1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef CPU_REF_RNN_HPP
#define CPU_REF_RNN_HPP
#include <assert.h>
#include "c_types_map.hpp"
#include "memory_tracking.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"
#include "../cpu_isa_traits.hpp"
#include "../gemm/os_blas.hpp"
#include "cpu_rnn_pd.hpp"
#include "../cpu_primitive.hpp"
#include "rnn_utils.hpp"
#include "jit_uni_rnn_postgemm.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
template <alg_kind_t alg_kind, prop_kind_t prop_kind>
float activation(float s, float alpha, float cliping, float dd);
template <prop_kind_t aprop, impl::data_type_t src_type,
impl::data_type_t weights_type>
struct _ref_rnn_common_t : public cpu_primitive_t {
typedef typename prec_traits<src_type>::type src_data_t;
typedef typename prec_traits<weights_type>::type weights_data_t;
typedef typename utils::conditional<src_type == data_type::u8, int32_t,
float>::type acc_data_t;
using class_name = _ref_rnn_common_t<aprop, src_type, weights_type>;
typedef rnn_elemwise_sig((class_name::*elemwise_f));
typedef rnn_cell_execution_sig((class_name::*cell_execution_f));
typedef rnn_grid_execution_sig((class_name::*grid_execution_f));
typedef rnn_gemm_sig((class_name::*gemm_t));
typedef rnn_bias_prepare_sig((class_name::*bias_prepare_t));
typedef rnn_bias_finalize_sig((class_name::*bias_finalize_t));
typedef rnn_weights_assign_sig((class_name::*weights_assign_t));
using base_pd_t =
typename utils::conditional<false || aprop == prop_kind::forward,
cpu_rnn_fwd_pd_t, cpu_rnn_bwd_pd_t>::type;
struct pd_t : public base_pd_t {
using base_pd_t::base_pd_t;
DECLARE_COMMON_PD_T("ref:any", class_name);
status_t init() {
using namespace prop_kind;
using namespace utils;
using namespace format_tag;
using namespace rnn_utils;
const alg_kind_t cell_kind = this->desc()->cell_desc.cell_kind;
data_type_t src_layer_dt = this->desc()->src_layer_desc.data_type;
data_type_t weights_iter_dt
= this->desc()->weights_iter_desc.data_type;
data_type_t weights_layer_dt
= this->desc()->weights_layer_desc.data_type;
bool ok = true
&& one_of(cell_kind, alg_kind::vanilla_rnn,
alg_kind::vanilla_lstm, alg_kind::vanilla_gru,
alg_kind::gru_linear_before_reset)
&& IMPLICATION(aprop == prop_kind::forward,
one_of(this->desc()->prop_kind, forward_training,
forward_inference))
&& IMPLICATION(aprop == backward,
one_of(this->desc()->prop_kind, backward))
&& src_layer_dt == src_type
&& everyone_is(
weights_type, weights_iter_dt, weights_layer_dt)
&& this->set_default_params() == status::success
&& this->with_bias();
if (!ok)
return status::unimplemented;
init_conf(rnn_, *this->desc(), this->src_md(0), this->src_md(1),
this->weights_md(0), this->weights_md(1), this->dst_md(0));
if (rnn_.dt_conf == all_f32)
ok = ok && this->attr()->has_default_values();
// Set weights descriptors to desired format
memory_desc_t new_weights_layer_md = *this->weights_md(0);
CHECK(set_expected_desc(rnn_, new_weights_layer_md, false));
if (this->weights_layer_md_.format_kind == format_kind::any) {
this->weights_layer_md_ = new_weights_layer_md;
} else if (this->weights_layer_md_.format_kind
== format_kind::rnn_packed) {
if (this->weights_layer_md_ != new_weights_layer_md)
return status::unimplemented;
}
memory_desc_t new_weights_iter_md = *this->weights_md(1);
