1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <assert.h>
#include <math.h>
#include "c_types_map.hpp"
#include "type_helpers.hpp"
#include "math_utils.hpp"
#include "mkldnn_thread.hpp"
#include "nstl.hpp"
#include "nhwc_pooling.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
#define MEM_D(name) name##_d
#define DECLARE_READ_STRIDES(name) \
const size_t name##_n_stride = MEM_D(name).blocking_desc().strides[0]; \
const size_t name##_d_stride = (!is_3d) \
? 0 \
: MEM_D(name).blocking_desc().strides[2]; \
const size_t name##_h_stride = (!is_3d) \
? MEM_D(name).blocking_desc().strides[2] \
: MEM_D(name).blocking_desc().strides[3]; \
const size_t name##_w_stride = (!is_3d) \
? MEM_D(name).blocking_desc().strides[3] \
: MEM_D(name).blocking_desc().strides[4];
namespace nhwc_pooling {
size_t strided_offset(const int _n, const size_t _sn,
const int _d, const size_t _sd,
const int _h, const size_t _sh,
const int _w, const size_t _sw)
{
return _n * _sn
+ _d * _sd
+ _h * _sh
+ _w * _sw;
}
}
template <impl::data_type_t data_type>
void nhwc_pooling_fwd_t<data_type>::array_div_by_const(const int n,
const data_t *src, const size_t num, data_t *dst) const
{
for (int i = 0; i < n; ++i)
{
float ftmp = (float)src[i];
ftmp = ftmp / num;
dst[i] = math::out_round<data_t>(ftmp);
}
}
template <impl::data_type_t data_type>
void nhwc_pooling_fwd_t<data_type>::array_add(const int n, const data_t *src,
data_t *dst) const
{
for (int i = 0; i < n; ++i)
{
dst[i] += src[i];
}
}
template <impl::data_type_t data_type>
void nhwc_pooling_fwd_t<data_type>::execute_forward(
const exec_ctx_t &ctx) const {
using namespace alg_kind;
using namespace prop_kind;
using namespace nhwc_pooling;
auto alg = pd()->desc()->alg_kind;
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
auto ws = CTX_OUT_MEM(unsigned char *, MKLDNN_ARG_WORKSPACE);
const memory_desc_wrapper MEM_D(src)(pd()->src_md());
const memory_desc_wrapper MEM_D(dst)(pd()->dst_md());
const memory_desc_wrapper MEM_D(ws)(pd()->workspace_md());
const int ID = pd()->ID();
const int IH = pd()->IH();
const int IW = pd()->IW();
const int KD = pd()->KD();
const int KH = pd()->KH();
const int KW = pd()->KW();
const int SD = pd()->KSD();
const int SH = pd()->KSH();
const int SW = pd()->KSW();
const int padF = pd()->padFront();
const int padT = pd()->padT();
const int padL = pd()->padL();
const int MB = pd()->MB();
const int OC = pd()->C();
const int OD = pd()->OD();
const int OH = pd()->OH();
const int OW = pd()->OW();
const bool is_3d = pd()->desc()->src_desc.ndims == 5;
const data_type_t ws_dt = ws ? ws_d.data_type() : data_type::undef;
DECLARE_READ_STRIDES(src);
DECLARE_READ_STRIDES(dst);
auto apply_offset = [=](int index, int offset) {
return (index > offset) ? index - offset : 0;
};
parallel_nd(MB, OD, OH, OW,
[&](int mb, int od, int oh, int ow) {
size_t dst_offset_init = strided_offset(mb, dst_n_stride,
od, dst_d_stride,
oh, dst_h_stride,
ow, dst_w_stride);
if (alg == pooling_max) {
size_t ws_offset_init = 0;
if (ws)
{
DECLARE_READ_STRIDES(ws);
ws_offset_init = strided_offset(mb, ws_n_stride,
od, ws_d_stride,
oh, ws_h_stride,
ow, ws_w_stride);
}
// Note: GCC 4.8.5 won't vectorize below
// simple loops unless they are singled out
// into separate helper routines:
// array_nhwc_initialize, array_nhwc_max
if (!ws)
array_nhwc_initialize<false>(OC, dst + dst_offset_init,
ws, ws_offset_init, ws_dt);
else
array_nhwc_initialize<true>(OC, dst + dst_offset_init,
ws, ws_offset_init, ws_dt);
for (int kd = 0; kd < KD; ++kd)
for (int kh = 0; kh < KH; ++kh)
for (int kw = 0; kw < KW; ++kw) {
const int id = od * SD - padF + kd;
