summaryrefslogtreecommitdiff
path: root/thirdparty/oidn/mkl-dnn/src/cpu/gemm_x8s8s32x_convolution.hpp
blob: 9e77b890d55ab500a8dabba3c682f972da62164f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef GEMM_X8S8S32X_CONVOLUTION_HPP
#define GEMM_X8S8S32X_CONVOLUTION_HPP

#include "c_types_map.hpp"
#include "memory_tracking.hpp"

#include "cpu_convolution_pd.hpp"
#include "cpu_primitive.hpp"

#include "jit_primitive_conf.hpp"
#include "jit_generator.hpp"
#include "gemm_convolution_utils.hpp"

#include "gemm/gemm.hpp"

namespace mkldnn {
namespace impl {
namespace cpu {

template <data_type_t src_type, data_type_t dst_type>
struct _gemm_x8s8s32x_convolution_fwd_t: public cpu_primitive_t {
    struct pd_t: public cpu_convolution_fwd_pd_t {
        pd_t(engine_t *engine, const convolution_desc_t *adesc,
                const primitive_attr_t *attr,
                const typename pd_t::base_class *hint_fwd_pd)
            : cpu_convolution_fwd_pd_t(engine, adesc, attr, hint_fwd_pd)
            , jcp_() {}

        DECLARE_COMMON_PD_T(IGEMM_S8U8S32_IMPL_STR,
                _gemm_x8s8s32x_convolution_fwd_t<src_type, dst_type>);

        status_t init() {
            using namespace data_type;

            bool ok = true
                && is_fwd()
                && set_default_alg_kind(alg_kind::convolution_direct)
                && expect_data_types(src_type, s8, data_type::undef, dst_type,
                        s32)
                && IMPLICATION(with_bias(), utils::one_of(
                            desc()->bias_desc.data_type, f32, s32, s8, u8))
                && !has_zero_dim_memory()
                && set_default_formats_common(
                        dat_tag(), format_tag::any, dat_tag())
                && post_ops_ok()
                && memory_desc_matches_tag(*src_md(), dat_tag())
                && memory_desc_matches_tag(*dst_md(), dat_tag())
                && set_or_check_wei_format();
            if (!ok) return status::unimplemented;

            auto scratchpad = scratchpad_registry().registrar();
            return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad,
                    *desc(), src_md(), weights_md(0), dst_md(),
                    mkldnn_get_max_threads());
        }

        jit_gemm_conv_conf_t jcp_;

    protected:
        format_tag_t dat_tag() const { return format_tag::nhwc; }

        bool set_or_check_wei_format() {
            using namespace format_tag;

            const bool is_src_s8 = src_md_.data_type == data_type::s8;

            memory_desc_t want_wei_md = weights_md_;
            memory_desc_init_by_tag(want_wei_md, with_groups() ? hwigo : hwio);

            if (is_src_s8) {
                want_wei_md.extra.flags = 0
                    | memory_extra_flags::compensation_conv_s8s8
                    | memory_extra_flags::scale_adjust;
                want_wei_md.extra.compensation_mask = (1 << 0)
                    + (with_groups() ? (1 << 1) : 0);
                want_wei_md.extra.scale_adjust =
                    mayiuse(avx512_core_vnni) ? 1.f : 0.5f;
            }

            if (weights_md_.format_kind == format_kind::any) {
                weights_md_ = want_wei_md;
                return true;
            }

            return weights_md_ == want_wei_md;
        }

        bool post_ops_ok() const {
            using namespace mkldnn::impl::primitive_kind;
            auto const &po = attr()->post_ops_;
            auto is_relu = [&](int idx) {
                return po.entry_[idx].is_relu(true, false); };

            switch (po.len_) {
            case 0: return true;
            case 1: return is_relu(0) || po.contain(sum, 0);
            case 2: return po.contain(sum, 0) && is_relu(1);
            default: return false;
            }
            return false;
        }
    };

    _gemm_x8s8s32x_convolution_fwd_t(const pd_t *apd)
        : cpu_primitive_t(apd, true), pp_ker_(nullptr)
    { pp_ker_ = new pp_ker_t(pd()); }
    ~_gemm_x8s8s32x_convolution_fwd_t() { delete pp_ker_; }

    typedef typename prec_traits<src_type>::type src_data_t;
    typedef typename prec_traits<data_type::s8>::type wei_data_t;
    typedef typename prec_traits<dst_type>::type dst_data_t;
    typedef typename prec_traits<data_type::s32>::type acc_data_t;

    virtual status_t execute(const exec_ctx_t &ctx) const override {
        execute_forward(ctx);
        return status::success;
    }

