1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "c_types_map.hpp"
#include "mkldnn_thread.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"
#include "jit_avx2_convolution.hpp"
namespace mkldnn {
namespace impl {
namespace cpu {
using namespace mkldnn::impl::status;
using namespace mkldnn::impl::memory_tracking::names;
using namespace mkldnn::impl::utils;
#define src_blk_off(f, n, c, d, h, w) \
(pd()->ndims() == 3) \
? (f).blk_off(n, c, w) \
: (pd()->ndims() == 4) \
? (f).blk_off(n, c, h, w) \
: (f).blk_off(n, c, d, h, w)
#define wht_blk_off_(f, g, ...) \
pd()->with_groups() ? (f).blk_off(g, __VA_ARGS__) : (f).blk_off(__VA_ARGS__)
#define wht_blk_off(f, g, oc, ic, kd, kh, kw) \
(pd()->ndims() == 3) \
? wht_blk_off_(f, g, oc, ic, kw) \
: (pd()->ndims() == 4) \
? wht_blk_off_(f, g, oc, ic, kh, kw) \
: wht_blk_off_(f, g, oc, ic, kd, kh, kw)
void jit_avx2_convolution_fwd_t::execute_forward(const exec_ctx_t &ctx) const {
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS);
auto bias = CTX_IN_MEM(const data_t *, MKLDNN_ARG_BIAS);
auto dst = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DST);
const memory_desc_wrapper src_d(pd()->src_md());
const memory_desc_wrapper dst_d(pd()->dst_md());
const memory_desc_wrapper weights_d(pd()->weights_md(0));
const memory_desc_wrapper bias_d(pd()->weights_md(1));
const auto &jcp = kernel_->jcp;
int ocb_work = div_up(jcp.nb_oc, jcp.nb_oc_blocking);
const size_t work_amount = jcp.mb * jcp.ngroups * ocb_work * jcp.od
* jcp.oh;
auto ker = [&](const int ithr, const int nthr) {
size_t start{0}, end{0};
balance211(work_amount, nthr, ithr, start, end);
int icbb = 0;
while (icbb < jcp.nb_ic) {
int icb_step = jcp.nb_ic_blocking;
int icb_step_rem = jcp.nb_ic - icbb;
if (icb_step_rem < jcp.nb_ic_blocking_max)
icb_step = icb_step_rem;
size_t n{0}, g{0}, ocbb{0}, oh{0}, od{0};
nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work,
od, jcp.od, oh, jcp.oh);
for (size_t iwork = start; iwork < end; ++iwork) {
int ocb = ocbb * jcp.nb_oc_blocking;
int ocb_num = jcp.nb_oc_blocking;
for (int icb = icbb; icb < icbb + icb_step; ++icb) {
auto par_conv = jit_conv_call_s();
const int ij = oh * jcp.stride_h;
const int i_t_overflow = nstl::max(0, jcp.t_pad - ij);
const int i_b_overflow = nstl::max(jcp.ih, ij
+ (jcp.kh-1) * (jcp.dilate_h+1) - jcp.t_pad+1) - jcp.ih;
const int dj = od * jcp.stride_d;
const int d_t_overflow = nstl::max(0, jcp.f_pad - dj);
const int d_b_overflow = nstl::max(jcp.id, dj
+ (jcp.kd-1) * (jcp.dilate_d+1) - jcp.f_pad+1) - jcp.id;
const size_t _oc = g * jcp.nb_oc + ocb;
const size_t _ic = g * jcp.nb_ic * jcp.nonblk_group_off + icb;
const int ih = nstl::max(ij - jcp.t_pad
+ div_up(i_t_overflow,
(jcp.dilate_h+1)) * (jcp.dilate_h + 1), 0);
const int id = nstl::max(dj - jcp.f_pad
+ div_up(d_t_overflow,
(jcp.dilate_d+1)) * (jcp.dilate_d + 1), 0);
par_conv.src = &src[src_blk_off(src_d, n,
jcp.ic == 3 ? 0 : _ic, id, ih, 0)];
par_conv.dst = &dst[src_blk_off(dst_d, n, _oc, od, oh, 0)];