CHECK(set_expected_desc(rnn_, new_weights_iter_md, true));
if (this->weights_iter_md_.format_kind == format_kind::any) {
this->weights_iter_md_ = new_weights_iter_md;
} else if (this->weights_iter_md_.format_kind
== format_kind::rnn_packed) {
if (this->weights_iter_md_ != new_weights_iter_md)
return status::unimplemented;
}
CHECK(this->check_layout_consistency());
set_conf(rnn_, *this->desc(), this->weights_md(0),
this->weights_md(1), this->diff_weights_md(0),
this->diff_weights_md(1));
size_t scratchpad_sz{0}, ws_sz{0};
get_scratchpad_and_workspace_sizes(rnn_, scratchpad_sz, ws_sz);
// initialize the workspace if needed
if (rnn_.is_training) {
dims_t ws_dims = { (int)ws_sz };
mkldnn_memory_desc_init_by_tag(&this->ws_md_, 1, ws_dims,
data_type::u8, format_tag::x);
}
init_scratchpad(scratchpad_sz);
return status::success;
}
rnn_utils::rnn_conf_t rnn_;
private:
void init_scratchpad(size_t scratchpad_sz) {
using namespace memory_tracking::names;
auto scratchpad = this->scratchpad_registry().registrar();
scratchpad.book(key_rnn_space, sizeof(float) * scratchpad_sz, 4096);
int max_nparts = this->cell_kind() == alg_kind::vanilla_gru ? 2 : 1;
int ptr_wei_sz = rnn_.n_layer * rnn_.n_dir * max_nparts;
scratchpad.book(key_rnn_ptrs_wei_layer,
sizeof(float *) * ptr_wei_sz);
scratchpad.book(key_rnn_ptrs_wei_iter,
sizeof(float *) * ptr_wei_sz);
scratchpad.book(key_rnn_ptrs_bia,
sizeof(float *) * ptr_wei_sz);
}
};
_ref_rnn_common_t(const pd_t *apd)
: cpu_primitive_t(apd, true), rnn_postgemm_(nullptr) {
/// @todo set max_feature_size assuming that we limit the number of
/// iterations and layer to one if slc != dic and sic != dic
/// respectively
bias_preparation_func = &class_name::bias_prepare;
bias_finalization_func = &class_name::bias_finalize;
auto set_gemm_funcs
= [](bool packed_gemm, gemm_t &g, weights_assign_t &a) {
if (packed_gemm) {
g = &class_name::packed_gemm;
a = &class_name::assign_packed_weights;
} else {
g = &class_name::gemm;
a = &class_name::assign_weights;
}
};
set_gemm_funcs(pd()->rnn_.use_iter_packed_gemm, gemm_iter_func,
weights_iter_assign_func);
set_gemm_funcs(pd()->rnn_.use_layer_packed_gemm, gemm_layer_func,
weights_layer_assign_func);
switch (pd()->cell_kind()) {
case alg_kind::vanilla_lstm:
cell_func = &class_name::cell_execution;
if (aprop == prop_kind::forward) {
if (mayiuse(avx512_core))
rnn_postgemm_ = new jit_uni_lstm_postgemm_kernel_fwd<avx512_core, src_type>(
pd()->rnn_, pd()->attr());
else if (mayiuse(avx2))
rnn_postgemm_ = new jit_uni_lstm_postgemm_kernel_fwd<avx2, src_type>(
pd()->rnn_, pd()->attr());
else if (mayiuse(sse42))
rnn_postgemm_ = new jit_uni_lstm_postgemm_kernel_fwd<sse42, src_type>(
pd()->rnn_, pd()->attr());
assert(rnn_postgemm_ != nullptr);
rnn_postgemm_->init();
}
elemwise_func = &class_name::lstm_elemwise;
break;
case alg_kind::vanilla_rnn: // @todo switch on cell kind
cell_func = &class_name::cell_execution;
elemwise_func = &class_name::rnn_elemwise;
switch (pd()->activation_kind()) {
case alg_kind::eltwise_relu:
activation_func = &activation<alg_kind::eltwise_relu, aprop>;
break;
case alg_kind::eltwise_tanh:
activation_func = &activation<alg_kind::eltwise_tanh, aprop>;
break;
case alg_kind::eltwise_logistic:
activation_func = &activation<alg_kind::eltwise_logistic, aprop>;
