1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef JIT_PRIMITIVE_CONF_HPP
#define JIT_PRIMITIVE_CONF_HPP
#include <stdint.h>
#include "common/primitive_attr.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
/* convolution */
enum conv_version_t {ver_unused, ver_fma, ver_avx512_core, ver_4fma, ver_vnni};
enum conv_loop_order_t {loop_cgn, loop_gnc, loop_ngc, loop_gncw, loop_cwgn,
loop_ngcw, loop_nhwcg, loop_nwcg};
enum conv_1x1_loop_order_t {loop_rbl, loop_rlb, loop_lbr, loop_lrb, loop_blr,
loop_brl};
enum conv_kernel_kind_t {embd_bcast, expl_bcast};
enum {
FLAG_MB_FIRST = 1 << 0, FLAG_MB_LAST = 1 << 1,
FLAG_OC_FIRST = 1 << 2, FLAG_OC_LAST = 1 << 3,
FLAG_IC_FIRST = 1 << 4, FLAG_IC_LAST = 1 << 5,
FLAG_SP_FIRST = 1 << 6, FLAG_SP_LAST = 1 << 7,
FLAG_REDUCE_FIRST = 1<<8, FLAG_REDUCE_LAST = 1<<9,
FLAG_ZERO_FILTER = 1 << 0, /* Controls whether the inner kernel skips
loading weights-data from memory; this
needs to happen on the first Group/16
iteration. */
FLAG_ZERO_BIAS = 1 << 1, /* Controls whether the inner kernel skip
loading bias data from memory */
FLAG_COMPUTE_BIAS = 1 << 2, /* Controls bias computation during execution
pass */
};
struct jit_conv_conf_t {
prop_kind_t prop_kind;
conv_version_t ver;
conv_loop_order_t loop_order;
int simd_w;
int ndims;
int mb;
int ngroups, ic, oc, oc_without_padding, ic_without_padding;
int id, ih, iw, od, oh, ow;
int f_pad, l_pad, t_pad;
int back_pad, r_pad, b_pad;
int kd, kh, kw;
int stride_d, stride_h, stride_w;
int dilate_d, dilate_h, dilate_w;
format_tag_t src_tag, wei_tag, dst_tag; // temporary workaround
bool with_bias;
bool with_sum;
bool with_eltwise;
post_ops_t::entry_t::eltwise_t eltwise;
int nthr, nthr_mb, nthr_g, nthr_oc_b, nthr_ic_b;
int idp, ihp, iwp, ohp, owp;
int nb_ic, ic_block;
int nb_oc, oc_block;
int nb_ow, ow_block;
int nb_oc_blocking; /* used in jit kernels for nb_oc work bloking taking
into account vector registers distribution */
int nb_oc_blocking_thr_chunk; /* used for distibution of nb_oc work
within threads */
int nb_ic_blocking, nb_ic_blocking_max; // blocking of nb_ic work
int nb_ic_L2;
int h_blocking;
int nb_oc_L2;
int ur_h, ur_w;
int ur_w_tail;
bool is_1stconv;
int nonblk_group_off;
/* fma avx512_core */
conv_kernel_kind_t kernel_kind;
/* 4fma */
int tr_iw;
int tr_src_num_guard_elems;
/* 1st conv: 4fma */
int tr_ld;
int kh_step;
/* 4vnni */
int typesize_in;
int typesize_out;
int typesize_bia;
int typesize_acc;
/* avx512_u8s8u8 */
int ic_nb1, ic_nb2;
int oc_nb1;
int ur_ow_max, ur_ow, ur_ow_tail;
int ur_ow_nsteps;
data_type_t bia_dt;
data_type_t dst_dt;
/* avx512: max possible value is nregs(32) - aux_regs(4) */
int src_offsets[28];
int src_count;
bool expl_bcast;
bool large_spatial;
int is_oc_scale;
int max_regs_ur; // maximum accumulation registers
// dw conv
int nb_ch, ch_block, nb_ch_blocking;
bool is_depthwise, is_fast_depthwise, is_resrc_depthwise;
int aligned_threads;
// large spatial
int oh_blk_size;
// s8s8 convolution
bool signed_input;
float wei_adj_scale;
};
struct jit_conv_conf_2x3_wino_t {
conv_version_t ver;
int m;
int r;
int alpha;
int tile_h, tile_w;
int mb;
int ngroups, ic, oc, oc_without_padding;
int ih, iw, oh, ow;
int l_pad, t_pad;
