summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/ref_softmax.hpp
blob: 5cb74d8007a94233e6de95f92abb967963bf538d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef CPU_REF_SOFTMAX_HPP
#define CPU_REF_SOFTMAX_HPP

#include <assert.h>

#include "c_types_map.hpp"
#include "memory_tracking.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"

#include "cpu_softmax_pd.hpp"
#include "cpu_primitive.hpp"

namespace mkldnn {
namespace impl {
namespace cpu {

template <impl::data_type_t data_type>
struct ref_softmax_fwd_t: public cpu_primitive_t {
    struct pd_t: public cpu_softmax_fwd_pd_t {
        using cpu_softmax_fwd_pd_t::cpu_softmax_fwd_pd_t;

        DECLARE_COMMON_PD_T("ref:any", ref_softmax_fwd_t);

        status_t init() {
            bool ok = true
                && is_fwd()
                && src_md()->data_type == data_type
                && attr()->has_default_values();
            if (!ok) return status::unimplemented;

            init_scratchpad();

            return status::success;
        }

    private:
        void init_scratchpad() {
            const int inner_size = utils::array_product(
                    desc()->data_desc.dims + desc()->softmax_axis + 1,
                    desc()->data_desc.ndims - desc()->softmax_axis - 1);

            if (inner_size > 1) {
                auto scratchpad = scratchpad_registry().registrar();
                scratchpad.book(memory_tracking::names::key_softmax_reduction,
                        sizeof(data_t) * 2 * inner_size);
            }
        }
    };

    ref_softmax_fwd_t(const pd_t *apd): cpu_primitive_t(apd)
    {
        auto ndims = pd()->desc()->data_desc.ndims;
        auto dims = pd()->desc()->data_desc.dims;
        auto axis = pd()->desc()->softmax_axis;

        outer_size_ = utils::array_product(dims, axis);
        channels_ = dims[axis];
        inner_size_ = utils::array_product(dims + axis + 1, ndims - axis - 1);

        const memory_desc_wrapper data_d(pd()->src_md());

        bool no_axis_blocking = true;
        for (int iblk = 0; iblk < data_d.blocking_desc().inner_nblks; ++iblk)
            if (data_d.blocking_desc().inner_idxs[iblk] == axis)
                no_axis_blocking = false;

        use_dense_ = inner_size_ == 1 && data_d.is_dense()
            && no_axis_blocking
            && data_d.blocking_desc().strides[axis] == 1;
    }

    typedef typename prec_traits<data_type>::type data_t;

    virtual status_t execute(const exec_ctx_t &ctx) const override {
        if (use_dense_)
            execute_forward_dense(ctx);
        else
            execute_forward_generic(ctx);
        return status::success;
    }

private:
    void execute_forward_dense(const exec_ctx_t &ctx) const;
    void execute_forward_generic(const exec_ctx_t &ctx) const;

    void _max(int n, const data_t *x, data_t *max_data) const;
    void _sub(int n, data_t alpha, const data_t *x, data_t *y) const;
    void _exp(int n, const data_t *a, data_t *r) const;
    void _sum(int n, const data_t *x, data_t *sum_data) const;
    void _scal(int n, data_t alpha, data_t *x) const;

    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }

    bool use_dense_;
    int outer_size_, channels_, inner_size_;
};

template <impl::data_type_t data_type>
struct ref_softmax_bwd_t: public cpu_primitive_t {
    struct pd_t: public cpu_softmax_bwd_pd_t {
        using cpu_softmax_bwd_pd_t::cpu_softmax_bwd_pd_t;

        DECLARE_COMMON_PD_T("ref:any", ref_softmax_bwd_t);

        status_t init() {
            bool ok = true
                && !is_fwd()
                && utils::everyone_is(data_type,
                        dst_md()->data_type,
                        diff_src_md()->data_type)
                && attr()->has_default_values();
            if (!ok) return status::unimplemented;

            return status::success;
        }
    };

    ref_softmax_bwd_t(const pd_t *apd): cpu_primitive_t(apd) {
        auto dims = pd()->desc()->diff_desc.dims;
        auto axis = pd()->desc()->softmax_axis;
        auto ndims = pd()->desc()->diff_desc.ndims;

        outer_size_ = utils::array_product(dims, axis);
        channels_ = dims[axis];
        inner_size_ = utils::array_product(dims + axis + 1, ndims - axis - 1);

        const memory_desc_wrapper data_d(pd()->dst_md());
        const memory_desc_wrapper diff_d(pd()->diff_dst_md());

        bool no_axis_blocking = true;
        for (int iblk = 0; iblk < diff_d.blocking_desc().inner_nblks; ++iblk)
            if (diff_d.blocking_desc().inner_idxs[iblk] == axis)
                no_axis_blocking = false;

        use_dense_ = true
            && inner_size_ == 1
            && diff_d == data_d
            && diff_d.is_dense()
            && no_axis_blocking
            && diff_d.blocking_desc().strides[axis] == 1;
    }

    typedef typename prec_traits<data_type>::type data_t;

    virtual status_t execute(const exec_ctx_t &ctx) const override {
        if (use_dense_)
            execute_backward_dense(ctx);
        else
            execute_backward_generic(ctx);
        return status::success;
    }

private:
    void execute_backward_dense(const exec_ctx_t &ctx) const;
    void execute_backward_generic(const exec_ctx_t &ctx) const;
    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }

    bool use_dense_;
    int outer_size_, channels_, inner_size_;
};


}
}
}

#endif

// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s