1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
* Cell execution of Vanilla RNN
*/
#include "math_utils.hpp"
#include "mkldnn_thread.hpp"
#include "ref_rnn.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
using namespace mkldnn::impl::utils;
using namespace mkldnn::impl::math;
using namespace rnn_utils;
template <>
float activation<alg_kind::eltwise_relu, prop_kind::forward>(
float dd, float s, float alpha, float cliping) {
return relu_fwd<float>(s, alpha);
}
template <>
float activation<alg_kind::eltwise_relu, prop_kind::backward>(
float dd, float s, float alpha, float cliping) {
return relu_bwd<float>(dd, s, alpha);
}
template <>
float activation<alg_kind::eltwise_tanh, prop_kind::forward>(
float dd, float s, float alpha, float cliping) {
return tanh_fwd<float>(s);
}
template <>
float activation<alg_kind::eltwise_tanh, prop_kind::backward>(
float dd, float s, float alpha, float cliping) {
return dd * one_m_square<float>(s);
}
template <>
float activation<alg_kind::eltwise_logistic, prop_kind::forward>(
float dd, float s, float alpha, float cliping) {
return logistic_fwd<float>(s);
}
template <>
float activation<alg_kind::eltwise_logistic, prop_kind::backward>(
float dd, float s, float alpha, float cliping) {
return dd * x_m_square<float>(s);
}
template <>
rnn_elemwise_sig(ref_rnn_fwd_f32_t::rnn_elemwise) {
ws_gates_aoc_t ws_gates(rnn, ws_gates_);
bias_aoc_t bias(rnn, bias_);
ws_states_aoc_t states_t_l(rnn, states_t_l_);
ws_states_aoc_t states_tm1_l(rnn, states_tm1_l_);
parallel_nd(rnn.mb, [&](int i) {
for (int j = 0; j < rnn.dic; j++) {
const float h
= activation_func(0, ws_gates(i, 0, j) + bias(0, j), 0, 0);
ws_gates(i, 0, j) = states_t_l(i, j) = h;
}
});
}
template <>
rnn_elemwise_sig(ref_rnn_fwd_u8s8_t::rnn_elemwise) {
assert(!"VANILLA RNN int8 is not supported");
}
template <>
rnn_elemwise_sig(ref_rnn_bwd_f32_t::rnn_elemwise) {
ws_gates_aoc_t ws_gates(rnn, ws_gates_);
bias_aoc_t bias(rnn, bias_);
ws_states_aoc_t states_t_l(rnn, states_t_l_);
ws_states_aoc_t states_tm1_l(rnn, states_tm1_l_);
ws_diff_states_aoc_t diff_states_t_l(rnn, diff_states_t_l_);
ws_diff_states_aoc_t diff_states_tp1_l(rnn, diff_states_tp1_l_);
ws_diff_states_aoc_t diff_states_t_lp1(rnn, diff_states_t_lp1_);
parallel_nd(rnn.mb, [&](int i) {
for (int j = 0; j < rnn.dic; ++j) {
const float dH = diff_states_t_lp1(rnn.n_states, i, j)
+ diff_states_tp1_l(0, i, j);
auto g = ws_gates(i, 0, j);
ws_gates(i, 0, j) = activation_func(dH, g, 0, 0);
}
});
}
}
}
}
|