int r_pad, b_pad;
int kh, kw;
int stride_h, stride_w;
int dilate_h, dilate_w;
int nb_ic, ic_block;
int nb_oc, oc_block;
int w_block_size, h_block_size;
data_type_t bia_dt;
data_type_t dst_dt;
int is_oc_scale;
int typesize_in;
int typesize_out;
int typesize_bia;
int typesize_acc;
format_tag_t src_tag, dst_tag; // temporary workaround
bool with_bias;
bool small_mb;
int xb, yb;
int inp_stride;
int out_stride;
int wei_stride;
int bia_stride;
int M, N, K;
int m_block, n_block, k_block;
int n2_block, n_chunks;
int k2_block, k_chunks;
int mb_block, nb_mb;
size_t size_wino_src, size_wino_wei, size_wino_dst;
int nthr;
};
/*
Winograd sched policy:
Computation Unit:
W: weights transform
S: src transform
D: dst transform
G: gemm
Thread grouping by:
i: nb_ic
o: nb_oc
t: tile_block
e: element in tile
Note: 'i' and 'o' are omited if
i. not comblined with t or
ii. with discrete transforms
Current policies supported:
*/
enum winograd_sched_t {
WSCHED_INVALID = 0,
/* Forward & backward-data */
/* W_S_G_D implements discrete transforms */
WSCHED_DATA_W_S_G_D,
/* W_SGD implements tiled transforms s.t. GEMM could reuse data in L2*/
WSCHED_DATA_W_SGD,
/* Backward-weights */
WSCHED_WEI_S_D_G_W,
WSCHED_WEI_SDGtWo,
WSCHED_WEI_S_D_Giot_W,
WSCHED_WEI_SDGt_W,
};
struct jit_conv_winograd_conf_t : public jit_conv_conf_t {
int itiles;
int jtiles;
int ntiles;
int ic_simd_block=16;
int tile_4fma_padding;
int tile_4fma;
int oc_simd_block=16;
int oc_reg_block;
int ic_reg_block;
int tile_block;
int tile_block_ur;
int nb_tile_block_ur;
bool double_buffering;
bool with_relu_postsum;
int zmm_start;
int nb_reg;
int dimK;
int dimK_4fma;
int dimK_reg_block;
int dimK_block;
int dimK_nb_block;
int dimM;
int dimM_reg_block;
int dimM_simd_block;
int dimM_block;
int dimM_nb_block;
int dimN;
int dimN_reg_block;
int dimN_bcast_ur;
int dimN_block;
int dimN_nb_block;
winograd_sched_t sched_policy;
};
struct jit_conv_call_s {
const void *src; /* hack, non-const for backward_data */
const void *dst; /* hack, non-const for forward */
const void *filt; /* hack, non-const for backward_weights */
const void *bias; /* hack, non-const for backward_bias */
const void *src_prf;
const void *dst_prf;
const void *filt_prf;
const void *bias_prf;
const void *scales;
const void *acc_s32;
const void *compensation;
size_t kd_offset;
size_t kd_offset_prf;
size_t d_index;
size_t d_index_prf;
size_t d_worksize;
size_t d_worksize_prf;
size_t kd_padding;
size_t kd_padding_prf;
size_t kh_padding;
size_t kh_padding_prf;
size_t owb;
size_t owb_prf;
size_t kw_padding;
size_t channel;
size_t channel_prf;
size_t oc_blocks;
size_t ur_w;
size_t ur_str_w;
size_t ch_blocks;
size_t t_overflow;
size_t b_overflow;
int flags;
};
struct jit_deconv_call_s {
const void *src; /* hack, non-const for backward_data */
const void *dst; /* hack, non-const for forward */
const void *filt; /* hack, non-const for backward_weights */
const void *bias; /* hack, non-const for backward_bias */
const void *scales;
const void *compensation;
size_t t_overflow;
size_t b_overflow;
size_t kh_padding;
size_t oc_blocks;
};
struct jit_dw_conv_call_s {
const void *input;
const void *output;
const void *filter;
const void *bias;