private:
    // XXX: this is throwaway code that will become unnecessary when we have a
    // sufficiently advanced igemm jit generator that supports quantization,
    // relu, and whatnot
    class pp_ker_t : jit_generator {
    public:
        DECLARE_CPU_JIT_AUX_FUNCTIONS(
        _gemm_x8s8s32x_convolution_fwd_t::pp_kernel);
        pp_ker_t(const pd_t *pd);

        void operator()(dst_data_t *dst, const acc_data_t *acc,
            const char *bias, const float *scales,
            float nslope, float sum_scale, float signed_scale,
            int g, size_t start, size_t end);

        size_t dst_os_stride_;

    private:
        void generate();

        struct ker_args {
            dst_data_t *dst;
            const acc_data_t *acc;
            const char *bias;
            const float *scales;
            float nslope;
            float sum_scale;
            float signed_scale;
            size_t len;
            size_t oc_offset;
        };
        void(*ker_)(const ker_args *args);

        const jit_gemm_conv_conf_t &jcp_;
        size_t OC_;
        size_t OS_;
        data_type_t bias_data_type_;
        size_t bias_data_type_size_;
        size_t scale_idx_mult_;
        bool do_bias_;
        bool do_relu_;
        bool do_sum_;
        bool do_signed_scaling_;
        size_t vlen_;
    };

    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
    void execute_forward(const exec_ctx_t &ctx) const;
    void execute_forward_thr(const int ithr, const int nthr,
            const src_data_t *src_base, const wei_data_t *wei_base,
            const char *bia_base, dst_data_t *dst_base,
            const memory_tracking::grantor_t &scratchpad) const;

    int nthr_;
    pp_ker_t *pp_ker_;

};

template <data_type_t dst_type>
struct _gemm_u8s8s32x_convolution_bwd_data_t: public cpu_primitive_t {
    struct pd_t: public cpu_convolution_bwd_data_pd_t{
        pd_t(engine_t *engine,
                const convolution_desc_t *adesc, const primitive_attr_t *attr,
                const convolution_fwd_pd_t *hint_fwd_pd)
            : cpu_convolution_bwd_data_pd_t(engine, adesc, attr, hint_fwd_pd)
            , jcp_() {}

        DECLARE_COMMON_PD_T(IGEMM_S8U8S32_IMPL_STR,
                _gemm_u8s8s32x_convolution_bwd_data_t<dst_type>);

        status_t init() {
            using namespace data_type;

            bool ok = true
                && desc()->prop_kind == prop_kind::backward_data
                && set_default_alg_kind(alg_kind::convolution_direct)
                && expect_data_types(dst_type, s8, data_type::undef, u8, s32)
                && IMPLICATION(with_bias(), utils::one_of(
                            desc()->bias_desc.data_type, f32, s32, s8, u8))
                && !has_zero_dim_memory()
                && set_default_formats_common(dat_tag(), wei_tag(), dat_tag())
                && attr()->post_ops_.has_default_values()
                && memory_desc_matches_tag(*diff_src_md(), dat_tag())
                && memory_desc_matches_tag(*diff_dst_md(), dat_tag())
                && memory_desc_matches_tag(*weights_md(), wei_tag());
            if (!ok) return status::unimplemented;

            auto scratchpad = scratchpad_registry().registrar();
            return jit_gemm_convolution_utils::init_conf(jcp_, scratchpad,
                    *desc(), diff_src_md(), weights_md(), diff_dst_md(),
                    mkldnn_get_max_threads());
        }

        virtual bool support_bias() const override { return true; }

        jit_gemm_conv_conf_t jcp_;

    protected:
        format_tag_t dat_tag() const { return format_tag::nhwc; }

        format_tag_t wei_tag() const {
            return with_groups() ? format_tag::hwigo : format_tag::hwio;
        }
    };

    _gemm_u8s8s32x_convolution_bwd_data_t(const pd_t *apd)
        : cpu_primitive_t(apd, true) {}

    typedef typename prec_traits<data_type::u8>::type diff_dst_data_t;
    typedef typename prec_traits<data_type::s8>::type wei_data_t;
    typedef typename prec_traits<dst_type>::type diff_src_data_t;
    typedef typename prec_traits<data_type::s32>::type acc_data_t;

    virtual status_t execute(const exec_ctx_t &ctx) const override {
        execute_backward_data(ctx);
        return status::success;
    }

private:
    void execute_backward_data(const exec_ctx_t &ctx) const;
    void execute_backward_data_thr(const int ithr, const int nthr,
            const diff_dst_data_t *diff_dst_base, const wei_data_t *wei_base,
            const char *bia_base, diff_src_data_t *diff_src_base,
            const memory_tracking::grantor_t &scratchpad) const;
    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
};

}
}
}

#endif