const int ih = oh * SH - padT + kh;
const int iw = ow * SW - padL + kw;
if (id < 0 || id >= ID)
continue;
if (ih < 0 || ih >= IH)
continue;
if (iw < 0 || iw >= IW)
continue;
size_t src_offset_init = strided_offset(mb, src_n_stride,
id, src_d_stride,
ih, src_h_stride,
iw, src_w_stride);
if (!ws)
array_nhwc_max<false>(OC,
dst + dst_offset_init,
src + src_offset_init,
ws, ws_offset_init,
ws_dt,
kd * KH * KW + kh * KW + kw
);
else
array_nhwc_max<true>(OC,
dst + dst_offset_init,
src + src_offset_init,
ws, ws_offset_init,
ws_dt,
kd * KH * KW + kh * KW + kw
);
}
} else {
// pooling_avg
auto d = dst + dst_offset_init;
utils::array_set(d, 0, OC);
auto id_start = apply_offset(od * SD, padF);
auto ih_start = apply_offset(oh * SH, padT);
auto iw_start = apply_offset(ow * SW, padL);
auto id_end = nstl::min(od * SD - padF + KD, ID);
auto ih_end = nstl::min(oh * SH - padT + KH, IH);
auto iw_end = nstl::min(ow * SW - padL + KW, IW);
// it is cheaper to actually count this in a loop
// as the typical kernel is small
size_t num_summands = 0;
for (int id = id_start; id < id_end; ++id)
for (int ih = ih_start; ih < ih_end; ++ih)
for (int iw = iw_start; iw < iw_end; ++iw) {
size_t src_offset_init = strided_offset(mb, src_n_stride,
id, src_d_stride,
ih, src_h_stride,
iw, src_w_stride);
auto s = src + src_offset_init;
// need to move the loop to separate function
// for GCC 4.8.5 to vectorize
array_add(OC, s, d);
num_summands++;
}
num_summands = (alg == pooling_avg_include_padding) ?
KW * KH * KD : num_summands;
// need to move the loop to separate function
// for GCC 4.8.5 to vectorize
array_div_by_const(OC, d, num_summands, d);
}
});
}
template <impl::data_type_t data_type>
void nhwc_pooling_bwd_t<data_type>::execute_backward(
const exec_ctx_t &ctx) const {
using namespace alg_kind;
using namespace nhwc_pooling;
auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
auto ws = CTX_IN_MEM(const unsigned char *, MKLDNN_ARG_WORKSPACE);
auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
const memory_desc_wrapper MEM_D(diff_src)(pd()->diff_src_md());
const memory_desc_wrapper MEM_D(diff_dst)(pd()->diff_dst_md());
const memory_desc_wrapper MEM_D(ws)(pd()->workspace_md());
const int ID = pd()->ID();
const int IH = pd()->IH();
const int IW = pd()->IW();
const int KD = pd()->KD();
const int KH = pd()->KH();
const int KW = pd()->KW();
const int SD = pd()->KSD();
const int SH = pd()->KSH();
const int SW = pd()->KSW();
const int OC = pd()->C();
const int padF = pd()->padFront();
const int padT = pd()->padT();
const int padL = pd()->padL();
const int OD = pd()->OD();
const int OH = pd()->OH();
const int OW = pd()->OW();
const bool is_3d = pd()->desc()->diff_src_desc.ndims == 5;
auto alg = pd()->desc()->alg_kind;
DECLARE_READ_STRIDES(diff_src);
DECLARE_READ_STRIDES(diff_dst);
auto apply_offset = [=](int index, int offset) {
return (index > offset) ? index - offset : 0;
};
const int MB = pd()->MB();
parallel_nd(MB, ID, IH, IW,
[&](int mb, int id, int ih, int iw) {
size_t src_offset_init = strided_offset(mb, diff_src_n_stride,
id, diff_src_d_stride,
ih, diff_src_h_stride,
iw, diff_src_w_stride);
// check if kernel windows are disjoint, in this case there's no
// update needed and we just write there once, no initialization
// required.
if (!(KD == SD && KH == SH && KW == SW))
for (int oc = 0; oc < OC; ++oc)
diff_src[src_offset_init + oc] = data_type_t(0);
// Find out which output cells may correspond to current
// input position. Current input postition divided by
// stride, with integer divide rounding down, is the
// right-most output.