const int wh = div_up(i_t_overflow, (jcp.dilate_h + 1));
const int wd = div_up(d_t_overflow, (jcp.dilate_d + 1));
par_conv.filt = &weights[wht_blk_off(weights_d, g, ocb,
jcp.ic == 3 ? 0 : icb, wd, wh, 0)];
if (icb == 0) {
if (bias)
par_conv.bias =
&bias[bias_d.blk_off(_oc * jcp.oc_block)];
par_conv.flags |= FLAG_IC_FIRST;
}
if (jcp.with_eltwise && icb + 1 == jcp.nb_ic) {
par_conv.flags |= FLAG_IC_LAST;
}
par_conv.oc_blocks =
nstl::min(ocb + ocb_num, jcp.nb_oc) - ocb;
par_conv.kw_padding = 0;
const int kh_padding = jcp.kh
- div_up(i_t_overflow, (jcp.dilate_h + 1))
- div_up(i_b_overflow, (jcp.dilate_h + 1));
par_conv.kh_padding = nstl::max(0, kh_padding);
const int kd_padding = jcp.kd
- div_up(d_t_overflow, (jcp.dilate_d + 1))
- div_up(d_b_overflow, (jcp.dilate_d + 1));
par_conv.kd_padding = nstl::max(0, kd_padding);
kernel_->jit_ker(&par_conv);
}
nd_iterator_step(n, jcp.mb, g, jcp.ngroups, ocbb, ocb_work,
od, jcp.od, oh, jcp.oh);
}
icbb += icb_step;
}
};
if (pd()->wants_padded_bias()) {
auto padded_bias = scratchpad(ctx).get<data_t>(key_conv_padded_bias);
utils::array_copy(padded_bias, bias, jcp.oc_without_padding);
utils::array_set(padded_bias + jcp.oc_without_padding, 0.f,
jcp.oc - jcp.oc_without_padding);
bias = padded_bias;
}
parallel(0, ker);
if (pd()->wants_zero_pad_dst())
ctx.memory(MKLDNN_ARG_DST)->zero_pad();
}
void jit_avx2_convolution_bwd_data_t::execute_backward_data(
const exec_ctx_t &ctx) const {
auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
auto weights = CTX_IN_MEM(const data_t *, MKLDNN_ARG_WEIGHTS);
auto diff_src = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_SRC);
const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md());
const memory_desc_wrapper diff_src_d(pd()->diff_src_md());
const memory_desc_wrapper weights_d(pd()->weights_md(0));
const auto &jcp = kernel_->jcp;
int icb_work = jcp.nb_ic / jcp.nb_ic_blocking;
int ih_block_size = jcp.ih;
int num_ih_blocks = utils::div_up(jcp.ih, ih_block_size);
size_t work_amount = jcp.mb * jcp.ngroups * icb_work * num_ih_blocks;
if (work_amount < (size_t)2 * mkldnn_get_max_threads()) {
ih_block_size = 1;
num_ih_blocks = utils::div_up(jcp.ih, ih_block_size);
work_amount *= num_ih_blocks;
}
auto ker = [&](const int ithr, const int nthr) {
size_t start{0}, end{0};
balance211(work_amount, nthr, ithr, start, end);
size_t n{0}, g{0}, icbb{0}, ihb{0};
nd_iterator_init(start, n, jcp.mb, g, jcp.ngroups, icbb, icb_work,
ihb, num_ih_blocks);
for (size_t iwork = start; iwork < end; ++iwork) {
for (int oc = 0; oc < jcp.nb_oc; oc += jcp.nb_oc_blocking)
for (int id = 0; id < jcp.id; ++id) {
auto par_conv = jit_conv_call_s();
const int idp = jcp.id + 2 * jcp.f_pad;
const int d_t_overflow = nstl::max(0,
jcp.kd - 1 - id - jcp.f_pad);
const int back_pad = idp - jcp.id - jcp.f_pad;
const int d_b_overflow = nstl::max(0,
jcp.kd - 1 - (jcp.id - 1 - id) - back_pad);
const int od = id + jcp.f_pad - d_b_overflow;
int ih_start = ihb * ih_block_size;