size_t kh_count;
size_t oh_count;
size_t oh_index;
size_t filter_pad_off;
unsigned char
exec_flags; /* Flags passed by driver execution to inner kernel */
};
struct jit_wino_transform_call_s {
size_t tile_block;
size_t tile_block_ur;
size_t nb_tile_block_ur;
size_t tile_count;
size_t tj;
size_t ti;
void *src;
void *dst;
void *Mw;
void *M;
void *T;
void *G;
void *bias;
};
struct jit_1x1_conv_conf_t {
prop_kind_t prop_kind;
conv_version_t ver;
int mb;
int ngroups, ic, oc, oc_without_padding, ic_without_padding;
int iw, ih, ow, oh;
int l_pad, t_pad;
int kh, kw;
int stride_h, stride_w;
format_tag_t src_tag, wei_tag, dst_tag; // temporary workaround
bool with_bias;
bool with_sum;
bool with_eltwise;
post_ops_t::entry_t::eltwise_t eltwise;
int is, os;
int ic_block, oc_block;
int ur, ur_tail;
int reduce_dim, reduce_block, nb_reduce,
nb_reduce_blocking, nb_reduce_blocking_max;
int load_dim, load_block, nb_load,
nb_load_blocking, nb_load_blocking_max, nb_load_chunk;
int bcast_dim, bcast_block, nb_bcast,
nb_bcast_blocking, nb_bcast_blocking_max;
int reduce_loop_unroll, reduce_loop_bcast_step, reduce_loop_load_step;
int load_loop_load_step, load_loop_iter_step;
int bcast_loop_output_step, bcast_loop_output_substep;
int bcast_loop_bcast_step, bcast_loop_bcast_substep;
int fma_step;
int load_grp_count;
conv_1x1_loop_order_t loop_order;
bool use_vmovntps;
/* avx512 core */
bool expl_bcast;
/* 4vnni */
int typesize_in;
int typesize_out;
int typesize_bia;
int typesize_acc;
/* 4fma */
bool transpose_src;
int tr_is;
int nthr, nthr_mb, nthr_g, nthr_oc_b, nthr_ic_b;
int is_oc_scale;
data_type_t bia_dt;
data_type_t dst_dt;
bool signed_input;
float wei_adj_scale;
};
struct jit_gemm_conv_conf_t {
prop_kind_t prop_kind;
int mb;
int ngroups, ic, oc;
int iw, ih, id, ow, oh, od;
int l_pad, t_pad, f_pad;
int kh, kw, kd;
int stride_h, stride_w, stride_d;
int dilate_h, dilate_w, dilate_d;
bool with_bias;
int is, os, ks;
int ic_block, oc_block;
int nthr;
ptrdiff_t im2col_sz;
bool need_wei_reduction;
bool signed_input;
int oh_block;
int ow_block;
bool outer_threading;
};
struct jit_1x1_conv_call_s {
const void *bcast_data;
const void *load_data;
const void *output_data;
const void *bias_data; // used in forward and backward_weights only
const void *acc_s32;
const void *scales;
const void *compensation;
size_t load_dim;
size_t bcast_dim;
size_t reduce_dim;
size_t output_stride; // used in backward_weights only
size_t first_last_flag;
};
/* pooling */
struct jit_pool_conf_t {
int ndims;
int mb, c;
int id, ih, iw, od, oh, ow;
int stride_d, stride_h, stride_w;
int kd, kh, kw;
int f_pad, t_pad, l_pad;
alg_kind_t alg;
bool is_training;
bool pad_w_is_null;
bool is_backward;
bool simple_alg;
data_type_t ind_dt;
int c_block, c_tail, nb_c;
int ur_c, ur_c_tail;
int ur_w;
int ur_w_tail;
size_t tail[4];
data_type_t src_dt;
data_type_t dst_dt;
};
struct jit_pool_call_s {
const float *src;
const float *dst;
const void *indices;
const float *src_prf;
const float *dst_prf;
const void *indices_prf;
size_t oh;
size_t kd_padding;
size_t kh_padding;
size_t kh_padding_shift;
size_t kd_padding_shift;
size_t kw_padding;
const float* init_value;
float ker_area_h;
};
}
}
}
#endif
|