// Left-most output may be computed if we decrement input
// by (kernel_size - 1) and then do the same division by
// stride.
int od_left = nstl::max((id + padF - KD + 1) / SD, 0);
int oh_left = nstl::max((ih + padT - KH + 1) / SH, 0);
int ow_left = nstl::max((iw + padL - KW + 1) / SW, 0);
// Notice +1 here to preserve the C loop "less than"
// condition for continuing the for loop.
int od_right = nstl::min((id + padF) / SD + 1 , OD);
int oh_right = nstl::min((ih + padT) / SH + 1 , OH);
int ow_right = nstl::min((iw + padL) / SW + 1 , OW);
for (int od = od_left; od < od_right; ++od)
for (int oh = oh_left; oh < oh_right; ++oh)
for (int ow = ow_left; ow < ow_right; ++ow) {
const int kd = id - od*SD + padF;
const int kh = ih - oh*SH + padT;
const int kw = iw - ow*SW + padL;
if (kd < 0 || kd >= KD)
continue;
if (kh < 0 || kh >= KH)
continue;
if (kw < 0 || kw >= KW)
continue;
size_t dst_offset_init = strided_offset(mb, diff_dst_n_stride,
od, diff_dst_d_stride,
oh, diff_dst_h_stride,
ow, diff_dst_w_stride);
if (alg == pooling_max) {
DECLARE_READ_STRIDES(ws);
size_t ws_offset_init = strided_offset(mb, ws_n_stride,
od, ws_d_stride,
oh, ws_h_stride,
ow, ws_w_stride);
const int index = kd * KH * KW + kh * KW + kw;
PRAGMA_OMP_SIMD()
for (int oc = 0; oc < OC; ++oc) {
const int index_from_ws =
(MEM_D(ws).data_type() == data_type::u8)
? (int)ws[ws_offset_init + oc]
: ((int *)ws)[ws_offset_init + oc];
const data_t d = diff_dst[dst_offset_init + oc];
// Check if kernel windows are disjoint, in this case
// there's no update needed and we just write there once
// otherwise we add value to the contents.
if (!(KD == SD && KH == SH && KW == SW))
diff_src[src_offset_init + oc] +=
(index_from_ws == index)
? d
: data_type_t(0);
else
diff_src[src_offset_init + oc] =
(index_from_ws == index)
? d
: data_type_t(0);
}
} else {
// pooling_avg
auto id_start = apply_offset(od*SD, padF);
auto ih_start = apply_offset(oh*SH, padT);
auto iw_start = apply_offset(ow*SW, padL);
auto id_end = nstl::min(od*SD - padF + KD, ID);
auto ih_end = nstl::min(oh*SH - padT + KH, IH);
auto iw_end = nstl::min(ow*SW - padL + KW, IW);
auto num_summands = (alg == pooling_avg_include_padding)
? KW*KH*KD
: (ih_end - ih_start)*(iw_end - iw_start)*(id_end - id_start);
PRAGMA_OMP_SIMD()
for (int oc = 0; oc < OC; ++oc) {
const data_t d = diff_dst[dst_offset_init + oc];
// Check if kernel windows are disjoint, in this case
// there's no update needed and we just write there once
// otherwise we add value to the contents.
if (!(KD == SD && KH == SH && KW == SW))
diff_src[src_offset_init + oc] += d / num_summands;
else
diff_src[src_offset_init + oc] = d / num_summands;
}
}
}
});
}
template struct nhwc_pooling_fwd_t<data_type::f32>;
template struct nhwc_pooling_bwd_t<data_type::f32>;
}
}
}
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s
|