = (size_t)rnn.n_layer * rnn.n_dir * rnn.n_bias * rnn.dic
            * sizeof(float);
}

int rnn_utils::get_good_ld(int dim, int sizeof_dt) {
    // we want matrices leading dimentions to be 64-byte aligned,
    // and not divisible by 256 to avoid 4K aliasing effects
    int ld = rnd_up(dim, 64 / sizeof_dt);
    return (ld % 256 == 0) ? ld + 64 / sizeof_dt : ld;
}

void rnn_utils::set_offsets(const rnn_conf_t &rnn, size_t &ws_gates_offset,
        size_t &ws_states_offset, size_t &ws_c_states_offset,
        size_t &ws_diff_states_offset, size_t &ws_grid_comp_offset,
        size_t &ws_cell_comp_offset, size_t &ws_bias_offset,
        size_t &scratchpad_size, size_t &workspace_size) {

    const size_t page_size = 4096; // 2097152;
    size_t current_offset;
    /* Mandatory workspaces: go to workspace if use_workspace, scratchpad
     * otherwise */
    current_offset = 0; // assumes the workspace base pointer is page aligned
    ws_gates_offset = current_offset;
    current_offset += rnn.ws_gates_size;

    current_offset = utils::rnd_up(current_offset, page_size);
    ws_states_offset = current_offset;
    current_offset += rnn.ws_states_size;

    current_offset = utils::rnd_up(current_offset, page_size);
    ws_c_states_offset = current_offset;
    current_offset += rnn.ws_c_states_size;

    current_offset = utils::rnd_up(current_offset, page_size);
    ws_diff_states_offset = current_offset;
    current_offset += rnn.ws_diff_states_size;

    current_offset = utils::rnd_up(current_offset, page_size);
    ws_grid_comp_offset = current_offset;
    current_offset += rnn.ws_grid_comp_size;

    current_offset = utils::rnd_up(current_offset, page_size);
    ws_cell_comp_offset = current_offset;
    current_offset += rnn.ws_cell_comp_size;

    workspace_size = rnn.use_workspace ? current_offset : 0;

    /* Optional scratchpads */
    // Assumes the scratchpad base pointer is page aligned.
    // If use_workspace, the following goes to scratchpad alone,
    // otherwise, all goes to scratchpad and continue incrementing offset
    current_offset = rnn.use_workspace ? 0 : current_offset;

    if (rnn.copy_bias) {
        current_offset = utils::rnd_up(current_offset, page_size);
        ws_bias_offset = current_offset;
        current_offset += rnn.ws_bias_size;
    }

    scratchpad_size = current_offset;
}

void rnn_utils::get_scratchpad_and_workspace_sizes(const rnn_conf_t &rnn,
        size_t &scratchpad_size, size_t &workspace_size) {
    size_t ws_gates_offset, ws_states_offset, ws_c_states_offset,
            ws_diff_states_offset, ws_grid_comp_offset, ws_cell_comp_offset,
            ws_bias_offset;
    set_offsets(rnn, ws_gates_offset, ws_states_offset, ws_diff_states_offset,
            ws_c_states_offset, ws_grid_comp_offset, ws_cell_comp_offset,
            ws_bias_offset, scratchpad_size, workspace_size);
}

status_t rnn_utils::set_good_strides(
        memory_desc_t &weights_md, format_tag_t tag) {
    auto &strides = weights_md.format_desc.blocking.strides;
    auto dims = weights_md.dims;

    if (tag == ldigo) {
        strides[2] = rnn_utils::get_good_ld((int)strides[2],
                (int)types::data_type_size(weights_md.data_type));
        strides[1] = dims[2] * strides[2];
        strides[0] = dims[1] * strides[1];
    } else if (tag == ldgoi) {
        strides[4] = rnn_utils::get_good_ld((int)strides[4],
                (int)types::data_type_size(weights_md.data_type));
        strides[3] = dims[4] * strides[4];
        strides[1] = dims[3] * strides[3];
        strides[0] = dims[1] * strides[1];
    } else
        return status::unimplemented;

    return status::success;
}

status_t rnn_utils::set_expected_desc(rnn_conf_t &rnn,
        memory_desc_t &weights_md, bool is_iter) {
    using namespace format_tag;
    bool use_packed_gemm = is_iter
        ? rnn.use_iter_packed_gemm
        : rnn.use_layer_packed_gemm;
    if (use_packed_gemm) {
        weights_md.format_kind = format_kind::rnn_packed;
        rnn_packed_desc_t &rnn_pdata = weights_md.format_desc.rnn_packed_desc;
        rnn_pdata.format = rnn.is_fwd ? mkldnn_ldigo_p : mkldnn_ldgoi_p;
        if (is_iter) {
            rnn_pdata.n = rnn.mb;
            rnn_pdata.n_parts = rnn.n_parts_weights_iter;
            array_copy(rnn_pdata.parts, rnn.parts_weights_iter,
                    MKLDNN_RNN_MAX_N_PARTS);
            array_copy(rnn_pdata.part_pack_size,
                    rnn.part_weights_iter_pack_size, MKLDNN_RNN_MAX_N_PARTS);
            rnn_pdata.offset_compensation = rnn.weights_iter_comp_offset;
            rnn_pdata.size = rnn.weights_iter_pack_size;
        } else {
            rnn_pdata.n = rnn.merge_gemm_layer ? rnn.n_iter * rnn.mb : rnn.mb;
            rnn_pdata.n_parts = rnn.n_parts_weights_layer;
            array_copy(rnn_pdata.parts, rnn.parts_weights_layer,
                    MKLDNN_RNN_MAX_N_PARTS);
            array_copy(rnn_pdata.part_pack_size,
                    rnn.part_weights_layer_pack_size, MKLDNN_RNN_MAX_N_PARTS);
            rnn_pdata.offset_compensation = rnn.weights_layer_comp_offset;
            rnn_pdata.size = rnn.weights_layer_pack_size;
        }
    } else {
        CHECK(memory_desc_init_by_tag(weights_md, rnn.is_fwd ? ldigo : ldgoi));
        // Adjust strides for good leading dimension in GEMM
        CHECK(set_good_strides(weights_md, rnn.is_fwd ? ldigo : ldgoi));
    }
    return status::success;
}

}
}
}