int ih_end = nstl::min(jcp.ih, ih_start + ih_block_size);
for (int ih = ih_start; ih < ih_end; ++ih) {
const int i_t_overflow = nstl::max(0, (jcp.kh - 1
- ih - jcp.t_pad) / jcp.stride_h);
const int i_b_overflow = nstl::max(0, (jcp.kh - jcp.ih
+ ih - jcp.b_pad) / jcp.stride_h);
int overflow_kh_hi = jcp.kh - 1 - abs((jcp.ih - 1
+ jcp.b_pad - ih) % jcp.stride_h);
int overflow_kh_lo = (ih + jcp.t_pad) % jcp.stride_h;
par_conv.kd_padding = jcp.kd - d_t_overflow - d_b_overflow;
par_conv.kh_padding = (overflow_kh_hi - overflow_kh_lo)
/ jcp.stride_h + 1 - i_t_overflow - i_b_overflow;
par_conv.kw_padding = 0;
const int k_lo = overflow_kh_lo
+ i_b_overflow * jcp.stride_h;
const int oh = (ih + jcp.t_pad - k_lo) / jcp.stride_h;
par_conv.src = &diff_src[src_blk_off(diff_src_d, n,
/*jcp.ic == 3 ? 0 :*/
g * jcp.nb_ic + jcp.nb_ic_blocking * icbb, id, ih, 0)];
par_conv.dst = &diff_dst[src_blk_off(diff_dst_d,
n, g * jcp.nb_oc + oc, od, oh, 0)];
par_conv.filt = &weights[wht_blk_off(weights_d, g, oc,
jcp.ic == 3 ? 0 : jcp.nb_ic_blocking * icbb,
d_b_overflow, k_lo, 0)];
par_conv.src_prf = nullptr;
par_conv.dst_prf = nullptr;
par_conv.filt_prf = nullptr;
par_conv.channel = oc;
par_conv.ch_blocks = nstl::min(jcp.nb_oc - oc,
jcp.nb_oc_blocking);
kernel_->jit_ker(&par_conv);
}
}
nd_iterator_step(n, jcp.mb, g, jcp.ngroups, icbb, icb_work, ihb,
num_ih_blocks);
}
};
parallel(0, ker);
}
void jit_avx2_convolution_bwd_weights_t::execute_backward_weights(
const exec_ctx_t &ctx) const {
auto diff_dst = CTX_IN_MEM(const data_t *, MKLDNN_ARG_DIFF_DST);
auto src = CTX_IN_MEM(const data_t *, MKLDNN_ARG_SRC);
auto diff_weights = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_WEIGHTS);
auto diff_bias_in = CTX_OUT_MEM(data_t *, MKLDNN_ARG_DIFF_BIAS);
auto scratchpad = this->scratchpad(ctx);
data_t *diff_bias = pd()->wants_padded_bias()
? scratchpad.get<data_t>(key_conv_padded_bias) : diff_bias_in;
const memory_desc_wrapper src_d(pd()->src_md());
const memory_desc_wrapper diff_dst_d(pd()->diff_dst_md());
const memory_desc_wrapper diff_weights_d(pd()->diff_weights_md(0));
const auto &jcp = kernel_->jcp;
auto reducer_bia_scratchpad = memory_tracking::grantor_t(scratchpad,
prefix_reducer_bia);
auto rb = this->reducer_bias_;
rb->init(reducer_bia_scratchpad);
auto reducer_wei_scratchpad = memory_tracking::grantor_t(scratchpad,
prefix_reducer_wei);
auto rw = this->reducer_weights_;
rw->init(reducer_wei_scratchpad);
auto ker = [&](int ithr, int nthr) {
assert(nthr == rw->balancer().nthr_);
const int w_job_start = rw->balancer().ithr_job_off(ithr);
const int w_njobs = rw->balancer().ithr_njobs(ithr);
if (w_njobs == 0) return;
/* reduction dimension */
int img_od_start{0}, img_od_end{0}, img{0}, od_s{0};
balance211(jcp.mb * jcp.od, rw->balancer().nthr_per_group_,
rw->balancer().id_in_group(ithr), img_od_start, img_od_end);
int img_start = img_od_start, img_end = img_od_end;
nd_iterator_init(img_start, img, jcp.mb, od_s, jcp.od);
const int img_first = img;
/* jobs */
