summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/jit_sse42_convolution.cpp
blob: 5f77d692f51f8ff3f5683dc687634dc87421120e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "mkldnn_types.h"

#include "c_types_map.hpp"
#include "jit_sse42_convolution.hpp"
#include "mkldnn_thread.hpp"

namespace mkldnn {
namespace impl {
namespace cpu {

using namespace mkldnn::impl::status;
using namespace mkldnn::impl::utils;

#define src_blk_off(f, n, c, h, w) \
    (pd()->ndims() == 3) \
    ? (f).blk_off(n, c, w) \
    : (f).blk_off(n, c, h, w)

#define wht_blk_off_(f, g, ...) \
    pd()->with_groups() \
    ? (f).blk_off(g, __VA_ARGS__) \
    : (f).blk_off(__VA_ARGS__)
#define wht_blk_off(f, g, oc, ic, kh, kw) \
        pd()->ndims() == 3 \
        ? wht_blk_off_(f, g, oc, ic, kw) \
        : wht_blk_off_(f, g, oc, ic, kh, kw)

void jit_sse42_convolution_fwd_t::execute_forward(
        const exec_ctx_t &ctx) const {
    auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
    auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS);
    auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS);
    auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);

    const memory_desc_wrapper src_d(pd()->src_md());
    const memory_desc_wrapper dst_d(pd()->dst_md());
    const memory_desc_wrapper weights_d(pd()->weights_md(0));
    const memory_desc_wrapper bias_d(pd()->weights_md(1));

    const auto &jcp = kernel_->jcp;

    int ocb_work = div_up(jcp.nb_oc, jcp.nb_oc_blocking);
    const size_t work_amount = jcp.mb * jcp.ngroups * ocb_work * jcp.oh;

    parallel(0, [&](const int ithr, const int nthr) {
        size_t start{ 0 }, end{ 0 };
        balance211(work_amount, nthr, ithr, start, end);

        int icbb = 0;
        while (icbb < jcp.nb_ic) {
            int icb_step = jcp.nb_ic_blocking;
            int icb_step_rem = jcp.nb_ic - icbb;
            if (icb_step_rem < jcp.nb_ic_blocking_max)
                icb_step = icb_step_rem;

            size_t n{0}, g{0}, ocbb{0}, oh{0};
            nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work,
                             oh, jcp.oh);
            for (size_t iwork = start; iwork < end; ++iwork) {
                int ocb = ocbb * jcp.nb_oc_blocking;
                int ocb_num = jcp.nb_oc_blocking;

                for (int icb = icbb; icb < icbb + icb_step; ++icb) {
                    auto par_conv = jit_conv_call_s();

                    const int ij = oh * jcp.stride_h;
                    const int i_t_overflow = nstl::max(0, jcp.t_pad - ij);
                    const int i_b_overflow = nstl::max(jcp.ih, ij
                        + (jcp.kh-1) * (jcp.dilate_h+1) - jcp.t_pad+1) - jcp.ih;

                    const size_t _oc = g * jcp.nb_oc + ocb;
                    const size_t _ic = g * jcp.nb_ic + icb;

                    const int ih = nstl::max(ij - jcp.t_pad
                        + div_up(i_t_overflow,
                                 (jcp.dilate_h+1)) * (jcp.dilate_h + 1), 0);
                    par_conv.src = &src[src_blk_off(src_d, n,
                        jcp.ic == 3 ? 0 : _ic, ih, 0)];

                    par_conv.dst = &dst[src_blk_off(dst_d, n, _oc, oh, 0)];

                    const int wh = div_up(i_t_overflow, (jcp.dilate_h + 1));
                    par_conv.filt = &weights[wht_blk_off(weights_d, g, ocb,
                        jcp.ic == 3 ? 0 : icb, wh, 0)];

                    if (icb == 0) {
                        if (bias)
                            par_conv.bias =
                                    &bias[bias_d.blk_off(_oc * jcp.oc_block)];
                        par_conv.flags |= FLAG_IC_FIRST;
                    }

                    if (jcp.with_eltwise && icb + 1 == jcp.nb_ic) {
                        par_conv.flags |= FLAG_IC_LAST;
                    }

                    par_conv.oc_blocks =
                            nstl::min(ocb + ocb_num, jcp.nb_oc) - ocb;

                    par_conv.kw_padding = 0;
                    const int kh_padding = jcp.kh
                        - div_up(i_t_overflow, (jcp.dilate_h + 1))
                        - div_up(i_b_overflow, (jcp.dilate_h + 1));
                    par_conv.kh_padding = nstl::max(0, kh_padding);
                    kernel_->jit_ker(&par_conv);
                }
                nd_iterator_step(n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work,
                                 oh, jcp.oh);
            }
            icbb += icb_step;
        }
    });

    if (pd()->wants_zero_pad_dst())
        ctx.memory(MKLDNN_ARG_DST)->zero_pad();
}

}
}
}