break;
default: break;
}
break;
case alg_kind::vanilla_gru:
cell_func = &class_name::cell_execution_gru;
break;
case alg_kind::gru_linear_before_reset:
cell_func = &class_name::cell_execution_gru_lbr;
elemwise_func = &class_name::gru_lbr_elemwise;
break;
default: break;
}
grid_computation = &class_name::linear_execution;
size_t scratchpad_size, workspace_size;
rnn_utils::set_offsets(pd()->rnn_, ws_gates_offset_, ws_states_offset_,
ws_c_states_offset_, ws_diff_states_offset_,
ws_grid_comp_offset_, ws_cell_comp_offset_,
ws_bias_offset_, scratchpad_size, workspace_size);
}
~_ref_rnn_common_t() {}
// typedef typename prec_traits::type data_t;
virtual status_t execute(const exec_ctx_t &ctx) const override {
execute_(ctx);
return status::success;
}
private:
void execute_(const exec_ctx_t &ctx) const;
rnn_grid_execution_sig(linear_execution);
rnn_cell_execution_sig(cell_execution);
rnn_cell_execution_sig(cell_execution_gru);
rnn_cell_execution_sig(cell_execution_gru_lbr);
rnn_elemwise_sig(rnn_elemwise);
rnn_elemwise_sig(lstm_elemwise);
rnn_elemwise_sig(gru_lbr_elemwise);
rnn_gemm_sig(gemm);
rnn_gemm_sig(packed_gemm);
rnn_bias_prepare_sig(bias_prepare);
rnn_bias_finalize_sig(bias_finalize);
rnn_weights_assign_sig(assign_weights);
rnn_weights_assign_sig(assign_packed_weights);
float (*activation_func)(float dd, float s, float alpha, float cliping);
void copy_init_layer(const rnn_utils::rnn_conf_t &rnn,
src_data_t *ws_states_, float *ws_diff_states_,
const src_data_t *xt_, const float *diff_dst_layer) const;
template <typename input_data_t>
void copy_init_iter(const rnn_utils::rnn_conf_t &rnn,
src_data_t *ws_states_, float *ws_c_states, float *ws_diff_states_,
const input_data_t *firstit_states_,
const float *diff_dst_iter) const;
template <typename dst_data_t>
void copy_res_layer(const rnn_utils::rnn_conf_t &rnn,
dst_data_t *dst_layer_, float *diff_src_layer,
const src_data_t *ws_states_, const float *ws_diff_states_) const;
template <typename output_data_t>
void copy_res_iter(const rnn_utils::rnn_conf_t &rnn,
output_data_t *dst_iter_, float *diff_src_iter,
const src_data_t *ws_states_, float *ws_c_states,
const float *ws_diff_states_) const;
void gates_reduction(const rnn_utils::rnn_conf_t &rnn,
const acc_data_t *ws_gates_, float *diff_bias_) const;
const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
size_t ws_gates_offset_;
size_t ws_states_offset_;
size_t ws_c_states_offset_;
size_t ws_bias_offset_;
size_t ws_diff_states_offset_;
size_t ws_grid_comp_offset_;
size_t ws_cell_comp_offset_;
jit_uni_rnn_postgemm_kernel *rnn_postgemm_;
grid_execution_f grid_computation;
cell_execution_f cell_func;
bias_prepare_t bias_preparation_func;
bias_finalize_t bias_finalization_func;
weights_assign_t weights_layer_assign_func;
weights_assign_t weights_iter_assign_func;
gemm_t gemm_layer_func;
gemm_t gemm_iter_func;
elemwise_f elemwise_func;
};
using ref_rnn_fwd_f32_t = _ref_rnn_common_t<prop_kind::forward, data_type::f32, data_type::f32>;
using ref_rnn_bwd_f32_t = _ref_rnn_common_t<prop_kind::backward, data_type::f32, data_type::f32>;
using ref_rnn_fwd_u8s8_t = _ref_rnn_common_t<prop_kind::forward, data_type::u8, data_type::s8>;
}
}
}
#endif
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s
|