int g_start{0}, ocb_start{0}, icb_start{0};
nd_iterator_init(w_job_start, g_start, jcp.ngroups, ocb_start,
jcp.nb_oc, icb_start, jcp.nb_ic);
while (img_start < img_end) {
int g = g_start, ocb = ocb_start, icb = icb_start;
const int work_rem = img_end - img_start;
const int od_e = od_s + work_rem > jcp.od ? jcp.od : od_s + work_rem;
const int id_s = od_s * jcp.stride_d;
const int idp = jcp.id + jcp.f_pad + jcp.back_pad;
if (id_s < idp - jcp.back_pad - jcp.kd + 1)
for (int w_job_loc = 0; w_job_loc < w_njobs; ++w_job_loc) {
const size_t _oc = g * jcp.nb_oc + ocb;
const size_t _ic = g * jcp.nb_ic + icb;
/* TODO: put dw <-- 0 in kernel */
if (img == img_first)
array_set(rw->get_local_ptr(ithr, diff_weights,
reducer_wei_scratchpad) +
w_job_loc * rw->balancer().job_size_, 0,
rw->balancer().job_size_);
for (int od = od_s; od < od_e; ++od) {
const int id = od * jcp.stride_d;
if (id >= jcp.id - jcp.back_pad - jcp.kd + 1) break;
auto par_conv = jit_conv_call_s();
par_conv.src = &src[src_blk_off(src_d, img, _ic, id, 0, 0)];
par_conv.dst =
&diff_dst[src_blk_off(diff_dst_d, img, _oc, od, 0, 0)];
par_conv.filt = rw->get_local_ptr(ithr, diff_weights,
reducer_wei_scratchpad) +
w_job_loc * rw->balancer().job_size_;
kernel_->jit_ker(&par_conv);
}
nd_iterator_step(g, jcp.ngroups, ocb, jcp.nb_oc, icb,
jcp.nb_ic);
}
nd_iterator_jump(img_start, img_end, img, jcp.mb, od_s, jcp.od);
}
rw->reduce(ithr, diff_weights, reducer_wei_scratchpad);
};
auto ker_bias = [&](int ithr, int nthr) {
assert(nthr == rb->balancer().nthr_);
const int b_job_start = rb->balancer().ithr_job_off(ithr);
const int b_njobs = rb->balancer().ithr_njobs(ithr);
if (b_njobs == 0) return;
/* reduction dimension */
int img_start{0}, img_end{0};
balance211(jcp.mb, rb->balancer().nthr_per_group_,
rb->balancer().id_in_group(ithr), img_start, img_end);
/* jobs */
int g_start{0}, ocb_start{0};
nd_iterator_init(b_job_start, g_start, jcp.ngroups, ocb_start,
jcp.nb_oc);
for (int img = img_start; img < img_end; ++img) {
int g = g_start, ocb = ocb_start;
for (int b_job_loc = 0; b_job_loc < b_njobs; ++b_job_loc) {
const size_t _oc = g * jcp.nb_oc + ocb;
const data_t *d_dst = &diff_dst[diff_dst_d.blk_off(img, _oc)];
data_t *d_bias = rb->get_local_ptr(ithr, diff_bias,
reducer_bia_scratchpad) +
b_job_loc * rb->balancer().job_size_;
if (img == img_start)
for (int o = 0; o < 8; ++o)
d_bias[o] = 0.;
for (int dhw = 0; dhw < jcp.od * jcp.oh * jcp.ow; ++dhw) {
PRAGMA_OMP_SIMD()
for (int o = 0; o < 8; ++o)
d_bias[o] += d_dst[o];
d_dst += 8;
}
nd_iterator_step(g, jcp.ngroups, ocb, jcp.nb_oc);
}
}
rb->reduce(ithr, diff_bias, reducer_bia_scratchpad);
};
parallel(0, [&](const int ithr, const int nthr) {
ker(ithr, nthr);
if (pd()->with_bias())
ker_bias(ithr, nthr);
});
/* TODO: put this in ker_bias */
if (pd()->wants_padded_bias()) {
assert(jcp.ngroups == 1);
for (int oc = 0; oc < jcp.oc_without_padding; ++oc)
diff_bias_in[oc] = diff_bias[oc];
}
}
}
}
}
// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s
|